
Secure Virtual Architecture:
Using LLVM to Provide Memory Safety to the
Entire Software Stack

John Criswell, University of Illinois
Andrew Lenharth, University of Illinois

Dinakar Dhurjati, DoCoMo Communications Laboratories, USA
Vikram Adve, University of Illinois

What is Memory Safety?

Intuitively, the guarantees provided by a safe programming
language (e.g., Java, C#)

 Array indexing stays within object bounds
 No uses of uninitialized variables
 All operations are type safe
 No uses of dangling pointers
 Control flow obeys program semantics
 Sound operational semantics

Benefits of Memory Safety for
Commodity OS Code
 Security

 Memory error vulnerabilities in OS kernel code are a
reality1

 Novel Design Opportunities
 Safe kernel extensions (e.g. SPIN)
 Single address space OSs (e.g. Singularity)

 Develop New Solutions to Higher-Level Security
Challenges
 Information flow policies
 Encoding security policies in type system

1. Month of Kernel Bugs (http://projects.info-pull.com/mokb/)

Secure Virtual Architecture

 Compiler-based virtual machine underneath software stack
 Uses analysis & transformation techniques from compilers

 Supports commodity operating systems (e.g., Linux)

 Typed virtual instruction set enables sophisticated program analysis

 Provide safe execution environment for commodity OSs

Commodity OS

HardwareCompiler + VM
Virtual ISA
Native ISA

Outline

 SVA Architecture

 SVA Safety

 Experimental Results

Memory Safety
Run-time Library

Hardware

OS Memory Allocator

SVA Virtual
Machine

SVA System Architecture

Applications

OS Kernel

SVA ISA

Native ISA

Safety Checking Compiler

Drivers

Native Code Generator

SVA-OS Run-time
Library

Safety Verifier

Hardware

Software Flow

Safety Checking
Compiler

Safety Verifier

Code Generator

Compile-Time: Install/Load/Run-Time:

Kernel/Application
Source

Bytecode
with

Safe Types

Bytecode
+

Run-Time Checks

Native Code

Hardware

TCB

Virtual Instruction Set

 SVA-Core
 Subset of LLVM Instruction Set1,2

 Typed, Explicit Control Flow Graph, Explicit SSA form

 Sophisticated compiler analysis and transformation

 SVA-OS
 OS-neutral instructions support commodity OSs

 Removes difficult to analyze assembly code

 Encapsulates privileged operations

 Like porting to a new hardware architecture
1. [CGO 2004]
2. http://llvm.org

Outline

 SVA Architecture

 SVA Safety

 Experimental Results

SVA Safety Guarantees

Dangling pointers are harmlessNo uses of dangling pointers

Sound operational semanticsSound operational semantics

Control flow integrityControl flow integrity

Type safety for subset of objectsType safety for all objects

No uses of uninitialized variablesNo uses of uninitialized variables

Array indexing within boundsArray indexing within bounds

Secure Virtual ArchitectureSafe Language

 Dangling pointers & non-type-safe objects do not compromise
other guarantees

 Stronger than systems that do not provide any dangling pointer
protection

Safety Checks & Transforms

 Safety Checks
 Load/Store Checks

 Bounds Checks

 Illegal Free Checks

 Indirect Call Checks

 Safety Transforms
 Stack to heap promotion

 Memory initialization

Object Bounds Tracking Methods

 “Fat” Pointers [SafeC, CCured, Cyclone,…]

 Programmer Annotations [SafeDrive,…]

 Object Lookups [Jones-Kelly,SAFECode,…]

Improved Object Lookups1

 Alias analysis (DSA) groups objects into logical partitions

 Run-time records object allocations in partitions

 Run-time checks only consider objects in a single partition

 Reduces slowdown from 4x-11x to 10%-30% for nearly all
standalone programs, daemons

Memory

Partitioned
Object Set

Pointers

1. Dhurjati et al. [ICSE 2006]

Type Safe (Homogeneous) Partitions1

 Alias analysis performs type
inference

 Type-homogeneous partitions
reduce run-time checks:
 No load/store checks

 No indirect call checks

 Harmless dangling pointers

 Type-unsafe partitions require
all run-time checks

 Proved sound operational
semantics [PLDI 2006]

1. Dhurjati et al. [TECS 2005, PLDI 2006]

Memory

Blue Partition

Red Partition

Memory Allocator Requirements

 Memory for type-homogeneous partitions cannot be used by
other partitions

 Objects must be aligned at a multiple of the object size

Pre-existing PoolStandard Allocators

Outline

 SVA Architecture

 SVA Safety

 Experimental Results

Prototype Implementation

 Ported Linux to SVA instruction set
 Similar to porting to new hardware architecture

 Compiled using LLVM

 Wrote SVA-OS as run-time library linked into kernel

 Provide safety guarantees to entire kernel except:
 Memory management code

 Architecture-dependent utility library

 Architecture-independent utility library

Web Server Bandwidth

 Each measurement is median of 3 runs

 Memory safety overhead less than 70%

58%

60%

62%

64%

66%

68%

70%

72%

1 2 4 8 16 32 64 128 256

File Size in KB

P
e

r
c

e
n

t
B

a
n

d
w

id
th

R
e

d
u

c
ti

o
n

 R
e

la
ti

v
e

 t
o

N
a

ti
v

e

Apache

Exploits

 Tried 5 memory exploits that work on Linux 2.4.22

 Uncaught exploit due to code not instrumented with checks

NoELF/Support Library13589

Yes!Bluetooth Protocol12911

Yes!TCP/IP11917

Yes!TCP/IP10179

Yes!Console Driver11956

Caught?Kernel ComponentBugTraq ID

Performance Improvements

 Source code changes

 Smarter run-time checks
 Selective use of “fat” pointers

 Pre-checking all accesses within monotonic loops

 Removing redundant object lookups and run-time checks

 Very fast indirect call checks

 Improve static analysis
 Stronger type inference

 More precise call graph

 Restore context sensitivity

 Static array bounds checking

Future Work

 Ensure safe use of:
 SVA-OS instructions

 MMU configuration

 DMA operations

 Novel OS Designs
 Recovery semantics for the virtual machine

 Private application memory

 Information flow

SAFECode Release

 Currently building memory debugger tool
 Array bounds checks

 Uninitialized pointer checks

 Invalid control flow checks

 Optional dangling pointer detection1

1. Dhurjati et al. [DSN 2006]

Extras!

See what we do at http://sva.cs.uiuc.edu

