Abstract
This paper presents a new strategy for the analysis of emotions contained within musical compositions. We present a method for tracking changing emotions during the course of a musical piece. The collected data allowed to determine the dominant emotion in the musical composition, present emotion histograms and construct maps visualizing the distribution of emotions in time. The amount of changes of emotions during a piece may be different, therefore we introduced a parameter evaluating the quantity of changes of emotions in a musical composition. The information obtained about the emotion in a piece made it possible to analyze a number of pieces, in particular the Sonatas of Ludwig van Beethoven. This analysis has provided new knowledge about the compositions and the method of their emotional development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pratt, C.C.: Music as the language of emotion. The Library of Congress (1950)
Lu, L., Liu, D., Zhang, H.J.: Automatic mood detection and tracking of music audio signals. IEEE Transactions on Audio, Speech and Language Processing 14(1), 5–18 (2006)
Schmidt, E.M., Turnbull, D., Kim, Y.E.: Feature Selection for Content-Based, Time-Varying Musical Emotion Regression. In: Proc. ACM SIGMM International Conference on Multimedia Information Retrieval, Philadelphia, PA (2010)
Schmidt, E.M., Kim, Y.E.: Prediction of time-varying musical mood distributions from audio. In: Proceedings of the 2010 International Society for Music Information Retrieval Conference, Utrecht, Netherlands (2010)
Myint, E.E.P., Pwint, M.: An approach for multi-label music mood classification. In: 2nd International Conference on Signal Processing Systems, ICSPS (2010)
Grekow, J., Raś, Z.W.: Emotion Based MIDI Files Retrieval System. In: Raś, Z.W., Wieczorkowska, A.A. (eds.) Advances in Music Information Retrieval. SCI, vol. 274, pp. 261–284. Springer, Heidelberg (2010)
Mohammad, S.: From Once Upon a Time to Happily Ever After: Tracking Emotions in Novels and Fairy Tales. In: Proceedings of the ACL 2011 Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities, Portland, OR, USA, pp. 105–114 (2011)
Yeh, J.-H., Pao, T.-L., Pai, C.-Y., Cheng, Y.-M.: Tracking and Visualizing the Changes of Mandarin Emotional Expression. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 978–984. Springer, Heidelberg (2008)
Grekow, J., Raś, Z.W.: Detecting Emotions in Classical Music from MIDI Files. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 261–270. Springer, Heidelberg (2009)
Thayer, R.E.: The biopsychology arousal. Oxford University Press (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grekow, J. (2012). Mood Tracking of Musical Compositions. In: Chen, L., Felfernig, A., Liu, J., RaÅ›, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2012. Lecture Notes in Computer Science(), vol 7661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34624-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-34624-8_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34623-1
Online ISBN: 978-3-642-34624-8
eBook Packages: Computer ScienceComputer Science (R0)