Skip to main content

A GPU-Accelerated Real-Time NLMeans Algorithm for Denoising Color Video Sequences

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6475))

  • 1302 Accesses

Abstract

The NLMeans filter, originally proposed by Buades et al., is a very popular filter for the removal of white Gaussian noise, due to its simplicity and excellent performance. The strength of this filter lies in exploiting the repetitive character of structures in images. However, to fully take advantage of the repetitivity a computationally extensive search for similar candidate blocks is indispensable. In previous work, we presented a number of algorithmic acceleration techniques for the NLMeans filter for still grayscale images. In this paper, we go one step further and incorporate both temporal information and color information into the NLMeans algorithm, in order to restore video sequences. Starting from our algorithmic acceleration techniques, we investigate how the NLMeans algorithm can be easily mapped onto recent parallel computing architectures. In particular, we consider the graphical processing unit (GPU), which is available on most recent computers. Our developments lead to a high-quality denoising filter that can process DVD-resolution video sequences in real-time on a mid-range GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: IEEE Int. Conf. Image Proc (ICIP), vol. 1, pp. 31–35 (November 1994)

    Google Scholar 

  2. Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Processing 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Trans. Image Processing 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  4. Goossens, B., Luong, H., Pižurica, A., Philips, W.: An improved Non-Local Means Algorithm for Image Denoising. In: Int. Workshop on Local and Non-Local Approx. in Image Processing (2008) (invited paper)

    Google Scholar 

  5. Goossens, B., Pižurica, A., Philips, W.: Removal of correlated noise by modeling the signal of interest in the wavelet domain. IEEE Trans. Image Processing 18(6), 1153–1165 (2009)

    Article  MathSciNet  Google Scholar 

  6. Goossens, B., Pižurica, A., Philips, W.: Image Denoising Using Mixtures of Projected Gaussian Scale Mixtures. IEEE Trans. Image Processing 18(8), 1689–1702 (2009)

    Article  MathSciNet  Google Scholar 

  7. Brailean, J.C., Kleihorst, R.P., Efstraditis, S., Katsaggeleos, K.A., Lagendijk, R.L.: Noise reduction filters for dynamic image sequences: a review. Proc. IEEE 83(9), 1272–1292 (1995)

    Article  Google Scholar 

  8. Selesnick, I.W., Li, K.Y.: Video denoising using 2D and 3D dual-tree complex wavelet transforms. In: Proc. SPIE Wavelet Applications in Signal and Image Processing, pp. 607–618 (August 2003)

    Google Scholar 

  9. Pižurica, A., Zlokolica, V., Philips, W.: Combined wavelet domain and temporal video denoising. In: Proc. IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS), pp. 334–341 (2003)

    Google Scholar 

  10. Zlokolica, V., Pižurica, A., Philips, W.: Recursive temporal denoising and motion estimation of video. In: IEEE Int. Conf. Image Proc (ICIP), pp. 1465–1468 (2004)

    Google Scholar 

  11. Goossens, B., Pižurica, A., Philips, W.: Video denoising using motion-compensated lifting wavelet transform. In: Proceedings of Wavelets and Applications Semester and Conference (WavE 2006), Lausanne, Switzerland (July 2006)

    Google Scholar 

  12. Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3D transform-domain collaborative filtering. In: European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland (2007)

    Google Scholar 

  13. Buades, A., Coll, B., Morel, J.-M.: Nonlocal Image and Movie Denoising. Int J. Comput. Vis. 76, 123–139 (2008)

    Article  Google Scholar 

  14. Yu, S., Ahmad, M.O., Swamy, M.N.S.: Video Denoising using Motion Compensated 3D Wavelet Transform with Integrated Recursive Temporal Filtering. IEEE Trans. Cir. and Sys. for Video Technol. (2010) (in press)

    Google Scholar 

  15. Mélange, T., Nachtegael, M., Kerre, E.E., Zlokolica, V., Schulte, S., De Witte, V., Pizurica, A., Philips, W.: Video denoising by fuzzy motion and detail adaptive averaging. Journal of Elec. Imaging 17(4), 43005–1–43005–19 (2008)

    Article  Google Scholar 

  16. Buades, A., Coll., B., Morel, J.M.: A non local algorithm for image denoising. In: Proc. Int. Conf. Comp. Vision and Pat. Recog (CVPR), vol. 2, pp. 60–65 (2005)

    Google Scholar 

  17. Azzabou, N., Paragias, N., Guichard, F.: Image Denoising Based on Adapted Dictionary Computation. In: Proc. of IEEE International Conference on Image Processing (ICIP), San Antonio, Texas, USA, pp. 109–112 (September 2007)

    Google Scholar 

  18. Kervrann, C., Boulanger, J., Coupé, P.: Bayesian Non-Local Means Filter, Image Redundancy and Adaptive Dictionaries for Noise Removal. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 520–532. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Dauwe, A., Goossens, B., Luong, H.Q., Philips, W.: A Fast Non-Local Image Denoising Algorithm. In: Proc. SPIE Electronic Imaging, San José, USA, vol. 6812 (January 2008)

    Google Scholar 

  20. Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Processing 15(10), 2866–2878 (2006)

    Article  Google Scholar 

  21. Wang, J., Guo, Y., Ying, Y., Liu, Y., Peng, Q.: Fast non-local algorithm for image denoising. In: IEEE Int. Conf. Image Proc (ICIP), pp. 1429–1432 (2006)

    Google Scholar 

  22. Bilcu, R.C., Vehvilainen, M.: Fast nonlocal means for image denoising. In: Martin, R.A., DiCarlo, J.M., Sampat, N. (eds.) Proc. SPIE Digital Photography III, vol. 6502, SPIE, CA (2007)

    Google Scholar 

  23. Aelterman, J., Goossens, B., Pižurica, A., Philips, W.: Suppression of Correlated Noise, IN-TECH. In: Recent Advances in Signal Processing (2010)

    Google Scholar 

  24. General-Purpose Computation on Graphics Hardware, http://www.gpgpu.org

  25. Kharlamov, A., Podlozhnyuk, V.: Image denoising, CUDA 1.1 SDK (June 2007)

    Google Scholar 

  26. De Fontes, F.P.X., Barroso, G.A., Hellier, P.: Real time ultrasound image denoising. Journal of Real-Time Image Processing (April 2010)

    Google Scholar 

  27. Goossens, B., Pižurica, A., Philips, W.: EM-Based Estimation of Spatially Variant Correlated Image Noise. In: IEEE Int. Conf. Image Proc. (ICIP), San Diego, CA, USA, pp. 1744–1747 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goossens, B., Luong, H., Aelterman, J., Pižurica, A., Philips, W. (2010). A GPU-Accelerated Real-Time NLMeans Algorithm for Denoising Color Video Sequences. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol 6475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17691-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17691-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17690-6

  • Online ISBN: 978-3-642-17691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy