Skip to main content
Log in

Yang-Baxterization of braid group representations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a given braid group representation (BGR), a process of the Yang-Baxterization is formulated to generate solutions of the Yang-Baxter equation (YBE). When a BGR admits the Birman-Wenzl (BW) algebraic structure, this process can be explicitly passed through and two types of trigonometric solutions of YBE are generated from such a BGR. These two solutions have, the essential difference to each other and both of them, preserve the crossing symmetry property if the given BGR has. By taking certain, reduction on the BW algebra, the rational solution is also generated. A practical condition to judge whether a BGR satisfies the BW algebra is given, from which one finds that not only the familiar BGRs of [5,7,9], but also some new, ones obtained recently in [12] have the BW structure. Thus they can be explicitly Yang-Baxterized to solutions of the YBE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, C.N.: Phys. Rev. Lett.19, 1312 (1967)

    Article  Google Scholar 

  2. Baxter, R.J.: Exactly solved models in statistical mechanics London: Academic Press, 1982

    Google Scholar 

  3. Yang, C.N., Ge, M.L. (eds.): Braid group, knot theory and statistical mechanics. Singapore: World Scientific 1989

    Google Scholar 

  4. For reference book, see: Yang-Baxter equation in integrable systems Jimbo, M. (ed.), Singapore: World Scientific 1990

    Google Scholar 

  5. Jimbo, M.: Commun. Math. Phys.102, 537 (1986), and in [3]; Yang, C.N., Ge, M.L. (eds.): Braid group, knot theory and statistical mechanics. Singapore: World Scientific 1989 pp. 111–134

    Article  Google Scholar 

  6. Belavin, A.A., Drinfeld, V.G.: Funct. Anal. Appl.16, 159 (1982)

    Article  Google Scholar 

  7. Turaev, V.G.: Invent. Math.92, 527 (1988)

    Article  Google Scholar 

  8. Wadati, M., Deguchi, T., Akutsu, Y.: Phys. Rep.180, 247 (1989)

    Article  Google Scholar 

  9. Yu Reshetikhin, N.: Preprint LOMI, E-4-87, E-14-87

  10. Ge, M.L., Wang, L.Y., Xue, K., Wu, Y.S.: Inter. J. Mod., Phys.4 3351 (1989) Ge, M.L., Li, Y.Q., Xue, K.: J. Phys.23A, 605, 619 (1990)

    Google Scholar 

  11. Couture, M., Cheng, Y., Ge, M.L., Xue, K.: Preprint ITP-SB-90-05 Lee, H.C., Couture, M., Schmeing, N.C.: Prepring CRNL-TP-88-1125R

  12. Ge, M.L., Xue, K.: Preprint ITP-SB-90-20

  13. Jones, V.: Commun. Math. Phys.125, 459 (1989)

    Article  Google Scholar 

  14. Ge, M.L., Wu, Y.S., Xue, K.: Preprint, ITP-SB-90-02. Inter. J. Mod. Phys. (to appear)

  15. Birman, J., Wenzl, H.: Trans. A.M.S.313, 249 (1989) Murakami, J.: Osaka J. Math.24, 745 (1987)

    Google Scholar 

  16. Takhtajan, L.: Introduction to quantum group. Nankai Mathematical Physics, Lectures. Singapore: World Scientific 1990 (in press)

    Google Scholar 

  17. Lee, H.C.: Preprint, CRNL-TP-90

  18. Wenzl, H.: Ann. Math.128, 179 (1988)

    Google Scholar 

  19. Ge, M.L., Gwa, L.H., Zhao, H.K.: Preprint ITP-SB-90-09

  20. Yang, C.N.: Phys. Rev.168, 1920 (1968)

    Article  Google Scholar 

  21. Zamolodchikov, A.B., Zamolodchikov, Al.B.: Ann. Phys.120, 253 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N.Yu. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Ge, M.L. & Xue, K. Yang-Baxterization of braid group representations. Commun.Math. Phys. 136, 195–208 (1991). https://doi.org/10.1007/BF02096797

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096797

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy