Abstract
For a given braid group representation (BGR), a process of the Yang-Baxterization is formulated to generate solutions of the Yang-Baxter equation (YBE). When a BGR admits the Birman-Wenzl (BW) algebraic structure, this process can be explicitly passed through and two types of trigonometric solutions of YBE are generated from such a BGR. These two solutions have, the essential difference to each other and both of them, preserve the crossing symmetry property if the given BGR has. By taking certain, reduction on the BW algebra, the rational solution is also generated. A practical condition to judge whether a BGR satisfies the BW algebra is given, from which one finds that not only the familiar BGRs of [5,7,9], but also some new, ones obtained recently in [12] have the BW structure. Thus they can be explicitly Yang-Baxterized to solutions of the YBE.
Similar content being viewed by others
References
Yang, C.N.: Phys. Rev. Lett.19, 1312 (1967)
Baxter, R.J.: Exactly solved models in statistical mechanics London: Academic Press, 1982
Yang, C.N., Ge, M.L. (eds.): Braid group, knot theory and statistical mechanics. Singapore: World Scientific 1989
For reference book, see: Yang-Baxter equation in integrable systems Jimbo, M. (ed.), Singapore: World Scientific 1990
Jimbo, M.: Commun. Math. Phys.102, 537 (1986), and in [3]; Yang, C.N., Ge, M.L. (eds.): Braid group, knot theory and statistical mechanics. Singapore: World Scientific 1989 pp. 111–134
Belavin, A.A., Drinfeld, V.G.: Funct. Anal. Appl.16, 159 (1982)
Turaev, V.G.: Invent. Math.92, 527 (1988)
Wadati, M., Deguchi, T., Akutsu, Y.: Phys. Rep.180, 247 (1989)
Yu Reshetikhin, N.: Preprint LOMI, E-4-87, E-14-87
Ge, M.L., Wang, L.Y., Xue, K., Wu, Y.S.: Inter. J. Mod., Phys.4 3351 (1989) Ge, M.L., Li, Y.Q., Xue, K.: J. Phys.23A, 605, 619 (1990)
Couture, M., Cheng, Y., Ge, M.L., Xue, K.: Preprint ITP-SB-90-05 Lee, H.C., Couture, M., Schmeing, N.C.: Prepring CRNL-TP-88-1125R
Ge, M.L., Xue, K.: Preprint ITP-SB-90-20
Jones, V.: Commun. Math. Phys.125, 459 (1989)
Ge, M.L., Wu, Y.S., Xue, K.: Preprint, ITP-SB-90-02. Inter. J. Mod. Phys. (to appear)
Birman, J., Wenzl, H.: Trans. A.M.S.313, 249 (1989) Murakami, J.: Osaka J. Math.24, 745 (1987)
Takhtajan, L.: Introduction to quantum group. Nankai Mathematical Physics, Lectures. Singapore: World Scientific 1990 (in press)
Lee, H.C.: Preprint, CRNL-TP-90
Wenzl, H.: Ann. Math.128, 179 (1988)
Ge, M.L., Gwa, L.H., Zhao, H.K.: Preprint ITP-SB-90-09
Yang, C.N.: Phys. Rev.168, 1920 (1968)
Zamolodchikov, A.B., Zamolodchikov, Al.B.: Ann. Phys.120, 253 (1979)
Author information
Authors and Affiliations
Additional information
Communicated by N.Yu. Reshetikhin
Rights and permissions
About this article
Cite this article
Cheng, Y., Ge, M.L. & Xue, K. Yang-Baxterization of braid group representations. Commun.Math. Phys. 136, 195–208 (1991). https://doi.org/10.1007/BF02096797
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02096797