Abstract
The NLMeans filter, originally proposed by Buades et al., is a very popular filter for the removal of white Gaussian noise, due to its simplicity and excellent performance. The strength of this filter lies in exploiting the repetitive character of structures in images. However, to fully take advantage of the repetitivity a computationally extensive search for similar candidate blocks is indispensable. In previous work, we presented a number of algorithmic acceleration techniques for the NLMeans filter for still grayscale images. In this paper, we go one step further and incorporate both temporal information and color information into the NLMeans algorithm, in order to restore video sequences. Starting from our algorithmic acceleration techniques, we investigate how the NLMeans algorithm can be easily mapped onto recent parallel computing architectures. In particular, we consider the graphical processing unit (GPU), which is available on most recent computers. Our developments lead to a high-quality denoising filter that can process DVD-resolution video sequences in real-time on a mid-range GPU.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: IEEE Int. Conf. Image Proc (ICIP), vol. 1, pp. 31–35 (November 1994)
Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Processing 12(11), 1338–1351 (2003)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Trans. Image Processing 16(8), 2080–2095 (2007)
Goossens, B., Luong, H., Pižurica, A., Philips, W.: An improved Non-Local Means Algorithm for Image Denoising. In: Int. Workshop on Local and Non-Local Approx. in Image Processing (2008) (invited paper)
Goossens, B., Pižurica, A., Philips, W.: Removal of correlated noise by modeling the signal of interest in the wavelet domain. IEEE Trans. Image Processing 18(6), 1153–1165 (2009)
Goossens, B., Pižurica, A., Philips, W.: Image Denoising Using Mixtures of Projected Gaussian Scale Mixtures. IEEE Trans. Image Processing 18(8), 1689–1702 (2009)
Brailean, J.C., Kleihorst, R.P., Efstraditis, S., Katsaggeleos, K.A., Lagendijk, R.L.: Noise reduction filters for dynamic image sequences: a review. Proc. IEEE 83(9), 1272–1292 (1995)
Selesnick, I.W., Li, K.Y.: Video denoising using 2D and 3D dual-tree complex wavelet transforms. In: Proc. SPIE Wavelet Applications in Signal and Image Processing, pp. 607–618 (August 2003)
Pižurica, A., Zlokolica, V., Philips, W.: Combined wavelet domain and temporal video denoising. In: Proc. IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS), pp. 334–341 (2003)
Zlokolica, V., Pižurica, A., Philips, W.: Recursive temporal denoising and motion estimation of video. In: IEEE Int. Conf. Image Proc (ICIP), pp. 1465–1468 (2004)
Goossens, B., Pižurica, A., Philips, W.: Video denoising using motion-compensated lifting wavelet transform. In: Proceedings of Wavelets and Applications Semester and Conference (WavE 2006), Lausanne, Switzerland (July 2006)
Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3D transform-domain collaborative filtering. In: European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland (2007)
Buades, A., Coll, B., Morel, J.-M.: Nonlocal Image and Movie Denoising. Int J. Comput. Vis. 76, 123–139 (2008)
Yu, S., Ahmad, M.O., Swamy, M.N.S.: Video Denoising using Motion Compensated 3D Wavelet Transform with Integrated Recursive Temporal Filtering. IEEE Trans. Cir. and Sys. for Video Technol. (2010) (in press)
Mélange, T., Nachtegael, M., Kerre, E.E., Zlokolica, V., Schulte, S., De Witte, V., Pizurica, A., Philips, W.: Video denoising by fuzzy motion and detail adaptive averaging. Journal of Elec. Imaging 17(4), 43005–1–43005–19 (2008)
Buades, A., Coll., B., Morel, J.M.: A non local algorithm for image denoising. In: Proc. Int. Conf. Comp. Vision and Pat. Recog (CVPR), vol. 2, pp. 60–65 (2005)
Azzabou, N., Paragias, N., Guichard, F.: Image Denoising Based on Adapted Dictionary Computation. In: Proc. of IEEE International Conference on Image Processing (ICIP), San Antonio, Texas, USA, pp. 109–112 (September 2007)
Kervrann, C., Boulanger, J., Coupé, P.: Bayesian Non-Local Means Filter, Image Redundancy and Adaptive Dictionaries for Noise Removal. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 520–532. Springer, Heidelberg (2007)
Dauwe, A., Goossens, B., Luong, H.Q., Philips, W.: A Fast Non-Local Image Denoising Algorithm. In: Proc. SPIE Electronic Imaging, San José, USA, vol. 6812 (January 2008)
Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Processing 15(10), 2866–2878 (2006)
Wang, J., Guo, Y., Ying, Y., Liu, Y., Peng, Q.: Fast non-local algorithm for image denoising. In: IEEE Int. Conf. Image Proc (ICIP), pp. 1429–1432 (2006)
Bilcu, R.C., Vehvilainen, M.: Fast nonlocal means for image denoising. In: Martin, R.A., DiCarlo, J.M., Sampat, N. (eds.) Proc. SPIE Digital Photography III, vol. 6502, SPIE, CA (2007)
Aelterman, J., Goossens, B., Pižurica, A., Philips, W.: Suppression of Correlated Noise, IN-TECH. In: Recent Advances in Signal Processing (2010)
General-Purpose Computation on Graphics Hardware, http://www.gpgpu.org
Kharlamov, A., Podlozhnyuk, V.: Image denoising, CUDA 1.1 SDK (June 2007)
De Fontes, F.P.X., Barroso, G.A., Hellier, P.: Real time ultrasound image denoising. Journal of Real-Time Image Processing (April 2010)
Goossens, B., Pižurica, A., Philips, W.: EM-Based Estimation of Spatially Variant Correlated Image Noise. In: IEEE Int. Conf. Image Proc. (ICIP), San Diego, CA, USA, pp. 1744–1747 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goossens, B., Luong, H., Aelterman, J., Pižurica, A., Philips, W. (2010). A GPU-Accelerated Real-Time NLMeans Algorithm for Denoising Color Video Sequences. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol 6475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17691-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-17691-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17690-6
Online ISBN: 978-3-642-17691-3
eBook Packages: Computer ScienceComputer Science (R0)