Skip to main content

Different glassmaking technologies in the production of Iron Age black glass from Italy and Slovakia

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

This study presents the results of an archaeometrical investigation performed on 75 black glass beads dated to the ninth–fifth century BC coming from Bologna, Cumae, and Pozzuoli (Italy), and Chotin (Slovakia). The analyses of the major, minor, and trace elements—as well as that of Sr and Nd isotopes performed on a selection of samples coming from Bologna—provided evidence for two different production technologies in Iron Age black glass found in Italy (natron glass, probably produced in Egypt) and Slovakia (wood ash glass, probably produced in Europe). In both cases, the glasses derive their black colouration from the high presence of iron (around 12 % FeO), introduced into the glass batches through the intentional choice of dark sands. The production model appears to be small-scale and experimental, characterised by the use of non-sorted raw materials and poorly defined formulae, producing glass with a high chemical variability. The wood ash technology appears to have dropped out of use in Europe until the Medieval period, while natron production spread quickly, becoming predominant throughout the Mediterranean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts A. (1998) Microscopic analysis of Roman vessel glass. Dissertation, University of Antwerp.

  • Angelini I, Artioli G, Bellintani P, Diella V, Gemmi M, Polla A, Rossi A (2004) Chemical analyses of Bronze Age glasses from Frattesina di Rovigo. Northen Italy. J Archaeol Sci 31(8):1175–1184. doi:10.1016/j.jas.2004.02.015

    Article  Google Scholar 

  • Angelini I, Artioli G, Bellintani P, Diella V, Polla A, Residori G (2002) Project glass materials in the protohistory of North Italy, a first summary. In: “Atti del secondo congresso nazionale di Archeometria” (Ed. C. d’Amico). Patron Editore, Bologna, Italy, pp. 581–595

    Google Scholar 

  • Angelini I, Artioli G, Bellintani P, Polla A (2005) Protohistoric vitreous materials of Italy: from Early faience to Final Bronze Age glasses. In: Annales du 16e Congrès de l’Association Internationale pour l’Histoire du verre. AIHV, Nottingham, UK, pp. 32–36

    Google Scholar 

  • Angelini I., Artioli G., Polla A., de Marinis R. (2006) Early Bronze Age faience from north Italy and Slovakia: a comparative archaeometric study. Proceeding of the 34th symposium of Archeaometry, Zaragoza Spain, 2006, 371-378

  • Agelini I., Polla A., Molin G. (2010) Studio analitico dei vaghi in vetro provenienti dalla necropoli di Narde. In “La fragilità dell’urna. I recenti scavi a Narde necropoli di Frattesina (XII-IX sec. a.C.)”, Rovigo, pp. 105-134

  • Angelini I, Nicola C, Artioli G, De Marinis RC, Rapi M, Uboldi M (2011) Chemical, mineralogical and textural characterization of the Early Iron Age vitreous materials from the Golasecca Culture (northern Italy). In: “Proceedings of the 37th International Symposium on Archaeometry” 13th - 16th May 2008. Siena, Italy, Springer, pp. 25–32

    Google Scholar 

  • Angelini I., Nicola C., Artioli G. (2012) Materiali vetrosi protostorici della Sardegna: indagini archeometriche e confronto analitico con reperti coevi. In “La preistoria e la protostoria della Sardegna. Atti della XLIV riunione scientifica dell’Istituto italiano di preistoria e protostoria” Cagliari, Barumini, Sassari, 23-28 Novembre 2009, Firenze, pp. 1131-1150

  • Arletti R, Bertoni E, Vezzalini G, Mengoli D (2011a) Glass beads from Villanovan excavation in Bologna (Italy): an archaeometrical investigation. Eur. J. Mineral. 23:959–968. doi:10.1127/09351221/2011/0023-2166

    Article  Google Scholar 

  • Arletti R, Ferrari D, Vezzalini G (2012) Pre-roman glass from Mozia (Sicily-Italy): the first archaeometrical data. J Archaeol Sci 39(11):3396–3401. doi:10.1016/j.jas.2012.06.009

    Article  Google Scholar 

  • Arletti R, Maiorano C, Ferrari D, Vezzalini G, Quartieri S (2009) The first archaeometric data on polychrome Iron Age glass from sites located in Northern Italy. J Archaeol Sci 37(4):703–712. doi:10.1016/j.jas.2009.11.001

    Article  Google Scholar 

  • Arletti R, Rivi L, Ferrari D, Vezzalini G (2011b) The Mediterranean Group II: analyses of vessels from Etruscan contexts in Northern Italy. J Archaeol Sci 38:2094–2100. doi:10.1016/j.jas.2010.10.028

    Article  Google Scholar 

  • Banner JL (2004) Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth Science Reviews 65:141–194

    Article  Google Scholar 

  • Barag D. (1970) Mesopotamian core-formed glass vessels (1500-500 B.C.) in Oppenheim et al, 131-199

  • Barkoudah Y, Henderson J (2006) Plant ashes from Syria and the manufacture of ancient glass: ethnographic and scientific aspects. J Glass Stud 48:297–321

    Google Scholar 

  • Bead Study Trust (1997) Beck Collection. Catalogue of the Beck Collection of Beads in the Cambridge University Museum of Archaeology and Anthropology

  • Brems D, Degryse P (2013) Trace element analysis in provenancing Roman glass-making. Archaeometry 56:116–136. doi:10.1111/arcm.12063

    Article  Google Scholar 

  • Brems D, Ganio M, Latruwe K, Balcaen L, Carremans M, Gimeno D, Silvestri A, Vanhaecke F, Muchez P, Degryse P (2013a) Isotopes on the beach, part 1: strontium isotope ratios as a provenance indicator for lime raw materials used in Roman glass-making. Archaeometry 55(2):214–234. doi:10.1111/j.1475-4754.2012.00702.x

    Article  Google Scholar 

  • Brems D, Ganio M, Latruwe K, Balcaen L, Carremans M, Gimeno D, Silvestri A, Vanhaecke F, Muchez P, Degryse P (2013b) Isotopes on the beach, part 2: neodymium isotopic analysis for the provenancing of Roman glass-making. Archaeometry 55(3):449–464. doi:10.1111/j.1475-4754.2012.00701.x

    Article  Google Scholar 

  • Brill RH (1988) Scientific investigations of the Jalame glass and related finds. In: Weinberg GD (ed) Excavations at Jalame, Site of a glass factory in Late Roman Palestine. Missouri Press, Columbia, pp. 257–229

    Google Scholar 

  • Brill RH (1992) Chemical analyses of some glasses from Frattesina. J Glass Stud 34:11–22

    Google Scholar 

  • Brill RH (1999) Chemical analyses of early glasses: volume 1 (tables) and volume 2 (catalogue). Corning Museum of Glass, Corning, NY

    Google Scholar 

  • Cagno S, Cosyns P, Izmer A, Vanhaecke F, Nysc K, Janssens K (2014) Deeply colored and black-appearing Roman glass: a continued research. J Archaeol Sci 42:128–139. doi:10.1016/j.jas.2013.11.003

    Article  Google Scholar 

  • Cecere F, Carraro A, Ferro D, Visco G (2008) Individuation of characteristic parameters of “glass paste” of Meridional Etruria by the use of scientific methodologies. Microchem J. 88:130–135

    Article  Google Scholar 

  • Cholakova A., Rehren T. (2012) Producing black glass during the Roman period-notes on a crucible fragment from Serdica, Bulgaria. Proceedings of 39th International Symposium for Archaeometry, Leuven, 261-267

  • Conte S (2015) Protohistoric vitreous materials from Southern Italy: chemical characterization and trace elements study. Dissertation, University of Modena and Reggio Emilia

  • Conte S, Matarese M, Quartieri S, Arletti R, Jung R, Pacciarelli M, Gratuze B (2015) Bronze Age vitreous materials from Punta di Zambrone (southern Italy). Eur. J. Mineral. 27:337–351. doi:10.1127/ejm/2015/0027-2450

    Article  Google Scholar 

  • Conte S, Arletti R, Mermati F, Gratuze B (2016) Unravelling the Iron Age glass trade in Southern Italy: the first trace element analyses. Eur. J. Mineral. 28:2. doi:10.1127/ejm/2016/0028-2516

    Google Scholar 

  • Croutsch C, Tegel W, Nicolas T, Pascutto É, Billot M, Leprovost C, Gratuze B, Loge T, Putelat O (2011) Les sites protohistoriques d’Erstein «Grasweg-Pae» (Alsace, Bas-Rhin): l’occupation Rhin-Suisse-FranceOrientale. Revue Archéologique de l’Est, t. 60

  • Degryse P (2014) Glass making in the Greco-Roman World. Leuven University Press

  • Degryse P, Boyce A, Erb-Satullo N, Eremin K, Kirk S, Scott R, Shortland AJ, Schneider J, Walton M (2010) Isotopic discriminants between Late Bronze Age glasses from Egypt and the Near East. Archaeometry 52:380–388. doi:10.1111/j.1475-4754.2009.00487.x

    Article  Google Scholar 

  • Degryse P, Lobo L, Shortland A, Vanhaecke F, Blomme A, Painter J, Gimeno D, Eremin K, Greene J, Kirk S, Walton M (2015) Isotopic investigation into raw materials of Late Bronze Age glass making. J Archaeol Sci 62:153–160. doi:10.1016/j.jas.2015.08.004

    Article  Google Scholar 

  • Degryse P, Schneider J (2008) Pliny the Elder and Sr–Nd isotopes: tracing the provenance of raw materials for Roman glass production. J Archaeol Sci 35:1993–2000. doi:10.1016/j.jas.2008.01.002

    Article  Google Scholar 

  • Degryse P, Shortland A (2009) Trace elements in provenancing raw materials for Roman glass production. Geol Belg 12:135–143. doi:10.1111/arcm.12063

    Google Scholar 

  • Donovan JJ, Rivers ML (1990) PRSUPR—a PC-based automation and analysis software package for wavelength-dispersive electron-beam microanalysis. In: Michael JR, Ingram P (eds) Microbeam Analysis – 1990. San Francisco Press, San Francisco, CA, pp. 66–68

    Google Scholar 

  • Dore A. (2004) Il Villanoviano I-III di Bologna: problemi di cronologia relativa e assoluta. in “Mediterranea. Quaderni dell’Istituto di Studi sulle Civiltà Italiche e del Mediterraneo Antico del consiglio Nazionale delle Ricerche”, Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma, 255–292

  • Dušek M (1966) Thrakisches Gräberfeld der Hallstattzeit in Chotin, Bratislava. Vydavatel' stvo Slovenskej Akademie, Vied

    Google Scholar 

  • Eid M.A., Naim G., Mahdy A.A., Nada N., Abdel Mongy N. (1994) Application of ICP AES to the determination of REE in Egypt’s black sand deposits. J Alloys Compd., 207/208, 482-486

  • Forbes RJ (1957) Glass, in Studies in Ancient Technology, vol 5, 110-231 Leiden

    Google Scholar 

  • Foster HE, Jackson CM (2009) The composition of ‘naturally coloured’ Late Roman vessel glass from Britain and the implication for models of glass production and supply. J Archaeol Sci 36(2):189–204. doi:10.1016/j.jas.2008.08.008

    Article  Google Scholar 

  • Freestone I.C. (2006) Glass production in late antiquity and Early Islamic period: a geochemical perspective. In: Maggetti M., Messiga B. (Eds.), Geomaterials in Cultural Heritage. Geological Society of London, Special Publication 257, London, 201-216

  • Freestone I.C., Gorin-Rosen Y., Hughes M. J. (2000) Primary glass from Israel and the production of glass in the late antiquity and the early Islamic period. In: M.-D. Nenna (Ed.), La route du verre: ateliers primaires et secondaires de verriers du second millénaire avant J.C. au Moyen Age, Travaux de la Maison de l’Orient Méditerranéen 33, Lyon, 65–83

  • Freestone IC, Leslie KA, Thirlwall M, Gorin-Rosen Y (2003) Strontium isotopes in the investigation of early glass production: Byzantine and early Islamic glass from the Near East. Archaeometry 45:19–32. doi:10.1111/1475-4754.00094

    Article  Google Scholar 

  • Freestone IC, Ponting M, Hughes J (2002) Origins of Byzantine glass from Maroni Petrera, Cyprus. Archaeometry 44:257–272. doi:10.1111/14754754.t01-1-00058

    Article  Google Scholar 

  • Frey O.-H. (1987): Glasperlen der verrömischen Eisenzeit II: Ringaugenperlen und verwandte Perlengruppen nach Unterlagen von Thea Elisabeth Haevernick mit Beiträgen von C. Dobiat, H. Matthäus, B. Raftery and J. Henderson. Marburger Studien zur Vor- und Frühgeschichte 9. Marburg: Hitzeroth

  • Gallo F., Silvestri A., Molin G., Marcante A., Guerriero P. (2012) Iron Age vessels from the Archaeological Museum of Adria (North-Eastern Italy): a textural, chemical and mineralogical study. In “Proceedings of the 39th International Symposium on Archaeometry”, Leuven (2012) 198-207.

  • Ganio M, Latruwe K, Brems D, Muchez P, Vanhaecke F, Degryse P (2012) The Sr-Nd isolation procedure for subsequent isotopic analysis using multi-collector ICP-mass spectrometry in the context of provenance studies on archaeological glass. J. Anal. At. Spectrom. 27(8):1335–1341. doi:10.1039/C2JA30154G

    Article  Google Scholar 

  • Gao S, Wedepohl KH (1995) The negative Eu anomaly in Archean sedimentary rocks: implications for the decomposition, age and importance of their granitic sources. Earth Planet. Sci. Lett. 133:81–94. doi:10.1016/0012-821X(95)00077-P

    Article  Google Scholar 

  • Götze J, Lewis R (1994) Distribution of REE and trace elements in size and mineral fractions of high-purity quartz sands. Chem. Geol. 114:43–57

    Article  Google Scholar 

  • Gratuze B. (2009) Les premiers verres au natron retrouvés en Europe occidentale: composition chimique et chronotypologie. In: Janssens, K., Degryse, P., Cosyns, P., Caen, J., and Van’t dack, L. (Eds.), Annales du 17° Congrès de l’Association Internationale pour Histoire du Verre. Annales of the 17th Congress of the International Association for the History of Glass, University Press Antwerp, Antwerp, 8–14

  • Gratuze B., Billaud Y. (2003) La circulation des perles en verre dans le Bassin Méditerranéen, de l’Age du Bronze moyen jusqu’au Hallstatt. In: D. Foy – M. D. Nenna eds., Echanges et commerce du verre dans le monde antique, Montagnac: Mergoil, 11–15

  • Gratuze B, Lorenzi F (2006) Les éléments de parure en verre du site de Lumaca (Age du Fer, Venturi, Haute-Corse): compositions et typochronologie. Bulletin de la Société préhistorique française 103:379–384

    Article  Google Scholar 

  • Gratuze B, Louboutin C, Billaud Y (1998) Les perles protohistoriques en verre du Musées des Antiquités nationales. Antiquités Nationales 30:11–24

    Google Scholar 

  • Gratuze B., Picon M. (2006) Utilisation par l'industrie verrière des sels d'aluns des oasis égyptiennes au début du premier millénaire avant notre ère. In: Brun, J.-P. (Ed.), L'Alun de Méditerranée, Institut Français de Naples, 269-276

  • Haevernick TE (1981) Beiträge zur Glasforschung: Die wichtigsten Aufsätze von 1938-1991. Philip von Zabern, Mayence

    Google Scholar 

  • Hartmann G, Kappel I, Grote B, Arnold B (1997) Chemistry and technology of prehistoric glass from lower Saxony and Hesse. J Archaeol Sci 24:547–559

    Article  Google Scholar 

  • Henderson, J. (1983) X-ray fluorescence analysis of Iron Age glass beads. Unpublished Ph.D. thesis, University of Bradford

  • Henderson J (1985) The raw materials of early glass production. Oxford Journal of Archaeology 4:267–291

    Article  Google Scholar 

  • Henderson J (1988a) Glass production and Bronze Age Europe. Antiquity 1988(62):435–451

    Article  Google Scholar 

  • Henderson J (1988b) Electron probe microanalysis of mixed alkali glasses. Archaeometry 30(1):77–91

    Article  Google Scholar 

  • Henderson J. (1989) The scientific analysis of ancient glass and its archaeological interpretation. In: Henderson, J. (Ed.), Scientific analysis in archaeology and its interpretation. Oxford University Committee for Archaeology, Monograph no. 19, UCLA Institute of Archaeology Research Tools 5, Oxford, 30–62

  • Henderson J (2000) The science and Archaeology of materials: an investigation of inorganic materials. Ed Routledge, London

    Google Scholar 

  • Henderson J (2013) Ancient glass, an interdisciplinary exploration. Cambridge University Press, New York

    Google Scholar 

  • Henderson J, Evans J, Bellintani P, Bietti-Sestieri A-M (2015) Provenance and technology of mixed alkali glasses from northern Italy: an isotopic approach. J Archaeol Sci 55:1–8. doi:10.1016/j.jas.2014.12.006

    Article  Google Scholar 

  • Henderson J, Evans J, Nikita K (2010) Isotopic evidence for the primary production, provenance and trade of Late Bronze Age glass in the Mediterranean. Mediterranean Archaeology and Archaeometry 10(1):1–24

    Google Scholar 

  • Henderson J, Warren SE (1981) X-ray fluorescence of Iron Age glass: beads from Meare and Glastonbury Lake Villages. Archaeometry 23:83–94. doi:10.1111/j.1475-4754.1981.tb00958.x

    Article  Google Scholar 

  • Jackson CM, Booth CA, Smedley JW (2005) Glass by design? Raw materials, recipes and compositional data. Archaeometry 47:781–795. doi:10.1111/j.1475-4754.2005.00232.x

    Article  Google Scholar 

  • Karwowski M. (2004) Latènezeitlicher Glasringschmuck aus Ostösterreich, Mitteilungen der Prähistorischen Kommission 55, Wien.

    Google Scholar 

  • Kowatli I, Curvers HH, Stuart B, Sablerolles Y, Henderson J, Reynolds P (2008) A pottery and glassmaking site in Beirut (015). Bulletin de Archéologie et d’Architecture Libanaises 10:103–120

    Google Scholar 

  • Lilyquist C, Brill RH (1993) Studies in early Egyptian glass. Metropolitan Museum of Art, New York

    Google Scholar 

  • Longerich HP, Jackson SE, Gunther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 11:899–904. doi:10.1039/JA9961100899

    Google Scholar 

  • Miroššayova E, Olexa L (2009) Sklené koráliky z doby Halštatskej na východnom Slovensku. Študijné zvesti 45:99–103

    Google Scholar 

  • Nicholson PT (1993) Ancient Egyptian faience and glass. Shire Egyptology, London

    Google Scholar 

  • Nikita K, Henderson J (2006) Glass analyses from Mycenaean Thebes and Elateia: compositional evidence for a Mycenaean glass industry. J Glass Stud 48:71–120

    Google Scholar 

  • Nolte B (1968) Die Glassgefässe im Alten Ägypten. Bruno Hessling, Berlin

    Google Scholar 

  • Oppenheim AL (1973) Towards a history of glass in the ancient Near East. JAOS 93:259–266

    Google Scholar 

  • Panagiotaki M (2008) The technological development of Aegean vitreous materials in the Bronze Age. In: Jackson CM, Wager EC (eds) Vitreous materials in the Late Bronze Age Aegean, Sheffield Studies in Aegean Archaeology. Oxbow Books, Oxford, pp. 34–63

    Google Scholar 

  • Panighello S, Orsega EF, van Elteren JT, Selih VS (2012) Analysis of polychrome Iron Age glass vessels from Mediterranean I, II and III groups by LA-ICP-MS. J. Arch. Sci 39:2945–2955

    Article  Google Scholar 

  • Pearce JG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard. Newslett. 21(1):115–144

    Article  Google Scholar 

  • Picon M, Vichy M (2003) D’Orient et Occident: l’origine du verre à l’époque romaine et durant le haut Moyen Age. In: Nenna MD (ed) D. Foy. Echanges et Commerce du Verre dans le Monde Antique, Editions Monique Mergoil, pp. 17–32

    Google Scholar 

  • Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal. Chim. Acta 298:209–217

    Article  Google Scholar 

  • Polla A, Angelini I, Artioli G, Bellintani P, Dore A (2011) Archaeometric investigation of Early Iron Age glass from Bologna. In: “Proceedings of the 37th International Symposium on Archaeometry”, 13th - 16th May 2008. Siena, Italy, Springer, pp. 139–144

    Google Scholar 

  • Purowski T, Dzierżanowski P, Bulska E, Wagner B, Nowak A (2012) A study of glass beads from the Hallstatt C-D from southwestern Poland: implications for glass technology and provenance. Archaeometry 54:144–166. doi:10.1111/j.1475-4754.2011.00619.x

    Article  Google Scholar 

  • Pusch E.B., Rehren Th. (2007) Hochtemperatur-Technologie in der Ramses-Stadt. Rubinglas für den Pharao, Forschungen in der Ramses-Stadt 6, Gerstenberg- Verlag, Hildesheim

  • Reade W., Freestone I.C., Bourke S. (2009) Innovation and continuity in Bronze and Iron Age glass from Pella in Jordan. In: Janssens, K., Degryse, P., Cosyns, P., Caen, J., and Van’t dack, L. (Eds.), Annales du 17° Congrès de l’Association Internationale pour Histoire du Verre. Annales of the 17th Congress of the International Association for the History of Glass, University Press Antwerp, Antwerp, 47-54

  • Reade W., Freestone I.C., Simpson S.J. (2005) Innovation or continuity? Early first millennium BCE glass in the Near East: the cobalt blue glasses from Assyrian Nimrud. In: Arrowsmith, J.W. (Ed.), Annales du 16° Congrès de l’Association Internationale pour Histoire du Verre. Annales of the 16th Congress of the International Association for the History of Glass, Bristol, 23-27

  • Rehren T, Cholakova A, Zivanovic M (2012) The making of black glass in Late Roman Doclea. Montenegro. New Antique Doclea III:75–90

  • Rehren T, Pusch EB (2005) Late Bronze Age glass production at Qantir–Piramesses, Egypt. Science 308:1756–1758

    Article  Google Scholar 

  • Rehren T, Pusch E, Herold A (2001) Problems and possibilities in workshop reconstruction: Qantir and the organisation of LBA glass workshops. In: Shortland AJ (ed) The social context of technological change. Oxbow books, Oxford, pp. 223–238

    Google Scholar 

  • Santopadre P, Verità M (2000) Analyses of the production technologies of Italian vitreous materials of the Bronze Age. J Glass Stud 42:25–40

    Google Scholar 

  • Sayre EV, Smith RW (1961) Compositional categories of ancient glass. Science 133:1824–1826

    Article  Google Scholar 

  • Sayre E.V., Smith R.W. (1967) Some materials of glass manufacturing in antiquity. Archaeological chemistry, a symposium (ed. M. Levey), Third Symposium of Archaeological Chemistry, Atlantic City, NJ, Philadelphia: University of Pennsylvania Press, 279-312

  • Schaaf P, Muller-Sohnius D (2002) Strontium and neodymium isotopic study of Libyan Desert Glass: inherited Pan-African age signatures and new evidence for target material. Meteorit Planet Sci 37:565–576. doi:10.1111/j.1945-5100.2002.tb00839.x

    Article  Google Scholar 

  • Schlick-Nolte B, Werthmann R (2003) Glass vessels from the burial of Nesikhons. J Glass Stud 45:11–34

    Google Scholar 

  • Shortland A.J. (2000) Vitreous material from Amarna: the production of glass and faience in 18th dynasty Egypt. Archaeological report International Series, S827, ArchaeoPress, Oxford

  • Shortland A. J. (2005) The raw materials of early glasses: the implications of new LA-ICPMS analyses. In: Cool H. (Ed.), Proceedings of the16th International Congress of the Association Internationale pour l’Histoire du Verre, London, 1–5

  • Shortland AJ, Eremin K (2006) The analysis of second millennium glass from Egypt and Mesopotamia, part 1: new WDS analyses. Archaeometry 48(4):581–603. doi:10.1111/j.1475-4754.2006.00274.x

    Article  Google Scholar 

  • Shortland AJ, Rogers N, Eremin K (2007) Trace element discriminants between Egyptian and Mesopotamian Late Bronze Age glasses. J Archaeol Sci 34:781–789. doi:10.1111/j.1475-4754.2009.00487.x

    Article  Google Scholar 

  • Shortland AJ, Schachner L, Freestone I, Tite M (2006) Natron as flux in the early vitreous materials industry: sources, beginning and reasons for decline. J Archaeol Sci 33:521–530. doi:10.1016/j.jas.2005.09.011

    Article  Google Scholar 

  • Shortland AJ, Schroeder H (2009) Analysis of first millennium BC glass vessels and beads from the Pichvnari necropolis, Georgia. Archaeometry 51:947–965. doi:10.1111/j.1475-4754.2008.00443.x

    Article  Google Scholar 

  • Smirniou M, Rehren T (2011) Direct evidence of primary glass production in Late Bronze Age Amarna, Egypt. Archaeometry 53:58–80. doi:10.1111/j.1475-4754.2010.00521.x

    Article  Google Scholar 

  • Spaer M (2001) Ancient glass in the Israel Museum. Beads and other small objects. Jerusalem, The Israel Museum

    Google Scholar 

  • Spaer M. (2002) Glass: history, technology and conservation of glass and vitreous materials in the Hellenic world. In: G. Kordas (ed.) Hyalos. Vitrum. Athens: Glasnet. pp. 55-57

  • Towle A, Henderson J (2004) The glass Bead game: archaeometric evidence for existence of an Etruscan glass Industry. Etruscan Studies 10:47–66

    Article  Google Scholar 

  • Towle A, Henderson J, Bellintani P, Gambacurta G (2001) Frattesina and Adria: report of scientific analyses of early glass from the Veneto. Padusa:7–98

  • Turner WES (1956) Studies of ancient glass and glassmaking processes. Part V: raw materials and melting processes. Journal of the Society of Glass Technology 40:277–300

    Google Scholar 

  • Van der Linden V, Cosyns P, Schalm O, Cagno S, Nys K, Janssens K, Nowak A, Wagner B, Bulska E (2009) Deeply coloured and black glass in the Northern Provinces of the Roman Empire: differences and similarities in chemical composition before and after AD 150. Archaeometry 51(5):822–844. doi:10.1111/j.1475-4754.2008.00434.x

    Article  Google Scholar 

  • Vellmer C, Wedepohl KH (1994) Geochemical characterization and origin of granitoids from the South Boemia Batholith in Lower Austria. Contributions to Mineralogy and Petrology 118:13–32. doi:10.1007/BF00310608

    Article  Google Scholar 

  • Venclová N, Hulínský V, Henderson J, Chenery S, Šulová L, Hložek J (2011) Late Bronze Age mixed-alkali glasses from Bohemia. Archeologické rozhledy LXII:559–585

  • Walton MS, Shortland A, Kirk S, Degryse P (2009) Evidence for the trade of Mesopotamian and Egyptian glass to Mycenaean Greece. J Archaeol Sci 36:1496–1503. doi:10.1016/j.jas.2009.02.012

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim. Cosmochim. Acta 59(7):1217–1232. doi:10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  • Wedepohl KH (1997) Chemical composition of medieval glass from excavations in West Germany. Glastech. Ber. Glass Sci. Technol. 70(8):246–255

    Google Scholar 

  • Wedepohl KH, Baumann A (2000) The use of marine molluskan shells for Roman glass and local raw glass production in the Eifel area (Western Germany). Naturwissenschaften 87:129–132

    Article  Google Scholar 

  • Wedepohl KH, Simon K (2010) The chemical composition of medieval wood ash glass from Central Europe. Chemie der Erde 70(1):89–97

    Article  Google Scholar 

  • Wedepohl KH, Simon K, Kronz A (2011a) Data on 61 chemical elements for the characterization of three major glass compositions in Late Antiquity and the Middle Ages. Archaeometry 53:81–102. doi:10.1111/j.1475-4754.2010.00536.x

    Article  Google Scholar 

  • Wedepohl KH, Simon K, Kronz A (2011b) The chemical composition including the Rare Earth Elements of the three major glass types of Europe and the Orient used in late antiquity and the Middle Ages. Chemie der Erde 71:289–296. doi:10.1016/j.chemer.2011.04.001

    Article  Google Scholar 

  • Wobrauschek P, Halmetschlager G, Zamini S, Jokubonis C, Trnka G, Karwowski M (2000) Energy-dispersive X-ray fluorescence analysis of Celtic glasses. X-Ray Spectrometry 29(1):25–33. doi:10.1002/(SICI)1097-4539(200001/02)29:1<25::AID-XRS415>3.0.CO;2-O

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Simona Bigi (Unimore) for the electron microprobe analyses and to Daniela Manzini (Centro Interdipartimentale Grandi Strumenti-Unimore) for help with the LA-ICPMS analyses. The Fondazione Cassa di Risparmio di Modena is acknowledged. JH is grateful to Dt Robert Brill, formerly of the Corning Museum of Glass, for giving him the Chotin beads and the associated file of information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Conte.

Electronic supplementary material

ESM 1.

Precision and accuracy calculated on the Standard Reference Material NIST612 at the Centro Interdipartimentale Grandi Strumenti of Modena and Reggio Emilia. The accuracy was reported as percentage of deviation average of own analysis compared to the standard. Standard deviations are 28 reported in absolute numbers. The standard deviation is the measure taken for precision on the one sigma level. (PDF 106 kb)

ESM 2.

Pictures of Bologna glass beads. (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, S., Arletti, R., Henderson, J. et al. Different glassmaking technologies in the production of Iron Age black glass from Italy and Slovakia. Archaeol Anthropol Sci 10, 503–521 (2018). https://doi.org/10.1007/s12520-016-0366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-016-0366-4

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy