Skip to main content

Unit Operations in Approximation Spaces

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6086))

Included in the following conference series:

Abstract

Unit operations are some special functions on sets. The concept of the unit operation originates from researches of U.Wybraniec-Skardowska. The paper is concerned with the general properties of such functions. The isomorphism between binary relations and unit operations is proved. Algebraic structures of families of unit operations corresponding to certain classes of binary relations are considered. Unit operations are useful in Pawlak’s Rough Set Theory. It is shown that unit operations are upper approximations in approximation space. We prove, that in the approximation space (U,R) generated by a reflexive relation R the corresponding unit operation is the least definable approximation if and only if the relation R is transitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intentions in the rough set theory. Journal of Information Sciences 107, 149–167 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonikowski, Z.: Algebraic Structures of Rough Sets in Representative Approximation Spaces. Electronic Notes in Theoretical Computer Science 82, 1–12 (2003)

    Article  Google Scholar 

  3. Gomolińska, A.: A Comparative Study of Some Generalized Rough Approximations. Fundamenta Informaticae 51, 103–119 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Gomolińska, A.: Approximation Spaces Based on Relations of Similarity and Dissimilarity of Objects. Fundamenta Informaticae 79, 319–333 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Grzymała-Busse, J.: Characteristic Relations for Incomplete Data: A Generalization of the Indiscernibility Relation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets IV. LNCS, vol. 3700, pp. 58–68. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Grzymała-Busse, J.W.: Incomplete Data and Generalization of Indiscernibility Relation, Definability, and Approximations. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 244–253. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Grzymała-Busse, J., Rząsa, W.: Definability of Approximations for a Generalization of the Indiscernibility Relation. In: Proceedings of the 2007 IEEE Symposium on Foundations of Computational Intelligence, pp. 65–72 (2007)

    Google Scholar 

  8. Jónsson, B., Tarski, A.: Boolean Algebras with Operators. Part I. Amer. J. Math. 73, 891–939 (1951)

    Article  MATH  Google Scholar 

  9. Kryszkiewicz, M.: Rules in incomplete information systems. Information Sciences 113, 271–292 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lin, T.Y.: Granular Computing on Binary Relations I. Data Mining and Neighborhood Systems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 107–121. Physica Verlag, Heidelberg (1998)

    Google Scholar 

  11. Liu, G., Sai, Y.: A comparison of two types of rough sets induced by coverings. International Journal of Approximate Reasoning 50, 521–528 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pawlak, Z.: Rough Sets. Intern. J. Comp. Inform. Sci. 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  14. Słowiński, R., Vanderpooten, D.: A Generalized Definition of Rough Approximations Based on Similarity. IEEE Transactions on Knowledge and Data Engineering 12(2), 331–336 (2000)

    Article  Google Scholar 

  15. Stefanowski, J., Tsoukiàs, A.: Incomplete Information Tables and Rough Classification. Computational Intelligence 17(3), 545–566 (2001)

    Article  Google Scholar 

  16. Wybraniec-Skardowska, U.: On a Generalization of Approximation Space. Bull. Polish Acad. Sci. Math. 37(1-6), 51–62 (1989)

    MATH  MathSciNet  Google Scholar 

  17. Wybraniec-Skardowska, U.: Unit Operations. Zeszyty Naukowe WSP w Opolu, Matematyka XXVIII, pp. 113–129 (1992)

    Google Scholar 

  18. Yao, Y.Y.: Generalized Rough Set Models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 286–318. Physica Verlag, Heidelberg (1998)

    Google Scholar 

  19. Yao, Y.Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhu, W.: Generalized rough sets based on relations. Information Sciences 177, 4997–5011 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Information Sciences 179, 210–225 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonikowski, Z. (2010). Unit Operations in Approximation Spaces. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds) Rough Sets and Current Trends in Computing. RSCTC 2010. Lecture Notes in Computer Science(), vol 6086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13529-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13529-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13528-6

  • Online ISBN: 978-3-642-13529-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy