LLVM Register Allocation

Evan Cheng
Apple Inc.
August 1, 2008

LLVM Register Allocation

* Motivation

* Overview

* Optimizations
* Future Work

Isn’t It Done?

* Code generator does a reasonable job
— LLVM code generator has proven to be quite capable
— Roughly ~5% better than GCC 4.2 on x86 SPEC
— About the same as GCC on x86-64
— Even better on codecs

* But...

Really, Why Do We Care?

* Squeeze out that last few percentages of performance
- Fix the pathological cases

* Improve compile time for JIT and static codegen

- Enable more aggressive optimizations

LLVM Design Philosophy

* Each optimization pass should be as aggressive as possible

- Later passes must do *the right thing* to avoid pessimization

- Earlier optimization passes may increase register pressure

* Register allocation must be able to deal with the increased register pressure

Example: Machine LICM

loop_preheader:

brcc bb1

bb1:

vl =VSETO // xor xmmO0,xmmO0

=vIi

i:;.rcc bb1

This must be good, right?

Example: Machine LICM cont.

*Not necessarily!
loop_preheader:

It increases register pressure vl =VSETO //xor xmmO,xmmO
so vl may be spilled store v1, [fi#1]

brcc bb1

—

v1.1 = load [fi#1]
=v1li
brcc bb1

bb1:

LLVM Register Allocation

* Motivation

* Overview

* Optimizations
* Future Work

Design of the Register Allocator

[PHI Elimination] [Two-Address] [Coalescing]

Linear Scan il
») 0 - f
Allocator AL

[Rewriter]

PHI Elimination

Move code out of SSA form and eliminate PHI instructions

BB1: BB2: BB3:
vl = V2 = v3 =

v5 =v1 v5 =v2 v5 =v3

Vol

BB4:
v4 = phi <v1, BB1>, <v2, BB2>, <v3, BB3>
v4 =v5

Problem: Introduce lots of copies for the coalescer

Design of the Register Allocator

[PHI EIimination] [Two-Address] [Coalescing]

Linear Scan il
») 0 - f
Allocator AL

[Rewriter]

Two-Address Pass

Convert SSA 3-address instructions into instructions with read-modify-write
operands

vl =v2
vl =add v2,v3

Design of the Register Allocator

[PHI EIimination] [Two-Address] [Coalescing]

Linear Scan il
») 0 - f
Allocator AL

[Rewriter]

Register Coalescing

Eliminate copies by registers renaming

v1 live interval v2 live interval

?

overlap because v1 is not changed.

I Safe to rewrite v2 to v1 even though the intervals

= v1<kill>

= v2<kill>

* Implementation is very aggressive:
— Does value numbering to coalesce live ranges that “conflict”

Why coalesce aggressively?

» Coalescing expects allocator to split later if needed

* Don’t trust random decisions from input:
— Copies coming in are from PHI elimination

* Can be useful places to split to reduce register pressure, but:

— cannot be trusted, miss many important cases
— coalescing happens before we know true register pressure

Design of the Register Allocator

[PHI EIimination] [Two-Address] [Coalescing]

Linear Scan il
»] 0 - f
Allocator L

[Rewriter]

Linear Scan Register Allocator

Single pass over list of variable live intervals ordered by starting points

vl v2 v3 v4 5

< Starting from v1, followed by
v2,v3,v4,and then v5

I < v3 live interval ends here, r3
is now available

v5 conflicts with v1, v2, and
v4, spilling is required

Linear Scan Register Allocator cont.

*Picking spill candidate based on def / use “density”
*Backtrack to the starting point of the spilled live interval

vl v2 v3 v4 5

a1 = Picked v4 to spill
store v4.1, [fi#1]

v4.2 = load [fi#1]

=v4.2

I

v4 is then broken into two smaller intervals that
do not conflicts v5

Linear Scan Register Allocator cont.

Linear Scan
Allocator

- Spiller and allocator share responsibilities:
— Linear scan decides: which live interval to spill
— Spiller decides: how the interval is spilled

+ Major problem:
— Spill code insertion is deferred until all of allocation is done
— Major bookkeeping nightmare

Design of the Register Allocator

[PHI EIimination] [Two-Address] [Coalescing]

Linear Scan il
») 0 - f
Allocator AL

[Rewriter]

Rewriter

- Rewrite virtual registers to allocated physical registers
* Insert spill and reload code
» Also perform some micro-optimizations

Allocations:

vl -> EBX

v2 -> EAX

v3 -> EAX

v4 -> Fl#4, ECX

EAX = addri EBX, 17
ECX = load [FI#4]
EAX = mulrr ECX, EAX

v2 = addri v1, 17
v3 = mulrr v4, vr2

LLVM Register Allocation

* Motivation

* Overview

* Optimizations
* Future Work

Coalescing: Instruction Commuting

v1 live interval v2 live interval

bb:
// v2 is livein
vl =op

‘add”is commutable

v2 = add v2, v2<Kkil

v2=vVv2 Forward substitute

= v2<kill>

Coalescing: Sub-registers

*Eliminate pseudo instructions to “extract” part of a register

«Critical for targets such as X86 which has registers that are part of larger registers
* e.g. AL, AH are sub-registers of AX; AX is a sub-register of EAX

bb: bb:

vl =op EAX =op

v2 = ektract_subreg vi<kill>, 2

= v2<kilbreg# ,kill> = BXXkglltbreg#2 kill>

Spilling: Fold Spills and Reloads

v1.1 = load [fi#1]
wtd R addfizi]yi.i, 3
store v1.2, [fi#1]

v2.3 add3affim2, [fi#1]
v2 = add32rr v2, v1.3

vé 3 xorggrr v’g [Iﬁ#1]

\’zlri #@mﬂh 1]

4 = an rrv4,v

Spilling: Splitting at BB Boundaries

v1.1 =load [fi#1]

wid32addd2rryil, 3
store v1.2, [fi#1]

v1.3 = lead fi#d1]
v2 =add32rrv2,vi.3

v1.4 = load [fi#1]
v3 = xor32rr v3, v1.i

spill again.

v1.5 = load [fi#1] I <— High register pressure,

v4 = and32rmvd4y 1.5

Machine LICM example visited:
Simple Re-materialization

loop_preheader:

v1 =VSETO // xor xmmO,xmmO
store v1, [fi#1]

brcc bb1

—

bb1:

v1.1 = USET (fi#71 xor xmmO,xmmO0
=v1l
brcc bb1

«Currently only re-materialize instructions with no register operands
*Hacked to allow PIC base register operands

Generalized Re-materialization

loop_preheader:

v1 = load L_GV$stub
v2 =load v1

brcc bb1

bb1:
v3 = add32rr v2, k

=v2

bb1: bb1:

v11 =load L_GVS$stub v11 =load L_GVSstub
v2.1 =load v1.1 v2.1 =load v1.1

v3 =add32rrv2.1,k v3 =add32rrv2.1,k

v12 = load L_GVS$stub | .\'1.1.2 = load L_GVS$stub
v2.2 = load v1.2 <« —— Note vl is qaetigaevA’D

=v2.2 =v2.2

brcc bb1 brcc bb1

*Need alias analysis information for load motion
*Must track available values / register

LLVM Register Allocation

* Motivation

* Overview

* Optimizations
* Future Work

Goals

* Faster compile times
* Generate faster code
* More maintainable and flexible code generator

Strong PHI Elimination

» Perform PHI elimination less naively
- Less work for the coalescer, compile-time benefit

Vi=...
V3 = Vq

Next Step: Iterative Splitting

* Split on loop boundaries
* Split on basic block boundaries
- Intra-block splitting 1. Insert

loop_preheader: IS0 CHIIOOP
= ‘ preneader

v1.1 = load [fi#1]

=op V1.l

2. Insert reloads = op

to start of BB's 3. Insert reloads

before a number
of close uses.

v1.3 = load [fi#1]
=op vl
= op
=opVvl3

=op Vvl
= op
=opvVvl3

\.

Aggressive Re-materalization

loop_preheader:
vi=X+4
v2=X+7
v3=X+15

Spilling due to register
pressue

loop:

load [iv +v1]

load [iv+Vv2]

load [iv + v3]

Re-materialize

loop:
vii=X+4
load [iv +Vv11]

v21=X+7
load [iv + v2.1]

v31=X+15
load [iv + v3.1]

Re-association
to enable
sharing

loop:
X1=iv+X
load [X1 +4]
load [X1+ 7]

i;ad [X1+15]

Backtracking in Linear Scan Allocator

* Two conflicting problems:

— Assign registers aggressively to maximally use them, spilling when they run out

— Spilling a use requires a register to reload into; a def must also target a register
before it is spilled

vl v2 v3 v4
® vl =o0p

V2 =o0p
v3=o0p <€ Backtrack and spill

v4=op <« Needs a register to hold destination

use V1 * Problem: Backtracking is slow, requires

use v2 redoing and undoing regalloc

<5 conflicts wifolitiohvAdd ability to spill previously
use v3 allocated interval without backtracking,
i.e. no more linear scan!

use v4

ri r2 r3

Summary: Much to be done!

* High Level Plans:
— Smarter PHI elimination for faster compiles
— Kill backtracking: Use iterative approach instead of linear scan
— Maintainability: Insert spill code during spilling instead of after regalloc

* Improved Spilling:
— Split live intervals at arbitrary places
— Aggressive re-materialization in spiller
— Use availability info to remat instructions with reg uses
— Use alias Info to remat loads
— Reschedule to reduce register pressure?

Questions?

