Abstract
Unit operations are some special functions on sets. The concept of the unit operation originates from researches of U.Wybraniec-Skardowska. The paper is concerned with the general properties of such functions. The isomorphism between binary relations and unit operations is proved. Algebraic structures of families of unit operations corresponding to certain classes of binary relations are considered. Unit operations are useful in Pawlak’s Rough Set Theory. It is shown that unit operations are upper approximations in approximation space. We prove, that in the approximation space (U,R) generated by a reflexive relation R the corresponding unit operation is the least definable approximation if and only if the relation R is transitive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intentions in the rough set theory. Journal of Information Sciences 107, 149–167 (1998)
Bonikowski, Z.: Algebraic Structures of Rough Sets in Representative Approximation Spaces. Electronic Notes in Theoretical Computer Science 82, 1–12 (2003)
Gomolińska, A.: A Comparative Study of Some Generalized Rough Approximations. Fundamenta Informaticae 51, 103–119 (2002)
Gomolińska, A.: Approximation Spaces Based on Relations of Similarity and Dissimilarity of Objects. Fundamenta Informaticae 79, 319–333 (2007)
Grzymała-Busse, J.: Characteristic Relations for Incomplete Data: A Generalization of the Indiscernibility Relation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 58–68. Springer, Heidelberg (2005)
Grzymała-Busse, J.W.: Incomplete Data and Generalization of Indiscernibility Relation, Definability, and Approximations. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 244–253. Springer, Heidelberg (2005)
Grzymała-Busse, J., Rząsa, W.: Definability of Approximations for a Generalization of the Indiscernibility Relation. In: Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence, pp. 65–72 (2007)
Jónsson, B., Tarski, A.: Boolean Algebras with Operators. Part I. Amer. J. Math. 73, 891–939 (1951)
Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)
Lin, T.Y.: Granular Computing on Binary Relations I. Data Mining and Neighborhood Systems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 107–121. Physica Verlag, Heidelberg (1998)
Liu, G., Sai, Y.: A comparison of two types of rough sets induced by coverings. International Journal of Approximate Reasoning 50, 521–528 (2009)
Pawlak, Z.: Rough Sets. Intern. J. Comp. Inform. Sci. 11, 341–356 (1982)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Słowiński, R., Vanderpooten, D.: A Generalized Definition of Rough Approximations Based on Similarity. IEEE Transactions on Knowledge and Data Engineering 12(2), 331–336 (2000)
Stefanowski, J., Tsoukià s, A.: Incomplete Information Tables and Rough Classification. Computational Intelligence 17(3), 545–566 (2001)
Wybraniec-Skardowska, U.: On a Generalization of Approximation Space. Bull. Polish Acad. Sci. Math. 37(1-6), 51–62 (1989)
Wybraniec-Skardowska, U.: Unit Operations. Zeszyty Naukowe WSP w Opolu, Matematyka XXVIII, pp. 113–129 (1992)
Yao, Y.Y.: Generalized Rough Set Models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 286–318. Physica Verlag, Heidelberg (1998)
Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)
Zhu, W.: Generalized rough sets based on relations. Information Sciences 177, 4997–5011 (2007)
Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Information Sciences 179, 210–225 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonikowski, Z. (2010). Unit Operations in Approximation Spaces. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds) Rough Sets and Current Trends in Computing. RSCTC 2010. Lecture Notes in Computer Science(), vol 6086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13529-3_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-13529-3_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13528-6
Online ISBN: 978-3-642-13529-3
eBook Packages: Computer ScienceComputer Science (R0)