Skip to main content
Log in

Composable security of unidimensional continuous-variable quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the composable security of unidimensional continuous-variable quantum key distribution (UCVQKD) protocol in generally phase-sensitive channel; the UCVQKD protocol is based on the Gaussian modulation of a single quadrature of the coherent state of light, aiming to provide a simple implementation of key distribution compared to the symmetrically modulated Gaussian coherent-state protocols. This protocol neglects the necessity in one of the quadrature modulations in coherent states and hence reduces the system complexity. To clarify the influence of finite-size effect and the cost of performance degeneration, we establish the relationship of the balanced parameters of the unmodulated quadrature and estimate the precise secure region. Subsequently, we illustrate the composable security of the UCVQKD protocol against collective attacks and achieve the tightest bound of the UCVQKD protocol. Numerical simulations show the asymptotic secret key rate of the UCVQKD protocol, together with the symmetrically modulated Gaussian coherent-state protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 13011350 (2009)

    Article  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179 (1984)

  4. Bang, J.Y., Berger, M.S.: Quantum mechanics and the generalized uncertainty principle. Phys. Rev. D 74, 125012 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gessner, M., Pezzè, L., Smerzi, A.: Efficient entanglement criteria for discrete, continuous, and hybrid variables. Phys. Rev. A 94, 020101 (2016)

    Article  ADS  Google Scholar 

  7. Takeda, S., Fuwa, M., van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501 (2015)

    Article  ADS  Google Scholar 

  8. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8(8), 595604 (2014)

    Article  Google Scholar 

  9. Guo, Y., Liao, Q., Wang, Y., Huang, D., Huang, P., Zeng, G.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95, 032304 (2017)

    Article  ADS  Google Scholar 

  10. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photon. 9(6), 397402 (2015)

    Article  Google Scholar 

  11. Fang, J., Huang, P., Zeng, G.: Multichannel parallel continuous-variable quantum key distribution with Gaussian modulation. Phys. Rev. A 89, 022315 (2014)

    Article  ADS  Google Scholar 

  12. Ma, X., Sun, S., Jiang, M., Gui, M., Liang, L.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 042335 (2014)

    Article  ADS  Google Scholar 

  13. Huang, P., Fang, J., Zeng, G.: State-discrimination attack on discretely modulated continuous-variable quantum key distribution. Phys. Rev. A 89, 042330 (2014)

    Article  ADS  Google Scholar 

  14. Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95, 180503 (2005)

    Article  ADS  Google Scholar 

  15. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  16. Li, Z., Zhang, Y., Feihu, X., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052301 (2014)

    Article  ADS  Google Scholar 

  17. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  18. Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92, 062337 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gehring, T., Jacobsen, C.S., Andersen, U.L.: Single-quadrature continuous-variable quantum key distribution. arXiv:1507.01003 (2015)

  20. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81, 062343 (2010)

    Article  ADS  Google Scholar 

  21. Tobias, G., Vitus, H., Jrg, D., Fabian, F., Torsten, F., Christoph, P., Werner, R.F., Roman, S.: Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nat. Commun. 6, 8795 (2015)

    Article  Google Scholar 

  22. Furrer, F.: Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle. Phys. Rev. A 90, 042325 (2014)

    Article  ADS  Google Scholar 

  23. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109, 100502 (2012)

    Article  ADS  Google Scholar 

  24. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114, 070501 (2015)

    Article  ADS  Google Scholar 

  25. Berta, M., Christandl, M., Furrer, F., Scholz, V.B., Tomamichel, M.: Continuous variable entropic uncertainty relations in the presence of quantum memory. J. Math. Phys. 55(12), 122205 (2013)

    MATH  Google Scholar 

  26. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008)

    Article  ADS  Google Scholar 

  27. Navascués, M., Acín, A.: Security bounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)

    Article  ADS  Google Scholar 

  28. Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)

    Article  ADS  Google Scholar 

  29. Wolf, M.M., Giedke, G., Cirac, J.I.: Extremality of Gaussian quantum states. Phys. Rev. Lett. 96, 080502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Serafini, A., Paris, M.G.A., Illuminati, F., De Siena, S.: Quantifying decoherence in continuous variable systems. J. Opt. B Quantum Semiclass. Opt. 7(4), R19R36 (2005)

    Article  Google Scholar 

  32. Simon, R., Sudarshan, E.C.G., Mukunda, N.: Gaussian–Wigner distributions in quantum mechanics and optics. Phys. Rev. A 36(8), 38683880 (1987)

    Article  MathSciNet  Google Scholar 

  33. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  34. Christandl, M., Knig, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102(2), 020504 (2009)

    Article  ADS  Google Scholar 

  35. Leverrier, A., Alléaume, R., Boutros, J., Zémor, G., Grangier, P.: Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 77, 042325 (2008)

    Article  ADS  Google Scholar 

  36. Jiang, X., Huang, P., Huang, D., Lin, D., Zeng, G.: Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution. Phys. Rev. A 95, 022318 (2017)

    Article  ADS  Google Scholar 

  37. Jouguet, P., Elkouss, D., Kunz-Jacques, S.: High-bit-rate continuous-variable quantum key distribution. Phys. Rev. A 90, 042329 (2014)

    Article  ADS  Google Scholar 

  38. Christandl, M., Renner, R.: Reliable quantum state tomography. Phys. Rev. Lett. 109, 120403 (2012)

    Article  ADS  Google Scholar 

  39. Konig, R., Maurer, U., Renner, R.: On the power of quantum memory. IEEE Trans. Inf. Theory 51(7), 23912401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 19151923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information. IEEE Trans. Inf. Theory 57(8), 55245535 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank V. C. Usenko for the helpful discussions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61379153 and 61572529), and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2017zzts147) and partly by China Postdoctoral Science Foundation (Grant Nos. 2013M542119 and 2014T70772), and Science and Technology Planning Project of Hunan Province, China (Grant No. 2015RS4032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Guo.

Appendices

Appendix A: Derivation of the covariance matrix

In what follows, we illustrate the derivation of Eq. (6) from Eq. (5). As the states travel through quantum channel with transmittance \(\eta _{x,p}\) and excess noise \(\varepsilon _{x,p}\), we have

$$\begin{aligned} \gamma _{A}= & {} \left( \begin{array}{cc} V &{} \quad 0 \\ 0 &{} \quad V \\ \end{array} \right) , \end{aligned}$$
(24)
$$\begin{aligned} \gamma _{B_2}= & {} \left( \begin{array}{cc} \eta _x(V^2+\chi _x) &{}\quad 0 \\ 0 &{}\quad \eta _p(1+\chi _p) \\ \end{array} \right) , \end{aligned}$$
(25)
$$\begin{aligned} \sigma _{AB_2}= & {} \left( \begin{array}{cc} \sqrt{\eta _xV(V^2-1)} &{}\quad 0 \\ 0 &{}\quad -\sqrt{\frac{\eta _p(V^2-1)}{V}} \\ \end{array} \right) . \end{aligned}$$
(26)

Substituting \(V_M=V^2-1\) into Eqs. (24)–(26), we finally obtain the covariance matrix in the presentation modulation variance \(V_M\), namely

$$\begin{aligned}&\varGamma _{AB_2}= \left( \begin{array}{cccc} \sqrt{V_M+1} &{}\quad 0 &{} \quad \left( \eta _x V_{M}\sqrt{V_{M}+1}\right) ^{\frac{1}{2}} &{} \quad 0 \\ 0 &{} \quad \sqrt{V_M+1} &{} \quad 0 &{} \quad -\left( \frac{\eta _p V_{M}}{\sqrt{V_{M}+1}}\right) ^{\frac{1}{2}} \\ \left( \eta _x V_{M}\sqrt{V_{M}+1}\right) ^{\frac{1}{2}} &{} \quad 0 &{}\quad 1+\eta _x(V_{M}+\varepsilon _x) &{} \quad 0 \\ 0 &{} \quad -\left( \frac{\eta _p V_{M}}{\sqrt{V_{M}+1}}\right) ^{\frac{1}{2}} &{} \quad 0 &{} \quad 1+\eta _p\varepsilon _p \\ \end{array} \right) . \end{aligned}$$

Appendix B: Calculation of the asymptotic secret key rate

We illustrate the calculation of asymptotic secret key rate of UCVQKD with RR. After obtaining the expression of \(K_{RR}\) in Eq. (3) and the transformed covariance matrix \(\varGamma _{AB_{2}}\) in Eq. (6), the covariance matrix of the state which is conditioned by Bob’s homodyne detection in quadrature \(\hat{x}\) is given by

$$\begin{aligned} \begin{aligned} \gamma _{A|x_{B}}=\gamma _{A}-\sigma _{AB_{2}}^{\mathrm {T}}(X\gamma _{B_{2}}X)^{\mathrm {MP}}\sigma _{AB_{2}}, \end{aligned} \end{aligned}$$
(27)

with \(X={\mathrm {diag}}(1,0,1,0,\ldots ,1,0)\) and \({\mathrm {MP}}\) being the inverse operation on the range; \(\gamma _{A}\) and \(\gamma _{B_{2}}\) are the submatrices of transformed covariance matrix \(\varGamma _{AB_{2}}\) representing each mode A and B individually; \(\sigma _{AB_{2}}\) is the correlation between mode A and B in \(\varGamma _{AB_{2}}\).

One can derive the conditional matrix after Bob’s measurement with

$$\begin{aligned} \begin{aligned} \gamma _{A|x_{B}}= \left( \begin{array}{cc} \frac{\sqrt{V_{M}+1}(1+\eta _{x}\varepsilon _{x})}{1+\eta _{x}(V_{M}+\varepsilon _{x})} &{}\quad 0 \\ 0 &{}\quad \sqrt{V_{M}+1} \\ \end{array} \right) . \end{aligned} \end{aligned}$$
(28)

Thus, Alice and Bob’s mutual information can be estimated by calculating the following equation

$$\begin{aligned} \begin{aligned} I(A:B_{2})=\frac{1}{2}\log {\frac{V_{A}}{V_{A|x_{B}}}}, \end{aligned} \end{aligned}$$
(29)

where \(V_{A}\), which is the variance of mode A, and \(V_{A|x_{B}}\) are easily calculated from the first diagonal elements of the matrices \(\gamma _{A}\) and \(\gamma _{A|x_{B}}\), respectively. Finally, we obtain

$$\begin{aligned} \begin{aligned} I(A:B_{2})=\frac{1}{2}\log {\left( 1+\frac{\eta _{x}V_{M}}{1+\eta _{x}\epsilon _{x}}\right) }. \end{aligned} \end{aligned}$$
(30)

Due to the fact that Eve can provide a purification of Alice and Bobs density matrix, we first achieve \(S(E) = S(AB_{2})\), which is a function of the symplectic eigenvalues \(\nu _{1,2}\) of \(\varGamma _{AB_{2}}\), given by

$$\begin{aligned} \begin{aligned} S(AB_{2})=G\left( \frac{\nu _{1}-1}{2}\right) +G\left( \frac{\nu _{2}-1}{2}\right) , \end{aligned} \end{aligned}$$
(31)

where

$$\begin{aligned} \begin{aligned} G(x)=(x+1)\log (x+1)-x\log {x} \end{aligned} \end{aligned}$$
(32)

is the von Neumann entropy and the symplectic eigenvalues \(\nu _{1,2}\) are calculated by the square roots of the solutions of equation

$$\begin{aligned} \begin{aligned} \zeta ^{2}-\varDelta \zeta +\det {\varGamma _{AB_{2}}}=0, \end{aligned} \end{aligned}$$
(33)

where \(\varDelta =\det {\gamma _{A}}+\det {\gamma _{B}}+2\det {\sigma _{AB_{2}}}\). After Bob performs the projective measurement \(x_{B}\), system \(AB_{2}\) is pure, and hence, we have \(S(E|x_{B}) = S(A|x_{B})\), then the conditional von Neumann entropy \(S(A|x_{B})=G[(\nu _{3}-1)/2]\) is a function of the symplectic eigenvalue \(\nu _{3}\) of the covariance matrix \(\gamma _{A|x_{B}}\), which can be calculated from \(\nu _{3}=\sqrt{\det {\gamma _{A|x_{B}}}}\).

Finally, we are able to calculate the asymptotic secret key rate \(K_{RR}\) of the UCVQKD protocol.

Appendix C: Secret key rate of the composable security

We, here, detail the generation of secret key rate of UCVQKD provided by the composable security analysis. Before illustrating the calculation, we give a theorem of composable security for UCVQKD [24].

The UCVQKD protocol is \(\epsilon \)-secure against collective attacks if \(\epsilon =2\epsilon _{\mathrm{sm}}+\overline{\epsilon }+\epsilon _{\mathrm{PE}}/\epsilon +\epsilon _\mathrm{cor}/\epsilon +\epsilon _\mathrm{ent}/\epsilon \) and if the final key length l is chosen such that

$$\begin{aligned} \begin{aligned} l&\le 4\lambda n\hat{H}_{\mathrm{MLE}}(U)-2\lambda nF\left( \varOmega _{a}^{\max },\varOmega _{b}^{\max },\varOmega _{c}^{\min }\right) \\&\quad -\hbox {leak}_{\mathrm{EC}}-\varDelta _{\mathrm{AEP}}-\varDelta _\mathrm{ent}-2\log \frac{1}{2\overline{\epsilon }}, \end{aligned} \end{aligned}$$
(34)

where \(\hat{H}_{\mathrm{MLE}}(U)\) is the empiric entropy of U, the maximum likelihood estimator (MLE) for H(U) to be \(\hat{H}_{\mathrm{MLE}}(U)=-\sum _{i=1}^{2^{d}}\hat{p}_{i}\log \hat{p}_{i}\) with \(\hat{p}_{i}=\frac{\hat{n}_{i}}{2\lambda dn}\) denotes the relative frequency of obtaining the value i, and \(\hat{n}_{i}\) is the number of times the variable U takes the value i for \(i\in \{1,\ldots ,2^{d}\}\), and

$$\begin{aligned} \varDelta _{\mathrm{AEP}}= & {} \sqrt{2\lambda n}(d+1)^2+\sqrt{32\lambda n}(d+1)\log _{2}\frac{2}{\epsilon _{\mathrm{sm}}^{2}} \nonumber \\&+\,\sqrt{8\lambda n}\log _{2}\frac{2}{\epsilon ^{2}\epsilon _{\mathrm{sm}}}-4\frac{\epsilon _{\mathrm{sm}}d}{\epsilon }, \end{aligned}$$
(35)
$$\begin{aligned} \varDelta _\mathrm{ent}= & {} \log _{2}\frac{1}{\epsilon }-\sqrt{8\lambda n\log ^{2}(4\lambda n)\log (2/\epsilon )}, \end{aligned}$$
(36)

and F is the function computing the Holevo information between Eve and Bob. It is given by

$$\begin{aligned} \begin{aligned} F=G\left( \frac{\mu _{1}-1}{2}\right) +G\left( \frac{\mu _{2}-1}{2}\right) -G\left( \frac{\mu _{3}-1}{2}\right) , \end{aligned} \end{aligned}$$
(37)

where \(\mu _{1}\) and \(\mu _{2}\) are the symplectic eigenvalues of the covariance matrix \(\varGamma _{AB_{2}}\), the variables follow Eqs. (20)–(22). \(\mu _{3} =\varOmega _{a}^{\mathrm{max}2}-(\varOmega _{c}^{\mathrm{min}2})^{2}/(1+\varOmega _{b}^{\max })\); the entropy function G is identical with Eq. (32). Moreover, the symplectic eigenvalues \(\mu _{1}\) and \(\mu _{2}\) need to satisfy the following relations:

$$\begin{aligned}&\mu _{1}^{2}+\mu _{2}^{2}=\varOmega _{a}^{\mathrm{max}2}+\varOmega _{b}^{\mathrm{max}2}-2\varOmega _{c}^{\mathrm{min}2}, \end{aligned}$$
(38)
$$\begin{aligned}&\mu _{1}^{2}\mu _{1}^{2}=\left( \varOmega _{a}^{\max }\varOmega _{b}^{\max }-\varOmega _{c}^{\mathrm{min}2}\right) ^{2}. \end{aligned}$$
(39)

Now, let’s consider the calculation of secret key rate provided by UCVQKD composable security analysis. Assuming that the calculation is based on a Gaussian channel with transmissivity \(\eta _{x,p}\) and excess noise \(\varepsilon _{x,p}\), the following model is used for error correction

$$\begin{aligned} \begin{aligned} \beta S(A_{x};B_{x})=2\hat{H}_{\mathrm{MLE}(U)}-\frac{1}{2\lambda n}\hbox {leak}_{\mathrm{EC}}, \end{aligned} \end{aligned}$$
(40)

where \(\beta \) denotes the reconciliation efficiency and \(S(A_{x};B_{x})\) represents the mutual information between Alice and Bob. For the UCVQKD protocol in Gaussian channel and the modulation variance \(V_{M}\) on quadrature \(\hat{x}\), we obtain

$$\begin{aligned} \begin{aligned} S(A_{x};B_{x})&=\frac{1}{2}\log _{2}(1+\hbox {SNR})\\&=\frac{1}{2}\log _{2}\left( 1+\frac{\eta _{x}V_{M}}{2+\eta _{x}\varepsilon _{x}}\right) . \end{aligned} \end{aligned}$$
(41)

Moreover, here, assuming that the probability of passing the parameter estimation step is at least 0.99, which means the robustness of the UCVQKD protocol to be \(\epsilon _{\mathrm{rob}}\le 10^{-2}\). This assumption can be achieved by taking values for \(\varOmega _{a}^{\max }\), \(\varOmega _{b}^{\max }\), \(\varOmega _{c}^{\min }\) differing by three standard deviations from the expected values of \(\omega _{a}\), \(\omega _{b}, \omega _{c}\) [24]. By doing this, the values of random variables \(\left| \left| X\right| \right| ^{2}\), \(\left| \left| Y\right| \right| ^{2}\) and \(\langle X,Y\rangle \) satisfy the following restraints

$$\begin{aligned}&\left| \left| X\right| \right| ^{2}\le \delta (\delta +3)\sqrt{V_{M}+1}, \end{aligned}$$
(42)
$$\begin{aligned}&\left| \left| Y\right| \right| ^{2}\le \delta (\delta +3)\left[ 1+\eta _{x}(V_{M}+\varepsilon _{x})\right] , \end{aligned}$$
(43)
$$\begin{aligned}&\langle X,Y\rangle \ge \delta (\delta -3)\left( \eta _{x}V_{M}\sqrt{V_{M}+1}\right) ^{\frac{1}{2}}, \end{aligned}$$
(44)

where \(\delta =\sqrt{2\lambda n}\). Note that these restraints are obtained from the covariance matrix \(\varGamma _{AB_{2}}\) of the UCVQKD protocol with \(\hat{x}\) quadrature modulation and the value of modulation variance \(V_{M}\) must be optimized to obtain the optimal performance. Finally, we use these bounds on Eqs. (42)–(44) and define:

$$\begin{aligned} \varOmega _{a}^{\max }= & {} \frac{\left| \left| X\right| \right| ^{2}}{2\lambda n}\left[ 1+2\sqrt{\frac{\log (36/\epsilon _{\mathrm{PE}})}{n}}\right] -1, \end{aligned}$$
(45)
$$\begin{aligned} \varOmega _{b}^{\max }= & {} \frac{\left| \left| Y\right| \right| ^{2}}{2\lambda n}\left[ 1+2\sqrt{\frac{\log (36/\epsilon _{\mathrm{PE}})}{n}}\right] -1, \end{aligned}$$
(46)
$$\begin{aligned} \varOmega _{c}^{\min }= & {} \frac{\langle X,Y\rangle }{2\lambda n}-5\left( \left| \left| X\right| \right| ^{2}+\left| \left| Y\right| \right| ^{2}\right) \sqrt{\frac{\log (8/\epsilon _{\mathrm{PE}})}{n^{3}}}. \end{aligned}$$
(47)

With all the equations, we now can calculate the secret key rate of the UCVQKD protocol provided by composable security

$$\begin{aligned} \begin{aligned} K_{\mathrm{composable}}^{\hat{x}}&=(1-\epsilon _{\mathrm{rob}})\left\{ \beta S(A_{x};B_{x})\right. \\&\quad -F\left( \varOmega _{a}^{\max }, \varOmega _{b}^{\max }, \varOmega _{c}^{\min }\right) \\&\quad \left. -\frac{1}{2\lambda n}\left( \varDelta _{\mathrm{AEP}}+\varDelta _\mathrm{ent}+2\log _{2}\frac{1}{2\overline{\varepsilon }}\right) \right\} . \end{aligned} \end{aligned}$$
(48)

In addition, we should optimize over all parameters compatible with \(\epsilon =10^{-20}\). However, in order to simplify the description and give a fair comparison, we make the following choices which slightly suboptimal the performance of the UCVQKD protocol and identical with corresponding symmetrically modulated Gaussian coherent-state protocol [24]

$$\begin{aligned} \begin{aligned} \epsilon _{\mathrm{sm}}=\overline{\epsilon }=10^{-21},\quad \epsilon _{\mathrm{PE}}=\epsilon _\mathrm{cor}=\epsilon _\mathrm{ent}=10^{-41}. \end{aligned} \end{aligned}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Guo, Y., Xie, C. et al. Composable security of unidimensional continuous-variable quantum key distribution. Quantum Inf Process 17, 113 (2018). https://doi.org/10.1007/s11128-018-1881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1881-2

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy