Skip to main content
Log in

Planetary volcanology: progress, problems, and opportunities

  • Perspectives
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Young on the scene, the field of planetary volcanology has transitioned from a predominantly descriptive science to a quantitative holistic view of the integrated generation, ascent, and eruption of magma under very different planetary sizes, densities, atmospheres, and positions in the Solar System. These multiple settings and conditions, now augmented by thousands of exoplanets, are providing new insights into the nature and history of volcanic processes and the thermal evolution of our own home planet, Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baratoux D, Toplis MJ, Monnereau M, Sautter V (2013) The petrological expression of early Mars volcanism. J Geophys Res Planets 118:59–64. https://doi.org/10.1029/2012JE004234

    Article  Google Scholar 

  • Basilevsky AT, Zharkov VN, Volkov VP (1992) Venus geology, geochemistry, and geophysics: research results from the USSR. University of Arizona Press. p 421

  • Benkhoff J, Van Casteren J, Hayakawa H, Fujimoto M, Laakso H, Novara M, Ferri P, Middleton HR, Ziethe R (2010) BepiColombo—comprehensive exploration of Mercury: mission overview and science goals. Planet Space Sci 58:2–20

    Article  Google Scholar 

  • Bibring J-P, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthe M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P, OMEGA Team (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307:1576–1581

    Article  Google Scholar 

  • Bougher SW, Hunten DM, Phillips R (eds) (1997) Venus II—geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press. p 1362.

  • Braden SE, Stopar JD, Robinson MS, Lawrence SJ, Van Der Bogert CH, Hiesinger H (2014) Evidence for basaltic volcanism on the Moon within the past 100 million years. Nat Geosci 7:787–791

    Article  Google Scholar 

  • Brož P, Bernhardt H, Conway SJ, Parekh R (2021) An overview of explosive volcanism on Mars. J Volcanol Geotherm Res 409:107125

    Article  Google Scholar 

  • Carr M, Head JW (2010) Geologic history of Mars. Earth Planet Sci Lett 294:185–203. https://doi.org/10.1016/j.epsl.2009.06.042

    Article  Google Scholar 

  • Crown DA, Greeley R (1993) Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. J Geophys Res 98:3431–3451

    Article  Google Scholar 

  • Davies A (2007) Volcanism on Io: a comparison with Earth. Cambridge Univ, Press, p 355

    Book  Google Scholar 

  • Deutsch AN, Head JW, Parman SW, Wilson L, Neumann GA, Lowden F (2021) Degassing of volcanic extrusives on Mercury: potential contributions to transient atmospheres and buried polar deposits. Earth Planet Sci Lett 564:116907. https://doi.org/10.1016/j.epsl.2021.116907

    Article  Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge Univ, Press, p 653

    Book  Google Scholar 

  • Gaillard F, Scaillet B (2014) A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet Sci Lett 403:307–316. https://doi.org/10.1016/j.epsl.2014.07.009

    Article  Google Scholar 

  • Grott M, Baratoux D, Haube E, Sautter V, Mustard J, Gasnault O, Ruff SW, Karato S-I, Debaille V, Knapmayer M, Sohl F, VanHoolst T, Breuer D, Morschhauser A, Toplis MJ (2013) Long-term evolution of the Martian crust-mantle system. Space Sci Rev 174:49–111. https://doi.org/10.1007/s11214-012-9948-3

    Article  Google Scholar 

  • Head JW (1976) Lunar volcanism in space and time. Rev Geophys Space Phys 14:265–300

    Article  Google Scholar 

  • Head JW (2002) The Moon and terrestrial planets: geology and geophysics. In: Bleeker J et al (eds) The century of space science. Kluwer Academic Publishers, Netherlands, pp 1295–1323

    Google Scholar 

  • Head JW, Kreslavsky MA (2002) Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J Geophys Res 107(E1):5003. https://doi.org/10.1029/2000JE001445

    Article  Google Scholar 

  • Head JW, Marchant DR (2014) The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarct Sci 26:774–800. https://doi.org/10.1017/S0954102014000686

    Article  Google Scholar 

  • Head JW, Wilson L (1986) Volcanic processes and landforms on Venus: theory, predictions, and observations. J Geophys Res 91:9407–9446

    Article  Google Scholar 

  • Head JW, Wilson L (1992) Magma reservoirs and neutral buoyancy zones on Venus: implications for the formation and evolution of volcanic landforms. J Geophys Res 97:3877–3903

    Article  Google Scholar 

  • Head JW, Wilson L (2017) Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 2: observations). Icarus 283:176–223. https://doi.org/10.1016/j.icarus.2016.05.031

    Article  Google Scholar 

  • Head JW, Wilson L, Deutsch AN, Rutherford MJ, Saal AE (2020) Volcanically induced transient atmospheres on the Moon: assessment of duration, significance, and contributions to polar volatile traps. Geophys Res Lett 47:e2020GL089509. https://doi.org/10.1029/2020GL089509

    Article  Google Scholar 

  • Head JW, Wilson L, Kreslavsky MA (2021a) Sulfates on Mars: a pyroclastic airfall model for origin, emplacement, and initial alteration of Valles Marineris interior layered deposits (ILD). 52nd lunar and planetary science conference), Abstract #2189

  • Head JW, Wilson L, Ivanov MA, Wordsworth R (2021b) Contributions of volatiles to the Venus atmosphere from the observed extrusive volcanic record: implications for the history of the Venus atmosphere. 52nd lunar and planetary science conference). Abstract #2143

  • Hiesinger H, Head JW, Wolf U, Jaumann R, Neukum G (2011) Ages and stratigraphy of lunar mare basalts: a synthesis, Recent advances and current research issues in lunar stratigraphy: Eds Ambrose WA, Williams DA. Geol Soc Am Spec Pap 477:1–51

    Google Scholar 

  • Hunten DM (ed) (1983) Venus. University of Arizona Press. 1143

  • Ivanov MA, Head JW (2011) Global geological map of Venus. Planet Space Sci 59:1559–1600. https://doi.org/10.1016/j.pss.2011.07.008

    Article  Google Scholar 

  • Ivanov MA, Head JW (2013) The history of volcanism on Venus. Planet Space Sci 84:6–92. https://doi.org/10.1016/j.pss.2013.04.018

    Article  Google Scholar 

  • Ivanov MA, Head JW (2015) The history of tectonism on Venus: a stratigraphic analysis. Planet Space Sci 113–114:10–32. https://doi.org/10.1016/j.pss.2015.03.016

    Article  Google Scholar 

  • Kane SR, Arney G, Crisp D, Domagal-Goldman S, Glaze L, Goldblatt C, Grinspoon D, Head JW, Lenardic A, Unterborn C, Way MJ, Zahnle KJ (2019) Venus as a laboratory for exoplanetary science. J Geophys Res 124:2015–2028. https://doi.org/10.1029/2019JE005939

    Article  Google Scholar 

  • Kargel JS, Croft SK, Lunine JI, Lewis JS (1991) Rheological properties of ammonia-water liquids and crystal-liquid slurries: planetological applications. Icarus 89:93–112. https://doi.org/10.1016/0019-1035(91)90090-G

    Article  Google Scholar 

  • Kerber L, Forget F, Madeleine J-B, Wordsworth R, Head JW, Wilson L (2013) The effect of atmospheric pressure on the dispersal of pyroclasts from Martian volcanoes. Icarus 223:149–156. https://doi.org/10.1016/j.icarus.2012.11.037

    Article  Google Scholar 

  • McGovern PJ, Solomon SC (1993) State of stress, faulting, and eruption characteristics of large volcanoes on Mars. J Geophys Res 98:3553–23579. https://doi.org/10.1029/93JE03093

    Article  Google Scholar 

  • Morgan C, Wilson L, Head JW (2021) Formation and dispersal of pyroclasts on the Moon: indicators of lunar magma volatile contents. J Volcanol Geoth Res 413:107217. https://doi.org/10.1016/j.jvolgeores.2021.107217

    Article  Google Scholar 

  • Mouginis-Mark PJ, Wilson L, Zuber MT (1992) The physical volcanology of Mars. In: Kiefer HH, Jakosky BM, Snyder CW, Mathews MS (eds) Mars. University of Arizona Press, Tucson, pp 424–452

    Google Scholar 

  • Mouginis-Mark PJ, Zimbelman JR, Crown DA, Wilson L, Gregg TKP (2021) Paradigms in Martian volcanism, Chemie der Erde, submitted as invited review

  • Needham DH, Kring DA (2017) Lunar volcanism produced a transient atmosphere around the ancient moon. Earth Planet Sci Lett 478:175–178. https://doi.org/10.1016/j.epsl.2017.09.002

    Article  Google Scholar 

  • Neveu M, Desch SJ, Shock EL, Glein CR (2015) Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects. Icarus 246:48–64. https://doi.org/10.1016/j.icarus.2014.03.043

    Article  Google Scholar 

  • Oberbeck VR, Hörz F, Morrison RH, Quaide WL, Gault DE (1975) On the origin of the lunar smooth-plains. The Moon 12(1):19–54

    Article  Google Scholar 

  • Pavri B, Head JW, Klose KB, Wilson L (1992) Steep-sided domes on Venus: characteristics, geologic setting, and eruption conditions from Magellan data. J Geophys Res 97(13):445–13 (478)

    Google Scholar 

  • Qian Y, Xiao L, Head JW, van der Bogert C, Hiesinger H, Wilson L (2021) Young lunar mare basalts in the Chang’e-5 return region, northern Oceanus Procellarum. Earth Planet Sci Lett 555:116702. https://doi.org/10.1016/j.epsl.2020.116702

    Article  Google Scholar 

  • Qiao L, Head JW, Wilson L, Ling Z (2021) Ina lunar irregular mare patch mission concepts: distinguishing between ancient and modern volcanism models. Planet Sci J 2:66

    Article  Google Scholar 

  • Rollinson H (2007) Early Earth systems: a geological approach. Blackwell, p 285

    Google Scholar 

  • Saunders RS, Spear AJ, Allin PC, Austin R, Berman AL, Chandlee RC, Clark J, Decharon A, De Jong EM, Griffith DG, Gunn JM (1992) Magellan mission summary. J Geophys Res Planets 97:13067–13090

    Article  Google Scholar 

  • Scott DH, Tanaka KL (1982) Ignimbrites of Amazonis Planitia region of Mars. J Geophys Res 87:1179–1190

    Article  Google Scholar 

  • Shalygin EV, Markiewicz WJ, Basilevsky AT, Titov DV, Ignatiev NI, Head JW (2015) Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys Res Lett 42(12):4762–4769

    Article  Google Scholar 

  • Sigurdsson H (ed) (2015) The encyclopedia of volcanoes. Academic Press, p 1421

    Google Scholar 

  • Smellie JL, Edwards BE (2016) Glaciovolcanism on Earth and Mars: products, processes and paleoenvironmental significance. Cambridge Univ. Press, p 483

    Google Scholar 

  • Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328(5978):605–608

    Article  Google Scholar 

  • Solomon SC, Head JW (1982a) Mechanisms for lithospheric heat transport on Venus: implications for tectonic style and volcanism. J Geophys Res 87:9236–9246

    Article  Google Scholar 

  • Solomon SC, Head JW (1982b) Evolution of the Tharsis province of Mars: the importance of heterogeneous lithospheric thickness and volcanic construction. J Geophys Res 87:9755–9774

    Article  Google Scholar 

  • Solomon SC, Nittler LR, Anderson BJ (2018) Mercury: the view after MESSENGER. Cambridge Univ. Press, p 583

    Book  Google Scholar 

  • Stofan E, Anderson S, Crown DA, Plaut JJ (2000) Emplacement and composition of steep-sided domes on Venus. J Geophys Res 105(26):757–26 (771)

    Google Scholar 

  • Tanaka KL, Robbins SJ, Fortezzo CM, Skinner JA, Hare TM (2014b) The digital global geologic map of Mars: chronostratigraphic ages, topographic and crater morphologic characteristics, and updated resurfacing history. Planet Space Sci 95:11–24. https://doi.org/10.1016/j.pss.2013.03.006

    Article  Google Scholar 

  • Tanaka KL, Skinner JA, Dohm JM, Irwin RP, Kolb EJ, Fortezzo CM, Platz T, Michael GG, Hare TM (2014a) Geologic map of Mars: U.S. Geological Survey scientific investigations map 3292, scale 1:20,000,000, pamphlet 43 p., https://doi.org/10.3133/sim3292

  • Taylor SR (1975) Lunar science: a post-Apollo view. Pergamon Press

    Google Scholar 

  • Vilas F, Chapman CR, Matthews MS (eds) (1988) Mercury. Univ, Arizona Press, p 794

    Google Scholar 

  • Way MJ, Del Genio AD (2020) Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets. J Geophys Res Planets 125:e2019JE006276. https://doi.org/10.1029/2019JE006276

    Article  Google Scholar 

  • Weber R et al (2021) Artemis Science Definition Team report, NASA

  • Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the Earth and Moon. J Geophys Res 86:2971–3001

    Article  Google Scholar 

  • Wilson L, Head JW (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys 32:221–263

    Article  Google Scholar 

  • Wilson L, Head JW (2008) Volcanism on Mercury: a new model for the history of magma ascent and eruption. Geophys Res Lett 35:L23205. https://doi.org/10.1029/2008GL035860

    Article  Google Scholar 

  • Wilson L, Head JW (2017) Eruption of magmatic foams on the Moon: formation in the waning stages of dike emplacement events as an explanation of “irregular mare patches.” J Volcanol Geoth Res 335:113–127. https://doi.org/10.1016/j.jvolgeores.2017.02.009

    Article  Google Scholar 

  • Zhang F, Head JW, Wohler C, Bugiolacchi R, Wilson L, Basilevsky A, Grumpe A, Zou YL (2020) Ring-moat dome structures (RMDSs) in the lunar maria: statistical, compositional, and morphological characterization and assessment of theories of origin. J Geophys Res 125:e2019JE005967. https://doi.org/10.1029/2019JE005967

    Article  Google Scholar 

  • Zimbelman JR, Crown DA, Mouginis-Mark PJ, Gregg TKP (2020) The volcanoes of Mars. Elsevier, p 260. https://doi.org/10.1016/C2016-0-03694-X

    Book  Google Scholar 

  • Zolotov MY, Sprague L, Hauck SA, Nittler LR, Solomon SC, Weider SZ (2013) The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J Geophys Res Planets 118:138–146

    Article  Google Scholar 

  • D'Incecco P, Filiberto J, Lopez I, Gorinov DA, Komatsu G, Martynov A, Pisarenko P (2021) The young volcanic rises on Venus: a key scientific target for future orbital and in-situ measurements on Venus. Solar Syst Res 55:315–323. https://doi.org/10.1134/S0038094621040031

  • Gulcher AJP, Gerya TV, Montesi LGJ, Munch J (2020) Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus. Nat Geosci 13:547. https://doi.org/10.1038/s41561-020-0606-1

  • Filiberto J, Trang D, Treiman AH, Gilmore MS (2020) Present-day volcanism on Venus as evidenced from weathering rates of olivine. Sci Adv 6:eaax7445. https://doi.org/10.1126/sciadv.aax7445

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Head.

Additional information

Editorial responsibility: J.H. Fink

This paper constitutes part of a topical collection: Looking Backwards and Forwards in Volcanology: A Collection of Perspectives on the Trajectory of a Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Head, J.W., Wilson, L. Planetary volcanology: progress, problems, and opportunities. Bull Volcanol 84, 23 (2022). https://doi.org/10.1007/s00445-022-01527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01527-x

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy