Abstract
Tens of thousands of landslides were triggered by May 12, 2008 earthquake over a broad area. The main purpose of this article is to apply and verify earthquake-triggered landslide hazard analysis techniques by using weight of evidence modeling in Qingshui (清水) River watershed, Deyang (德阳) City, Sichuan (四川) Province, China. Two thousand three hundred and twenty-one landslides were interpreted in the study area from aerial photographs and multi-source remote sensing imageries post-earthquake, verified by field surveys. The landslide inventory in the study area was established. A spatial database, including landslides and associated controlling parameters that may have influence on the occurrence of landslides, was constructed from topographic maps, geological maps, and enhanced thematic mapper (ETM+) remote sensing imageries. The factors that influence landslide occurrence, such as slope angle, aspect, curvature, elevation, flow accumulation, distance from drainages, and distance from roads were calculated from the topographic maps. Lithology, distance from seismogenic fault, distance from all faults, and distance from stratigraphic boundaries were derived from the geological maps. Normalized difference vegetation index (NDVI) was extracted from ETM+ images. Seismic intensity zoning was collected from Wenchuan (汶川) Ms8.0 Earthquake Intensity Distribution Map published by the China Earthquake Administration. Landslide hazard indices were calculated using the weight of evidence model, and landslide hazard maps were calculated from using different controlling parameters cases. The hazard map was compared with known landslide locations and verified. The success accuracy percentage of using all 13 controlling parameters was 71.82%. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low, and very low. The validation results showed satisfactory agreement between the hazard map and the existing landslides distribution data. The landslide hazard map can be used to identify and delineate unstable hazard-prone areas. It can also help planners to choose favorable locations for development schemes, such as infrastructural, buildings, road constructions, and environmental protection.
Similar content being viewed by others
References Cited
Aleotti, P., Chowdhury, R., 1999. Landslide Hazard Assessment: Summary Review and New Perspectives. Bulletin of Engineering Geology and the Environment, 58(1): 21–44, doi:10.1007/s100640050066
Alexander, D. E., 2008. A Brief Survey of GIS in Mass-Movement Studies, with Reflections on Theory and Methods. Geomorphology, 94(3–4): 261–267, doi:10.1016/j.geomorph.2006.09.022
Anbalagan, R., 1992. Landslide Hazard Evaluation and Zonation Mapping in Mountainous Terrain. Engineering Geology, 32(4): 269–277, doi:10.1016/0013-7952 (92)90053-2
Arora, M. K., Das Gupta, A. S., Gupta, R. P., 2004. An Artificial Neural Network Approach for Landslide Hazard Zonation in the Bhagirathi (Ganga) Valley, Himalayas. International Journal of Remote Sensing, 25(3): 559–572, doi:10.1080/0143116031000156819
Bai, S. B., Wang, J., Lu, G. N., et al., 2008. GIS-Based Landslide Susceptibility Mapping with Comparisons of Results from Machine Learning Methods Process versus Logistic Regression in Bailongjiang River Basin, China. Geophysical Research Abstracts, 10: EGU2008-A-06367
Bai, S. B., Wang, J., Lu, G. N., et al., 2009. GIS-Based and Data-Driven Bivariate Landslide-Susceptibility Mapping in the Three Gorges Area, China. Pedosphere, 19(1): 14–20, doi:10.1016/S1002-0160(08)60079-X
Begueria, S., Lorente, A., 2002. Landslide Hazard Mapping by Multivariate Statistics: Comparison of Methods and Case Study in the Spanish Pyrenees. http://en.scientificcommons.org/23860600
Bonham-Carter, G. F., 2002. Geographic Information Systems for Geoscientist: Modelling with GIS. In: Merriam, D. F., ed., Computer Methods in the Geosciences. Pergamon/Elsevier, New York. 302–334
Brenning, A., 2005. Spatial Prediction Models for Landslide Hazards: Review, Comparison and Evaluation. Natural Hazards and Earth System Sciences, 5(6): 853–862, doi:10.5194/nhess-5-853-2005
Caniani, D., Pascale, S., Sdao, F., et al., 2008. Neural Networks and Landslide Susceptibility: A Case Study of the Urban Area of Potenza. Natural Hazards, 45(1): 55–72, doi:10.1007/s11069-007-9169-3
Carrara, A., Cardinali, M., Guzzetti, F., et al., 1995. GIS Technology in Mapping Landslide Hazard. In: Carrara, A., Guzzetti, F., eds., Geographical Information Systems in Assessing Natural Hazards. Kluwer Academic Publisher, Dordrecht, the Netherlands. 135–175
Carrara, A., Guzzetti, F., Cardinali, M., et al., 1999. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard. Natural Hazards, 20(2–3): 117–135, doi:10.1023/A:1008097111310
Carrara, A., Pike, R. J., 2008. GIS Technology and Models for Assessing Landslide Hazard and Risk. Geomorphology, 94(3–4): 257–260, doi:10.1016/j.geomorph.2006.07.042
Chacon, J., Irigaray, C., Fernandez, T., et al., 2006. Engineering Geology Maps: Landslides and Geographical Information Systems. Bulletin of Engineering Geology and the Environment, 65(4): 341–411, doi:10.1007/s10064-006-0064-z
Chauhan, S., Sharma, M., Arora, M. K., et al., 2010. Landslide Susceptibility Zonation through Ratings Derived from Artificial Neural Network. International Journal of Applied Earth Observation and Geoinformation, 12(5): 340–350, doi:10.1016/j.jag.2010.04.006
Choi, J., Oh, H. J., Won, J. S., et al., 2010. Validation of an Artificial Neural Network Model for Landslide Susceptibility Mapping. Environmental Earth Sciences, 60(3): 473–483, doi:10.1007/s12665-009-0188-0
Chung, C. F., Fabbri, A. G., 1999. Probabilistic Prediction Models for Landslide Hazard Mapping. Photogrammetric Engineering and Remote Sensing, 65(12): 1389–1399
Collison, A. J. C., Anderson, M. G., 1996. Using a Combined Slope Hydrology/Stability Model to Identify Suitable Conditions for Landslide Prevention by Vegetation in the Humid Tropics. Earth Surface Processes and Landforms, 21(8): 737–747, doi:10.1002/(SICI)1096-9837(199608)21:8〈737::AID-ES P674〉3.0.CO;2-F
Corominas, J., Moya, J., 2008. A Review of Assessing Landslide Frequency for Hazard Zoning Purposes. Engineering Geology, 102(3–4): 193–213, doi:10.1016/j.enggeo.2008.03.018
Dahal, R. K., Hasegawa, S., Nonoumra, A., et al., 2008a. Predictive Modelling of Rainfall-Induced Landslide Hazard in the Lesser Himalaya of Nepal Based on Weights-of-Evidence. Geomorphology, 102(3–4): 496–510, doi:10.1016/j.geomorph.2008.05.041
Dahal, R. K., Hasegawa, S., Nonomura, A., et al., 2008b. GIS-Based Weights-of-Evidence Modelling of Rainfall-Induced Landslides in Small Catchments for Landslide Susceptibility Mapping. Environmental Geology, 54(2): 311–324, doi:10.1007/s00254-007-0818-3
Dai, F. C., Lee, C. F., Li, J., et al., 2001. Assessment of Landslide Susceptibility on the Natural Terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3): 381–391, doi:10.1007/s002540000163
Dai, F. C., Lee, C. F., 2001. Terrain-Based Mapping of Landslide Susceptibility Using a Geographical Information System: A Case Study. Canadian Geotechnical Journal, 38(5): 911–923, doi:10.1139/cgj-38-5-911
Dai, F. C., Lee, C. F., 2002a. Landslide Characteristics and Slope Instability Modeling Using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3–4): 213–228, doi:10.1016/S0169-555X(01)00087-3
Dai, F. C., Lee, C. F., 2002b. Landslides on Natural Terrain: Physical Characteristics and Susceptibility Mapping in Hong Kong. Mountain Research and Development, 22(1): 40–47, doi:http://dx.doi.org/10.1659/0276-4741(2002)022[0040:LONT]2.0.CO;2
Dai, F. C., Lee, C. F., 2003. A Spatiotemporal Probabilistic Modelling of Storm-Induced Shallow Landsliding Using Aerial Photographs and Logistic Regression. Earth Surface Processes and Landforms, 28(5): 527–545, doi:10.1002/esp.456
Dai, F. C., Lee, C. F., Ngai, Y. Y., 2002. Landslide Risk Assessment and Management: An Overview. Engineering Geology, 64(1): 65–87, doi:10.1016/S0013-7952(01)00093-X
Dai, F. C., Lee, C. F., Tham, L. G., et al., 2004. Logistic Regression Modelling of Storm-Induced Shallow Landsliding in Time and Space on Natural Terrain of Lantau Island, Hong Kong. Bulletin of Engineering Geology and the Environment, 63(4): 315–327, doi:10.1007/s10064-004-0245-6
Dai, F. C., Xu, C., Yao, X., et al., 2011. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883–895, doi:10.1016/j.jseaes.2010.04.010
Dikau, R., Cavallin, A., Jager, S., 1996. Databases and GIS for Landslide Research in Europe. Geomorphology, 15(3–4): 227–239, doi:10.1016/0169-555X(95)00072-D
Ercanoglu, M., 2005. Landslide Susceptibility Assessment of SE Bartin (West Black Sea Region, Turkey) by Artificial Neural Networks. Natural Hazards and Earth System Sciences, 5(6): 979–992, doi:10.5194/nhess-5-979-2005
Gallus, D., Abecker, A., Richter, D., 2008. Classification of Landslide Susceptibility in the Development of Early Warning Systems. Symposium on Headway in Spatial Data Handling, Montpellier, France. 55–75
Garcia-Rodriguez, M. J., Malpica, J. A., Benito, B., et al., 2008. Susceptibility Assessment of Earthquake-Triggered Landslides in El Salvador Using Logistic Regression. Geomorphology, 95(3–4): 172–191, doi:10.1016/j.geomorph.2007.06.001
Godt, J. W., Baum, R. L., Savage, W. Z., et al., 2008. Transient Deterministic Shallow Landslide Modeling: Requirements for Susceptibility and Hazard Assessments in a GIS Framework. Engineering Geology, 102(3–4): 214–226, doi:10.1016/j.enggeo.2008.03.019
Gunther, A., Thiel, C., 2009. Combined Rock Slope Stability and Shallow Landslide Susceptibility Assessment of the Jasmund Cliff Area (Rügen Island, Germany). Natural Hazards and Earth System Sciences, 9(3): 687–698, doi:10.5194/nhess-10-2197-2010
Guzzetti, F., Carrara, A., Cardinali, M., et al., 1999. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology, 31(1–4): 181–216, doi:10.1016/S0169-555X(99)00078-1
Guzzetti, F., 2003. Landslide Hazard Assessment and Risk Evaluation: Limits and Prospective. In: Proceedings of the 4th EGS Plinius Conference Held at Mallorca, Spain, October 2002. 4
Hasegawa, S., Dahal, R. K., Nishimura, T., et al., 2009. DEM-Based Analysis of Earthquake-Induced Shallow Landslide Susceptibility. Geotechnical and Geological Engineering, 27(3): 419–430, doi:10.1007/s10706-008-9242-z
Havenith, H. B., Strom, A., Caceres, F., et al., 2006. Analysis of Landslide Susceptibility in the Suusamyr Region, Tien Shan: Statistical and Geotechnical Approach. Landslides, 3(1): 39–50, doi:10.1007/s10346-005-0005-0
He, Y. P., Beighley, R. E., 2008. GIS-Based Regional Landslide Susceptibility Mapping: A Case Study in Southern California. Earth Surface Processes and Landforms, 33(3): 380–393, doi:10.1002/esp.1562
Jadda, M., Shafri, H. Z. M., Mansor, S. B., et al., 2009. Landslide Susceptibility Evaluation and Factor Effect Analysis Using Probabilistic-Frequency Ratio Model. European Journal of Scientific Research, 33(4): 654–668
Kamp, U., Growley, B. J., Khattak, G. A., et al., 2008. GIS-Based Landslide Susceptibility Mapping for the 2005 Kashmir Earthquake Region. Geomorphology, 101(4): 631–642, doi:10.1016/j.geomorph.2008.03.003
Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406–421, doi:10.1130/0016-7606(1984)95〈406:LCBE〉2.0.CO;2
Keefer, D. K., Larsen, M. C., 2007. Assessing Landslide Hazards. Science, 316(5828): 1136–1138, doi:10.1126/science.1143308
Kouli, M., Loupasakis, C., Soupios, P., et al., 2010. Landslide Hazard Zonation in High Risk Areas of Rethymno Prefecture, Crete Island, Greece. Natural Hazards, 52(3): 599–621, doi:10.1007/s11069-009-9403-2
Lee, S., 2004. Application of Likelihood Ratio and Logistic Regression Models to Landslide Susceptibility Mapping Using GIS. Environmental Management, 34(2): 223–232, doi:10.1007/s00267-003-0077-3
Lee, S., Choi, J., 2004. Landslide Susceptibility Mapping Using GIS and the Weight-of-Evidence Model. International Journal of Geographical Information Science, 18(8): 789–814, doi:10.1080/13658810410001702003
Lee, S., Sambath, T., 2006. Landslide Susceptibility Mapping in the Damrei Romel Area, Cambodia Uusing Frequency Ratio and Logistic Regression Models. Environmental Geology, 50(6): 847–855, doi:10.1007/s00254-006-0256-7
Lee, S., Evangelista, D. G., 2006. Earthquake-Induced Landslide-Susceptibility Mapping Using an Artificial Neural Network. Natural Hazards and Earth System Sciences, 6(5): 687–695, doi:10.5194/nhess-6-687-2006
Lee, C. T., 2006. Methodology for Estimation of Earthquake-Induced Landslide Probability and Result Evaluation. Geophysical Research Abstracts, 8: 05759
Lee, C. T., Huang, C. C., Lee, J. F., et al., 2008. Statistical Approach to Earthquake-Induced Landslide Susceptibility. Engineering Geology, 100(1–2): 43–58, doi:10.1016/j.enggeo.2008.03.004
Lin, M. L., Tung, C. C., 2003. A GIS-Based Potential Analysis of the Landslides Induced by the Chi-Chi Earthquake. Engineering Geology, 71(1–2): 63–77, doi:10.1016/S0013-7952(03)00126-1
Luzi, L., Pergalani, F., 1999. Slope Instability in Static and Dynamic Conditions for Urban Planning: The ‘Oltre Po Pavese’ Case History (Regione Lombardia-Italy). Natural Hazards, 20(1): 57–82, doi:10.1023/A:1008162814578
Magliulo, P., Lisio, A. D., Russo, F., et al., 2008. Geomorphology and Landslide Susceptibility Assessment Using GIS and Bivariate Statistics: A Case Study in Southern Italy. Natural Hazards, 47(3): 411–435, doi:10.1007/s11069-008-9230-x
Magliulo, P., Lisio, A. D., Russo, F., 2009. Comparison of GIS-Based Methodologies for the Landslide Susceptibility Assessment. Geoinformatica, 13(3): 253–265, doi:10.1007/s10707-008-0063-2
Mavrouli, O., Corominas, J., Wartman, J., 2009. Methodology to Evaluate Rock Slope Stability under Seismic Conditions at Solà de Santa Coloma, Andorra. Natural Hazards and Earth System Sciences, 9(6): 1763–1773, doi:10.5194/nhess-9-1763-2009
Miles, S. B., Ho, C. L., 1999. Rigorous Landslide Hazard Zonation Using Newmark’s Method and Stochastic Ground Motion Simulation. Soil Dynamics and Earthquake Engineering, 18(4): 305–323, doi:10.1016/S0267-7261(98)00048-7
Mora, S., Vahrson, W., 1994. Macrozonation Methodology for Landslide Hazard Determination. Bulletin of Association of Engineering Geologists, 31(1): 49–58
Oh, H. J., Lee, S., 2011. Landslide Susceptibility Mapping on Panaon Island, Philippines Using a Geographic Information System. Environmental Earth Sciences, 62(5): 935–951, doi:10.1007/s12665-010-0579-2
Pachauri, A. K., Gupta, P. V., Chander, R., 1998. Landslide Zoning in a Part of the Garhwal Himalayas. Environmental Geology, 36(3–4): 325–334, doi:10.1007/s002540050348
Pandey, A., Dabral, P. P., Chowdary, V. M., et al., 2008. Landslide Hazard Zonation Using Remote Sensing and GIS: A Case Study of Dikrong River Basin, Arunachal Pradesh, India. Environmental Geology, 54(7): 1517–1529, doi:10.1007/s00254-007-0933-1
Pareek, N., Sharma, M. L., Arora, M. K., 2010. Impact of Seismic Factors on Landslide Susceptibility Zonation: A Case Study in Part of Indian Himalayas. Landslides, 7(2): 191–201, doi:10.1007/s10346-009-0192-1
Patwary, M. A. A., Champati Ray, P. K., Parvaiz, I., 2009. IRS-LISS-III and PAN Data Analysis for Landslide Susceptibility Mapping Using Heuristic Approach in Active Tectonic Region of Himalaya. Journal of the Indian Society of Remote Sensing, 37(7): 493–509, doi:10.1007/s12524-009-0036-4
Pradhan, B., Lee, S., 2008. Utilization of Optical Remote Sensing Data and GIS Tools for Regional Landslide Hazard Analysis Using an Artificial Neural Network Model. Earth Science Frontiers, 14(6): 143–152, doi:10.1016/S1872-5791(08)60008-1
Pradhan, B., Lee, S., 2010a. Regional Landslide Susceptibility Analysis Using Back-Propagation Neural Network Model at Cameron Highland, Malaysia. Landslides, 7(1): 13–30, doi:10.1007/s10346-009-0183-2
Pradhan, B., Lee, S., 2010b. Landslide Susceptibility Assessment and Factor Effect Analysis: Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modelling. Environmental Modelling and Software, 25(6): 747–759, doi:10.1016/j.envsoft.2009.10.016
Pradhan, B., Lee, S., 2010c. Delineation of Landslide Hazard Areas on Penang Island, Malaysia, by Using Frequency Ratio, Logistic Regression, and Artificial Neural Network Models. Environmental Earth Sciences, 60(5): 1037–1054, doi:10.1007/s12665-009-0245-8, doi:10.1007/s12665-009-0245-8
Pradhan, B., Singh, R. P., Buchroithner, M. F., 2006. Estimation of Stress and Its Use in Evaluation of Landslide Prone Regions Using Remote Sensing Data. Advances in Space Research, 37(4): 698–709, doi:10.1016/j.asr.2005.03.137
Pradhan, B., Youssef, A. M., Varathrajoo, R., 2010. Approaches for Delineating Landslide Hazard Areas Using Different Training Sites in an Advanced Atificial Neural Network Model. Geo-Spatial Information Science, 13(2): 93–102, doi:10.1007/s11806-010-0236-7
Saha, A. K., Gupta, R. P., Sarkar, I., et al., 2005. An Approach for GIS-Based Statistical Landslide Susceptibility Zonation—With a Case Study in the Himalayas. Landslides, 2(1): 61–69, doi:10.1007/s10346-004-0039-8
Sassa, K., Tsuchiya, S., Ugai, K., et al., 2009. Landslides: A Review of Achievements in the First 5 Years (2004–2009). Landslides, 6(4): 275–286, doi:10.1007/s10346-009-0172-5
Shaban, A., Khawlie, M., Kheir, R. B., et al., 2001. Assessment of Road Instability along a Typical Mountainous Road Using GIS and Aerial Photos, Lebanon-Eastern Mediterranean. Bulletin of Engineering Geology and the Environment, 60(2): 93–101, doi:10.1007/s100640000092
Singh, L. P., van Westen, C. J., Champati Ray, P. K., et al., 2005. Accuracy Assessment of InSAR Derived Input Maps for Landslide Susceptibility Analysis: A Case Study from the Swiss Alps. Landslides, 2(3): 221–228, doi:10.1007/ s10346-005-0059-z
Temesgen, B., Mohammed, M. U., Korme, T., 2001. Natural Hazard Assessment Using GIS and Remote Sensing Methods, with Particular Reference to the Landslides in the Wondogenet Area, Ethiopia. Physics and Chemistry of the Earth, Part C, 26(9): 665–675, doi:10.1016/S1464-1917(01)00065-4
van Westen, C. J., 2004. Geo-Information Tools for Landslide Risk Assessment: An Overview of Recent Developments. In: Lacerda, W. A., Ehrlich, M., Fontoura, S. A. B., et al., eds., Landslides: Evaluation and Stabilization—Glissement de Terrain: Evaluation et Stabilisation: Proceedings of the 9th International Symposium on Landslides. Rio de Janeiro, Brazil. 39–56
van Westen, C. J., Castellanos, E., Kuriakose, S. L., 2008. Spatial Data for Landslide Susceptibility, Hazard, and Vulnerability Assessment: An Overview. Engineering Geology, 102(3–4): 112–131, doi:10.1016/j.enggeo.2008.03.010
van Westen, C. J., Rengers, N., Soeters, R., 2003. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30(3): 399–419, doi:10.1023/B:NHAZ.0000007097.42735.9e
van Westen, C. J., van Asch, T. W. J., Soeters, R., 2006. Landslide Hazard and Risk Zonation—Why Is It still so Difficult? Bulletin of Engineering Geology and the Environment, 65(2): 167–184, doi:10.1007/s10064-005-0023-0
Wang, H. B., Liu, G. J., Xu, W. Y., et al., 2005. GIS-Based Landslide Hazard Assessment: An Overview. Progress in Physical Geography, 29(4): 548–567, doi:10.1191/0309133305pp462ra
Wang, H. B., Sassa, K., 2006. Rainfall-Induced Landslide Hazard Assessment Using Artificial Neural Networks. Earth Surface Processes and Landforms, 31(2): 235–247, doi:10.1002/esp.1236
Wu, S. R., Jin, Y. M., Zhang, Y. S., et al., 2004. Investigations and Assessment of the Landslide Hazards of Fengdu County in the Reservoir Region of the Three Gorges Project on the Yangtze River. Environmental Geology, 45(4): 560–566, doi:10.1007/s00254-003-0911-1
Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009a. Coseismic Rreverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515–518, doi:10.1130/G25462A.1
Xu, X. W., Yu, G. H., Chen, G. H., et al., 2009b. Parameters of Coseismic Reverse- and Oblique-Slip Surface Ruptures of the 2008 Wenchuan Earthquake, Eastern Tibetan Plateau. Acta Geologica Sinica, 83(4): 673–684, doi:10.1111/j.1755-6724.2009.00091.x
Xu, C., Dai, F. C., Chen, J., et al., 2009c. Identification and Analysis of Secondary Geological Hazards Triggered by a Magnitude 8.0 Wenchuan Earthquake. Journal of Remote Sensing, 13(4): 745–762 (in Chinese with English Abstract)
Yao, X., Dai, F. C., 2006. Support Vector Machine Modeling of Landslide Susceptibility Using a GIS: A Case Study. IAEG 2006, 793
Yao, X., Tham, L. G., Dai, F. C., 2008. Landslide Susceptibility Mapping Based on Support Vector Machine: A Case Study on Natural Slopes of Hong Kong, China. Geomorphology, 101(4): 572–582, doi:10.1016/j.geomorph.2008.02.011
Yilmaz, I., 2009a. Landslide Susceptibility Mapping Using Frequency Ratio, Logistic Regression, Artificial Neural Networks and Their Comparison: A Case Study from Kat Landslides (Tokat-Turkey). Computers and Geosciences, 35(6): 1125–1138, doi:10.1016/j.cageo.2008.08.007
Yilmaz, I., 2009b. A Case Study from Koyulhisar (Sivas-Turkey) for Landslide Susceptibility Mapping by Artificial Neural Networks. Bulletin of Engineering Geology and the Environment, 68(3): 297–306, doi:10.1007/s10064-009-0185-2
Yilmaz, I., 2010. Comparison of Landslide Susceptibility Mapping Methodologies for Koyulhisar, Turkey: Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine. Environmental Earth Sciences, 61(4): 821–836, doi:10.1007/s12665-009-0394-9
Author information
Authors and Affiliations
Corresponding author
Additional information
This study was supported by the International Scientific Joint Project of China (No. 2009DFA21280), the National Natural Science Foundation of China (No. 40821160550), and the Doctoral Candidate Innovation Research Support Program by Science & Technology Review (No. kjdb200902-5).
Rights and permissions
About this article
Cite this article
Xu, C., Xu, X., Dai, F. et al. Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake struck region. J. Earth Sci. 23, 97–120 (2012). https://doi.org/10.1007/s12583-012-0236-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12583-012-0236-7