
2008 Adobe Systems Incorporated. All Rights Reserved.
1

Adobe Image Foundation &
Adobe PixelBender

Our use of LLVM

Charles F. Rose, III
1. August 2008

2008 Adobe Systems Incorporated. All Rights Reserved.
2

Motivation: GPU proliferation

•

PC graphics cards were fixed function
•

Texture, lighting, transformation, depth, etc.

•

Programmable GPUs

took over
•

Tiny asm-like per-pixel programs
•

Per-vector programs
•

High level shading languages (GLSL, HLSL, CG)
•

Multi-pass frameworks (e.g. Effects)
•

GPGPU: CUDA, CTM, OpenCL, DX Compute Shader

Could we use GPUs

to do image/video/etc. processing?

2008 Adobe Systems Incorporated. All Rights Reserved.
3

Games and beyond

•

Games drove PC graphics card development
•

PC gaming made the GPU a successful product and drove innovation

at a furious pace for the last decade

•

Programmability gave GPUs

wider use

•

Adobe Image Foundation is a framework for performing
data parallel image processing using all available
computational resources.

•

Adobe PixelBender

is a language for writing hybrid
GPU/CPU image processing algorithms.

Let’s have a look at PixelBender….

2008 Adobe Systems Incorporated. All Rights Reserved.
4

Identity filter

kernel Identity

{

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sample(src, outCoord());

}

}

// “sample” is a bilinear interpolation of the texture “src”,

// an operation performed in hardware on all modern GPUs

2008 Adobe Systems Incorporated. All Rights Reserved.
5

Identity filter

kernel Identity

{

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sample(src, outCoord());

}

}

2008 Adobe Systems Incorporated. All Rights Reserved.
6

Identity filter

kernel Identity

{

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sample(src, outCoord());

}

}

2008 Adobe Systems Incorporated. All Rights Reserved.
7

Identity filter

kernel Identity

{

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sample(src, outCoord());

}

}

2008 Adobe Systems Incorporated. All Rights Reserved.
8

Identity filter

kernel Identity

{

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sample(src, outCoord());

}

}

2008 Adobe Systems Incorporated. All Rights Reserved.
9

Identity filter

kernel Identity

{

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sample(src, outCoord());

}

}

2008 Adobe Systems Incorporated. All Rights Reserved.
10

Identity filter recap

•

Programs are written to produce pixels
•

Inputs and outputs are globals

•

Lots of vector operations going on
•

At first glance, it looks a lot like GLSL, but…

•

Has many additions tuned towards image processing
•

Has the concept of things which occur per-frame vs. those which
occur per-pixel

•

The entire kernel lives in the PixelBender

program, including things
which don’t run on the GPU

•

Kernel + setup all done in PixelBender

program

2008 Adobe Systems Incorporated. All Rights Reserved.
11

Negative filter
kernel Negative

{

input image4 src; output pixel4 dst;

parameter bool isNegative;

dependent float s;

void evaluateDependents()

{ // this happens once per frame

s = isNegative ? 1.0 : 0.0;

}

void evaluatePixel()

{ // this happens once per pixel

float4 tmp = sample(src, outCoord());

// a curious way to write dst = isNegative ? –tmp : tmp;

dst = s * (1.0 – p) + (1.0 – s) * p;

dst.a = tmp.a; // leave alpha alone

}

}

2008 Adobe Systems Incorporated. All Rights Reserved.
12

Per-frame functions

•

evaluateDependents
•

General purpose function which sets all “dependent”

variables using
the parameters.

•

Region reasoning / needed

& changed
•

The needed and changed functions are used to calculate how much
of an image is needed in order to produce a desired output region.

•

This is particularly useful when kernels are chained together in

a
series.

•

generated
•

How much of the output image is produced by this kernel. This is
particularly useful for kernels which take no input, such as a
Mandelbrot set generator.

2008 Adobe Systems Incorporated. All Rights Reserved.
13

Order of macro operations for a single kernel

evaluateDependents

Region request

region reasoning

evaluatePixels

Always CPU / LLVM

Always CPU / LLVM

GPU preferred

2008 Adobe Systems Incorporated. All Rights Reserved.
14

When do we use LLVM for evaluatePixel?

•

Old graphics card
•

Loops, branches, break/continue, int, & bool

are only on newer cards
•

Instruction count limits low on older cards

•

Card with wonky driver
•

Bad drivers seen on most graphics cards, from all vendors, and on
both Mac and PC

•

Higher numerical accuracy needed
•

CPU still sets the standard
•

Final render

•

Consistency required
•

Want all frames to have the same floating point behavior in a video
stream, for example

•

Parameter changes can throw a shader

off the card because of
instruction count limits.

2008 Adobe Systems Incorporated. All Rights Reserved.
15

Adobe PixelBender

details

2008 Adobe Systems Incorporated. All Rights Reserved.
16

float
int

bool
pixel1

int2

float2

bool2

pixel2
int3 float3

bool3

pixel3
int4

float4

bool4

pixel4

float2x2
float3x3
float4x4

PixelBender in detail – Types

2008 Adobe Systems Incorporated. All Rights Reserved.
17

float
int

bool
pixel1

int2

float2

bool2

pixel2
int3 float3

bool3

pixel3
int4

float4

bool4

pixel4

float2x2
float3x3
float4x4

PixelBender in detail – Types

2008 Adobe Systems Incorporated. All Rights Reserved.
18

float
int

bool
pixel1

int2

float2

bool2

pixel2
int3 float3

bool3

pixel3
int4

float4

bool4

pixel4

float2x2
float3x3
float4x4

PixelBender in detail – Types

2008 Adobe Systems Incorporated. All Rights Reserved.
19

•

Scalars

+ -

* /

PixelBender in detail – Operators

2008 Adobe Systems Incorporated. All Rights Reserved.
20

•

Scalars

+ -

* /
•

Vectors

+ -

* /

componentwise

float2 a, b, c;

a = b + c; a[0] = b[0] + c[0];

a[1] = b[1] + c[1];

PixelBender in detail – Operators

2008 Adobe Systems Incorporated. All Rights Reserved.
21

•

Scalars

+ -

* /
•

Vectors

+ -

* /

componentwise

float2 a, b, c;

a = b + c; a[0] = b[0] + c[0];

a[1] = b[1] + c[1];

•

Matrices

+ -

/

componentwise

PixelBender in detail – Operators

2008 Adobe Systems Incorporated. All Rights Reserved.
22

•

Scalars

+ -

* /
•

Vectors

+ -

* /

componentwise

float2 a, b, c;

a = b + c; a[0] = b[0] + c[0];

a[1] = b[1] + c[1];

•

Matrices

+ -

/

componentwise
•

Matrices

*

linear transform multiplication
•

Vector / matrix *

linear transform multiplication
(For componentwise

matrix multiply use matrixCompMult)

PixelBender in detail – Operators

2008 Adobe Systems Incorporated. All Rights Reserved.
23

PixelBender in detail – Functions

sin
cos
tan
asin
acos
atan
atan
radians
degrees
pow
exp
exp2

log
log2
sqrt
abs
sign
floor
ceil
fract
mod
min
max
step

clamp
mix
smoothStep
matrixCompMult
inverseSqrt

length
distance
dot
cross

any
all
not
nowhere
everywhere
transform
union
intersect
outset
inset
bounds
isEmpty

sample
sampleLinear
sampleNearest

lessThan
lessThanEqual
greaterThan
greaterThanEqual
equal
notEqual

2008 Adobe Systems Incorporated. All Rights Reserved.
24

PixelBender in detail – Functions

sin
cos
tan
asin
acos
atan
atan
radians
degrees
pow
exp
exp2

log
log2
sqrt
abs
sign
floor
ceil
fract
mod
min
max
step

clamp
mix
smoothStep
matrixCompMult
inverseSqrt

length
distance
dot
cross

any
all
not
nowhere
everywhere
transform
union
intersect
outset
inset
bounds
isEmpty

sample
sampleLinear
sampleNearest

lessThan
lessThanEqual
greaterThan
greaterThanEqual
equal
notEqual

2008 Adobe Systems Incorporated. All Rights Reserved.
25

PixelBender in detail – Functions

sin
cos
tan
asin
acos
atan
atan
radians
degrees
pow
exp
exp2

log
log2
sqrt
abs
sign
floor
ceil
fract
mod
min
max
step

clamp
mix
smoothStep
matrixCompMult
inverseSqrt

length
distance
dot
cross

any
all
not
nowhere
everywhere
transform
union
intersect
outset
inset
bounds
isEmpty

sample
sampleLinear
sampleNearest

lessThan
lessThanEqual
greaterThan
greaterThanEqual
equal
notEqual

2008 Adobe Systems Incorporated. All Rights Reserved.
26

PixelBender in detail – Functions

sin
cos
tan
asin
acos
atan
atan
radians
degrees
pow
exp
exp2

log
log2
sqrt
abs
sign
floor
ceil
fract
mod
min
max
step

clamp
mix
smoothStep
matrixCompMult
inverseSqrt

length
distance
dot
cross

any
all
not
nowhere
everywhere
transform
union
intersect
outset
inset
bounds
isEmpty

sample
sampleLinear
sampleNearest

lessThan
lessThanEqual
greaterThan
greaterThanEqual
equal
notEqual

2008 Adobe Systems Incorporated. All Rights Reserved.
27

PixelBender in detail – Functions

sin
cos
tan
asin
acos
atan
atan
radians
degrees
pow
exp
exp2

log
log2
sqrt
abs
sign
floor
ceil
fract
mod
min
max
step

clamp
mix
smoothStep
matrixCompMult
inverseSqrt

length
distance
dot
cross

any
all
not
nowhere
everywhere
transform
union
intersect
outset
inset
bounds
isEmpty

sample
sampleLinear
sampleNearest

lessThan
lessThanEqual
greaterThan
greaterThanEqual
equal
notEqual

2008 Adobe Systems Incorporated. All Rights Reserved.
28

PixelBender in detail – Functions

sin
cos
tan
asin
acos
atan
atan
radians
degrees
pow
exp
exp2

log
log2
sqrt
abs
sign
floor
ceil
fract
mod
min
max
step

clamp
mix
smoothStep
matrixCompMult
inverseSqrt

length
distance
dot
cross

any
all
not
nowhere
everywhere
transform
union
intersect
outset
inset
bounds
isEmpty

sample
sampleLinear
sampleNearest

lessThan
lessThanEqual
greaterThan
greaterThanEqual
equal
notEqual

2008 Adobe Systems Incorporated. All Rights Reserved.
29

Recap: overall shape of PixelBender

•

Matrix, vector and intrinsic heavy language
•

No recursion

•

No pointers
•

Limited use of arrays

•

No user defined structures

•

It’s a shader

language optimized to run on GPU
•

Per-frame operations for handling image-processing specific
semantics

2008 Adobe Systems Incorporated. All Rights Reserved.
30

PixelBender -> LLVM

•

evaluatePixel
•

mainLoop

•

Loops over the pixels
•

Translates requests for images on a theoretical “real”

image plane to
pixel coordinates

•

Calls evaluatePixel and setPixel

•

mainLoopExternal
•

All functions have external signature of void foo(void**)

•

Callbacks for many intrinsics
•

PixelBender, like GLSL, has a host of mathematical intrinsics that
operate on vector and scalar values

2008 Adobe Systems Incorporated. All Rights Reserved.
31

Identity filter (reminder)

kernel Identity

{

input image4 src;

output pixel4 dst;

void evaluatePixel()

{

dst = sample(src, outCoord());

}

}

2008 Adobe Systems Incorporated. All Rights Reserved.
32

evaluatePixel in LLVM-IR

define void @evaluatePixel(<4 x float>* %dst, IMAGE* %src, <2 x float> %_OutCoord,
i32* %_executionStatus) {

Entry_evaluatePixel:
%sampledPixelPtrRaw = alloca <4 x float>, align 16
br label %Body_evaluatePixel

Body_evaluatePixel: ; preds = %Entry_evaluatePixel
%_OutCoordElem = extractelement <2 x float> %_OutCoord, i32 0
%_OutCoordElem1 = extractelement <2 x float> %_OutCoord, i32 1
%sampledPixelPtrAsFloatPtr = bitcast <4 x float>* %sampledPixelPtrRaw to float*
call void @_AIF_sampleLinear(float %_OutCoordElem,

float %_OutCoordElem1, float* %sampledPixelPtrAsFloatPtr, IMAGE* %src)
%sampledPixelPtr = load <4 x float>* %sampledPixelPtrRaw, align 1
store <4 x float> %sampledPixelPtr, <4 x float>* %dst, align 1
br label %Exit_evaluatePixel

Exit_evaluatePixel: ; preds = %Body_evaluatePixel
ret void

}

IMAGE is an LLVM struct type with a bunch of elements

2008 Adobe Systems Incorporated. All Rights Reserved.
33

main and _mainExternal for identity filter

define void @main(<4 x float>* %_regionToGenerate,
IMAGE* %dst, IMAGE* %src, i32* %_executionStatus)

define void @_external_main({ <4 x float>**, IMAGE**, IMAGE**,
i32** }* %boxedParameterBox)

In C pseudo-code, our LLVM function _externalMain:

void _externalMain(ParameterBox* bPB) {
main(*(bPB->_regionToGenerate),*(bPB->_dst),

*(bPB->_src), *(bPB->_executionStatus));
}

•

From within our runtime, _external_main

has the signature void
_externalMain(void** boxedParameterBox).

•

Our external parameters are passed into main as an array of void* to the actual
parameters.

•

We can bypass the JIT with this

2008 Adobe Systems Incorporated. All Rights Reserved.
34

Some filters:

2008 Adobe Systems Incorporated. All Rights Reserved.
35

Some filters from the field….

*(1) Tubeview

Petri Leskinen, Jan 2008 (2) Fuzz by Tyler Glaiel

(3) Julia Set by Luca Deltodesco

(4) Radial Mario Klingemann

2008 Adobe Systems Incorporated. All Rights Reserved.
36

A couple of mine…

Radial basis function image warping. RBF=2D BSpline

Calculate Voronoi diagram implicitly and tint by pixel at cell center

2008 Adobe Systems Incorporated. All Rights Reserved.
37

Some results

•

Per-frame calculations via LLVM compiled programs are
plenty fast

•

Per-pixel calculations via LLVM are a lot slower than a
modern GPU

•

This isn’t surprising
•

Cores are easy to use for per-pixel operations

•

Things slowing us down:
•

Not using LLVM as well as we should
•

SSE usage limited
•

Callbacks not optimal
•

Security & numerical error trapping

2008 Adobe Systems Incorporated. All Rights Reserved.
38

Numerical troubles caused by heterogeneity

•

What does x / 0.0 mean?
•

Inf

on CPU. 0.0 on GPU

•

What does i / 0 mean?
•

SEH on Windows
•

Mach exception on MacTel
•

0 on MacPPC

•

Intrinsics present differently on CPU and GPU
•

pow(x, y) | y < 0.0

•

GLSL is officially unspecified as to the behavior
•

Filter writers have come to rely on this funky go-to-zero math
•

They weren’t happy when we did not reproduce this behavior on the
CPU

2008 Adobe Systems Incorporated. All Rights Reserved.
39

Numerical instabilities / hanging the CPU

•

Numerically unstable calculations used for loop terminations
in kernels are unwise but legal

•

On GPU, termination by good fortune or fiat….
•

Inf

and Nan just become zero, which will likely propagate through
calculations “better”

•

GPU driver will nuke kernel from orbit if it runs too long

•

No such protection on CPU….
•

Occasional callbacks can mitigate problem somewhat
•

Threading, out-of-process, etc., can also be used to give calling
program safe place from which to terminate

2008 Adobe Systems Incorporated. All Rights Reserved.
40

Security issues

•

Shader

programs present a fairly sandboxed execution model and no
direct access to functions which effect system calls, but….

•

Indirect array access can cause trouble
•

Stack trashing or changing function return address
•

At present, we check bounds on all indirect array/vector accesses.
•

Ideally, we’d like to skip that if we can analyze and know something about
the index. In this case, since it comes from outside, it’s pretty unconstrained

Parameter int selector;

void evaluatePixel()

{

float4 localVector;

localVector[selector] = …

2008 Adobe Systems Incorporated. All Rights Reserved.
41

Some challenges we’ve faced….

•

Most of my customers run Windows
•

Visual studio and/or Intel compiler are Adobe’s compilers for
Windows

•

VS not integrated into LLVM build and testing regimen
•

Stack alignment / SSE
•

Win64

•

LLVM can crash
•

asserts and *NULL have bitten me many times.
•

LLVM doesn’t fare well in low or out of memory conditions (*NULL)
•

Having LLVM live in-process requires a lot of testing

•

API instability / checkin

velocity

2008 Adobe Systems Incorporated. All Rights Reserved.
42

Challenges, continued….

•

Platform specifics leak into IR
•

More or less need use vectors which actually exist on target
architecture

•

Writing back end becomes much more complex: vectors and vector
ops vs. arrays and scalar ops.

•

Lack of intrinsics / types which would make my life easier
•

Matrix type <4 x 4 x float>?
•

Matrix multiply intrinsic
•

Sin/cos/etc. Currently we call back to scalar library functions, forcing
de-vectorization

•

LLVM is big.
•

On Mac: ~27 MB release / ~270 MB debug

2008 Adobe Systems Incorporated. All Rights Reserved.
43

Things we want to do

•

Stuff I can’t talk about:
•

Which point products will ship AIF1.0
•

AIF specific optimizations

•

Construction of better LLVM-IR
•

Some of our operations create “wordy”

IR
•

Not being optimal with our use of loads/stores/etc.

•

Work on stability issues
•

Error reporting
•

Better use of SSE

•

Consumer to producer
•

Suggestions on how we can help would be great

2008 Adobe Systems Incorporated. All Rights Reserved.
44

Conclusions

•

LLVM fits our needs nicely
•

Some mismatch between our language and LLVM-IR

•

Cross-platform has been a sticky wicket
•

Security and stability concerns with JITted

code on host CPU

2008 Adobe Systems Incorporated. All Rights Reserved.
45

Questions?

•

http://labs.adobe.com/wiki/index.php/Pixel_Bender_Toolkit

•

Search for
•

PixelBender
•

AIF
•

Adobe Image Foundation
•

PixelBender

exchange
•

Community site for sharing PixelBender

filters

http://labs.adobe.com/wiki/index.php/Pixel_Bender_Toolkit

	Adobe Image Foundation & �Adobe PixelBender��Our use of LLVM
	Motivation: GPU proliferation	
	Games and beyond
	Identity filter
	Identity filter
	Identity filter
	Identity filter
	Identity filter
	Identity filter
	Identity filter recap
	Negative filter
	Per-frame functions
	Order of macro operations for a single kernel
	When do we use LLVM for evaluatePixel?
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Recap: overall shape of PixelBender
	PixelBender -> LLVM
	Identity filter (reminder)
	evaluatePixel in LLVM-IR
	main and _mainExternal for identity filter
	Some filters:
	Some filters from the field….
	A couple of mine…
	Some results
	Numerical troubles caused by heterogeneity
	Numerical instabilities / hanging the CPU
	Security issues
	Some challenges we’ve faced….
	Challenges, continued….
	Things we want to do
	Conclusions
	Questions?

