Skip to main content
Log in

Intrinsic vulnerability assessment of Saturnia thermal aquifer by means of three parametric methods: SINTACS, GODS and COP

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Three different parametric methods for the evaluation of intrinsic vulnerability to pollution have been applied in a hydrothermal carbonate aquifer located in central-northern Italy and the results obtained were compared with each other. The study area, large, approximately 152 km2, lies in an area of the northern Apennines. The investigated aquifer feeds the hot thermal springs of Saturnia. The vulnerability assessment methods used are: SINTACS, GODS and COP. The vulnerability maps obtained were first individually examined, and then they were compared with each other by means of spatial analysis. These maps show similar results for the estimation of the vulnerability just in some areas. SINTACS yields areas potentially vulnerable to pollution along the Albegna River and its major tributaries in the northern part of the study area. The GODS index map reflects the great importance that this method gives to the lithological characteristics of the unsaturated zone in the subdivision of areas with different vulnerability. GODS and COP methods agree in classifying low vulnerability in the most part of central-southern study area, where the aquifer is confined by the Pliocene clay deposits. Based on the conceptual model of groundwater flow developed for the aquifer under investigation, COP seems the most appropriate method among those applied in this work, in particular with regard to the assessment of the vulnerability of the recharge area of thermal groundwater. Located in the northern part of the study area, where karst carbonate formations of the Tuscan Nappe outcrop, this recharge area is classified by the COP method as highly vulnerable to pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aller L, Bennett T, Lehr J, Petty R, Hackett G (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. Report 600/2-87/036, U.S. Environmental Protection Agency, Ada

  • Alvarez W, Cocozza T, Wezel F (1974) Fragmentation of the Alpine orogenic belt by microplate dispersal. Nature 248:309–314. doi:10.1038/248309a0

    Article  Google Scholar 

  • Barbagli A, Brogna FNA, Callegari I, Guastaldi E, Liali G, Marsico N, Rezza C, Trotta M (2013) Approccio multi-isotopico ed idrogeochimico per la caratterizzazione di acque termali: il caso di Saturnia (GR) Multi-isotope and Hydrogeochemical approach for characterizing Saturnia thermal groundwater (Grosseto, Italy). Acque Sotter/Ital J Groundw (4/134):25–40. doi:10.7343/AS-049-13-0076

  • Bartolini P (2006) Rilevamento geologico di una cavità naturale (grotta di Montecchio, Semproniano -GR) ed integrazione con i dati di superficie come contributo alla comprensione dell’assetto strutturale della Falda Toscana nell’alta valle dell’Albegna. Unpublished Degree Thesis, University of Siena, Italy

  • Becheri E, Quirino N (2012) Rapporto sul sistema termale in Italia 2012. Series: “Scienze e professioni del turismo. Studi”. Franco Angeli, Rome, p 192

  • Boccaletti M, Elter P, Guazzone G (1971) Plate tectonics model for the development of the Western Alps and Northern Apennines. Nature 234:108–111. doi:10.1038/physci234108a0

    Article  Google Scholar 

  • Carmignani L, Decandia F, Fantozzi P, Lazzarotto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics 238(1–4):295–315. doi:10.1016/0040-1951(94)90061-2

    Article  Google Scholar 

  • Carmignani L, Decandia F, Disperati L, Fantozzi P, Kligfield R, Lazzarotto A, Liotta D, Meccheri M (2001) Inner Northern Apennines. In: Vai GB, Martini IP (eds) Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 197–214

  • Carvalho MD, Mateus A, Nunes JC, Carvalho JM (2011) Chemistry of the Ferraria thermal water, S. Miguel Island, Azores: mixing and precipitation processes. Environ Earth Sci 64(2):539–547. doi:10.1007/s12665-010-0877-8

    Article  Google Scholar 

  • CGT Center for GeoTechnologies (2011) Accordo di Programma Quadro Ricerca e Trasferimento Tecnologico per il Sistema Produttivo—C.1. Geologia e Radioattività Naturale—Sottoprogetto A: Geologia (“Regional Framework Program for research and technological transfer to industry, C.1. Geology and Natural Radioactivity, Sub-Project A: Geology”). Technical Report of CGT Center for GeoTechnologies of University of Siena, Tuscany Region, and Italian Ministry of Education, University and Research. San Giovanni Valdarno, Italy. http://www.geologiatoscana.unisi.it/

  • Chilès JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Probability and statistics series. Wiley, New York; Chichester

    Book  Google Scholar 

  • Civita M (1994) Le Carte della vulnerabilità degli acquiferi all’inquinamento: Teoria e pratica. Pitagora Editrice, Bologna, p 325

    Google Scholar 

  • Civita M, De Maio M (1997) SINTACS: Un sistema parametrico per la valutazione e la cartografia delle vulnerabilità degli acquiferi all’inquinamento. Metodologia e automatizzazione. Pitagola Editrice, Bologna, p 191

    Google Scholar 

  • Civita M, De Maio M (2000) Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’inquinamento con il sistema parametrico SINTACS R5. Pitagora Editrice, Bologna, p 226

    Google Scholar 

  • Civita M, De Maio M, Farina M, Zavatti A (2001) Linee-guida per la redazione e l’uso delle carte della vulnerabilità degli acquiferi all’inquinamento. Manuali e Linee Guida dell’ANPA 4/2001, ANPA, Roma, p 99

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, New York, p 352

    Google Scholar 

  • COST Action 65 (1995) Hydrogeological aspects of groundwater protection in karstic areas, final report (COST Action 65). Report EUR 16547 EN, European Commission, Directorate-General XII Science, Research and Development, Brussels, Luxemburg, p 446

  • Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu I, Zwahlen F (2002) Main concepts of the European approach to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345. doi:10.1007/s10040-001-0185-1

    Article  Google Scholar 

  • Dogramaci SS, Herczeg AL (2002) Strontium and carbon isotope constraints on carbonate solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. J Hydrol 262(1–4):50–67. doi:10.1016/S0022-1694(02)00021-5

    Article  Google Scholar 

  • Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Duijvenboden WV, Waegeningh HGV (eds) Vulnerability of soil and ground-water to pollutants, proceedings and information, vol 38. TNO Committee on Hydrological Research, The Hauge, pp 69–86

    Google Scholar 

  • Foster SSD, Hirata R, Gomes D, D’Elia M, Paris M (2002) Groundwater quality protection: a guide for water utilities, municipal authorities, and environment agencies. Technical report, The World Bank, Washington, DC

  • Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39:549–559. doi:10.1007/s002540050466

    Article  Google Scholar 

  • Gogu R, Hallet V, Dassargues A (2003) Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ Geol 44:881–892. doi:10.1007/s00254-003-0842-x

    Article  Google Scholar 

  • Goldscheider N (2002) Hydrogeology and vulnerability of karst systems—examples from the Northern Alps and Swabian Alb. Ph.D. Thesis, University of Karlsruhe, Karlsruhe

  • Goldscheider N, Popescu I (2004) The European approach. In: Zwahlen F (ed) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report (COST Action 620), European Commission, Brussels, pp 16–21

  • Guastaldi E, Baldoncini M, Bezzon G, Broggini C, Buso G, Caciolli A, Carmignani L, Callegari I, Colonna T, Dule K, Fiorentini G, Kaçeli Xhixha M, Mantovani F, Massa G, Menegazzo R, Mou L, Rossi Alvarez C, Strati V, Xhixha G, Zanon A (2013) A multivariate spatial interpolation of airborne γ-ray data using the geological constraints. Remote Sens Environ 137(2013):1–11. doi:10.1016/j.rse.2013.05.027 (ISSN 0034-4257)

    Article  Google Scholar 

  • Italian Law by Decree No. 152, 11/5/1999 (1999) Disposizioni sulla tutela delle acque dall’inquinamento e recepimento della direttiva 91/271/CEE concernente il trattamento delle acque reflue urbane e della direttiva 91/676/CEE relativa alla protezione delle acque dall’inquinamento provocato dai nitrati provenienti da fonti agricole (“Instructions on prevention for water pollution and transposition of the directive 91/676/CEE concerning the protection of water to nitrates pollution coming from agricultural sources”). Gazzetta Ufficiale No. 246 (vol. 172), Part A.II, 20/10/2000. Rome

  • Kligfield R (1979) The Northern Apennines as a collisional Orogen. Am J Sci 279:676–691. doi:10.2475/ajs.279.6.676

    Article  Google Scholar 

  • Lambrakis N, Zagana E, Katsanou K (2013) Geochemical patterns and origin of alkaline thermal waters in Central Greece (Platystomo and Smokovo areas). Environ Earth Sci 69(8):2475–2486. doi:10.1007/s12665-012-2073-5

    Article  Google Scholar 

  • Magiera P (2000) Methoden zur Abschätzung der Verschmutzungsempfindlichkeit des Grundwassers. Grundwasser 5:103–114. doi:10.1007/s767-000-8357-1

    Article  Google Scholar 

  • Marín AI, Dörfliger N, Andreo B (2010) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in the lez karst system (Montpellier, South France). In: Andreo B, Carrasco F, Durán JJ, LaMoreaux JW (eds) Advances in research in karst media, Environmental Earth Sciences. Springer, Berlin Heidelberg, pp 329–334. doi:10.1007/978-3-642-12486-0_51

  • Marín AI, Dörfliger N, Andreo B (2012) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain. Environ Earth Sci 65(8):2407–2421. doi:10.1007/s12665-011-1056-2

    Article  Google Scholar 

  • Minissale A, Magro G, Vaselli O, Verrucchi C, Perticone I (1997) Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (Central Italy). J Volcanol Geoth Res 79:223–251. doi:10.1016/S0377-0273(97)00028-0

    Article  Google Scholar 

  • Neukum C, Hötzl H (2007) Standardization of vulnerability maps. Environ Geol 51:689–694. doi:10.1007/s00254-006-0380-4

    Article  Google Scholar 

  • Paez G (1999) Evaluación de la vulnerabilidad a la contaminación de las aguas subterráneas en Valle del Cauca. Informe ejecutivo, Corporación Autónoma Regional del Valle del Cauca, Cauca

    Google Scholar 

  • Pasvanoğlu S (2011) Hydrogeochemical and isotopic investigation of the Bursa-Oylat thermal waters, Turkey. Environ Earth Sci 64(4):1157–1167. doi:10.1007/s12665-011-0932-0

    Article  Google Scholar 

  • Polemio M, Casarano D, Limoni PP (2009) Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, Southern Italy). Nat Hazards Earth Syst Sci 9(4):1461–1470. doi:10.5194/nhess-9-1461-2009

    Article  Google Scholar 

  • Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17:725–733. doi:10.1007/s10040-008-0368-0

    Article  Google Scholar 

  • SIR Servizio Idrologico Regionale (2012) Banca Dati Precipitazioni e temperature giornaliere e mensili (“SIR hydrogeological regional service—data base of daily and monthly rainfall and temperatures of Tuscany Region”). Regione Toscana, Centro Funzionale della Regione Toscana, Pisa. http://www.sir.toscana.it/

  • Turc L (1954) Le bilan d’eau des sols: relation entre les précipitations, l’évaporation et l’ecoulement. Ann Agron 5:491–596

    Google Scholar 

  • Tuscany Region Law (2004) No. 38 27/7/2004—Norme per la disciplina della ricerca, della coltivazione e dell’utilizzazione delle acque minerali, di sorgente e termali. (“Standards for the regulation of research, cultivation and utilization of mineral, spring and thermal waters”). B.U.R.T., 29, Part 1, published in 4 August 2004, Florence. http://raccoltanormativa.consiglio.regione.toscana.it/articolo?urndoc=urn:nir:regione.toscana:legge:2004-07-27;38

  • USDA (1951) U.S. Department of Agriculture. Soil Conservation Service. Soil Survey Staff—soil survey manual. U.S. Department of Agriculture Handbook 18, U.S. Government Printing Office, Washington, DC, p 503

  • Vías J, Andreo B, Perles M, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47:586–595. doi:10.1007/s00254-004-1185-y

    Article  Google Scholar 

  • Vías J, Andreo B, Perles M, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14:912–925. doi:10.1007/s10040-006-0023-6

    Article  Google Scholar 

  • Vrba J, Zoporozec A (eds) (1994) Guidebook on mapping groundwater vulnerability. IAH-International Contributions to Hydrogeology (IAH). 16, Verlag Heinz Heise, Hannover, p 131

  • Zwahlen F (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report (COST action 620) European Commission, Directorate-General XII Science, Research and Development, Brussels, Luxemburg, p 297

Download references

Acknowledgments

This work was funded by “Terme di Saturnia Golf and Resort S.p.A.” (Italy) through “Geological and Hydrogeological Study of Saturnia area” CGT-SpinOff S.r.l. Project No. 23. The authors would like to thank Prof. Luigi Carmignani, Prof. Paolo Conti, Prof. Gianluca Cornamusini, and all of the members of the CGT Center for GeoTechnologies—University of Siena (Italy), who helped with several parts of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Guastaldi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 625 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guastaldi, E., Graziano, L., Liali, G. et al. Intrinsic vulnerability assessment of Saturnia thermal aquifer by means of three parametric methods: SINTACS, GODS and COP. Environ Earth Sci 72, 2861–2878 (2014). https://doi.org/10.1007/s12665-014-3191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3191-z

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy