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Abstract

The semiconductor technology still continues to offer an increasing
number of transistors on a single die. However, the ASIC designers
do no keep up with that pace because of shorter development time and
faster Product Life Cycles (PLC). One possible solution to overcome
this productivity gap is to reuse already developed functional cores,
so-called Intellectual Properties (IP) or to make use of platform-based
System-on-Chip (SoC) solutions. However, the share of the verifica-
tion step in the development time is about 70% to 80%. This factor
demands faster verification methods. The rapid prototyping method
offers the benefits of being faster than formal verification and simu-
lation at the same level of detail, when applied to pre-fabricated IP
blocks or coprocessors. It also is able to work already with a real
system and therefore, further software development can be sped up.
However, the disadvantages of the rapid prototyping method are the
high costs, the short lifetime, and the generally different timing be-
havior of the prototype and the future product in a particular CMOS
technology.

In this thesis we introduce the Cycle-accurate Coprocessor Pro-
totyping (CyCoP) platform. The platform aims to cycle-accurately
emulate coprocessor behavior with its master processor. We show
that CyCoP has the ability, with only two simple and highly config-
urable modules, to cycle-accurately emulate the behavior between a
software application and a hardware coprocessor. The implementa-
tion of the software application onto the two modules neither modifies
its behavior and size, nor its original design flow.

With the CyCoP platform we show how timing information can
be obtained from the prototype to provide a cycle-accurate emula-
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iv ABSTRACT

tion. Therefore, we introduce a new process synchronization algo-
rithm which is adapted to the prototyping conditions.

Because of the modular concept of CyCoP, the platform is hard-
ware independent and therefore it can easily be adapted to any other
hardware environment. This has the advantage that users are ven-
dor independent and can change the hardware at any time in the
prototyping phase, if, for example, they want to use a more recent
hardware.

To show the feasibility of the CyCoP concept, the platform has
been implemented in real hardware. Two case studies, one for a
tightly-coupled and one for a loosely-coupled coprocessor, demon-
strate the feasibility of our concept and the quality of the results.



Zusammenfassung

Die Halbleiterindustrie verkleinert kontinuierlich die Strukturgrösse
der Transistoren und kann deshalb weiterhin eine wachsende An-
zahl von Transistoren auf einem einzelnen Chip anbieten. Die ASIC-
Designer können jedoch mit dieser Geschwindigkeit nicht Schritt hal-
ten, da die Systeme stets komplexer werden und somit relativ gese-
hen, die Entwicklungszeiten immer kürzer werden. Auch der Produkt-
Lebenszyklus (PLC) verkürzt sich kontinuierlich. Mögliche Lösungen
zur Überwindung dieser Produktivitätslücke sind die Wiederverwen-
dung von bereits entwickelten funktionelle Kernen, so genannte In-
tellectual Properties (IP), und/oder die Nutzung von Plattformba-
sierenden System-on-Chip (SoC) Lösungen. Jedoch liegt der Haupt-
anteil während der Entwicklungszeit in der Verifikation, welche et-
wa 70% bis 80% davon ausmacht. Dieser Faktor verlangt daher vor
allem auch schnellere Verifikationsmethoden. Die Rapid-Prototyping-
Methode bietet den Vorteil, dass sie auf derselben Detaillierungsstufe
schneller ist als die Formale Verifikation und die Simulation, insbe-
sondere auf vorgefertigte IP Blöcke oder Coprozessoren angewandt.
Die Methode ermöglicht es auch, dass Entwickler bereits mit einem
echten System arbeiten können und daher die parallele Softwareent-
wicklung beschleunigt wird. Allerdings sind die Nachteile der Rapid-
Prototyping-Methode, die der hohen Anschaffungskosten, die kurze
Lebensdauer und in der Regel auch das unterschiedliche Zeitverhal-
ten des Prototyps und des zukünftigen Produkts in einer bestimmten
CMOS Technologie.

In der vorliegenden Arbeit stellen wir die Cycle-Accurate Copro-
cessor-Prototyping (CyCoP) Plattform vor. Die Plattform ist in der
Lage das Verhalten von einem Coprozessor mit seinem Hauptprozessor

v
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Zyklen-genau zu emulieren. Wir zeigen, dass CyCoP die Fähigkeit
hat, mit nur zwei einfachen und flexiblen Modulen Zyklen-genau das
Verhalten zwischen einer Software-Anwendung und einem Hardware-
Coprozessor zu emulieren. Die Implementierung der Software-Anwen-
dung auf die beiden Module verändert weder deren Verhalten und
Grösse, noch deren ursprünglichen Design-Flow.

Mit der CyCoP-Plattform zeigen wir, wie die Timing-Informationen
aus dem Prototyp entnommen werden kann, um eine Zyklen-genaue
Emulation zu ermöglichen. Dafür stellen wir einen neuen Prozess-
Synchronisations-Algorithmus vor, der für die Prototyping-Umgebung
angepasst ist.

Durch das modulare Konzept des CyCoPs ist die Plattform hard-
ware-unabhängig und sie ist daher leicht auf andere Hardware-Um-
gebungen adaptierbar. Dies hat den Vorteil, dass die Anwender un-
abhängig von spezifischen Anbietern sind und dass sie jederzeit in-
nerhalb der Prototypenphase die Hardware austauchen können, wenn
z. B. eine neuere Hardware verwendet werden soll.

Um die Machbarkeit des CyCoP-Konzepts zu demonstrieren, ist
die Plattform auf einer realen Hardware-Umgebung umgesetzt wor-
den. Zwei Fallstudien, eine für eng gekoppelte und eine für lose gekop-
pelte Coprozessor, demonstrieren die Durchführbarkeit unseres Kon-
zepts und belegen die Qualität der Ergebnisse.
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Chapter 1

Introduction

In this chapter we motivate the use and the design of prototyping
platforms for coprocessors in general. Therefore, we introduce the
coprocessor concept and analyze its issues in the Section 1.2. In Sec-
tion 1.3 we look into the available verification concepts and introduce
related work in prototyping platforms. We combine the findings in
Section 1.4 and point out the challenges for the design of a cycle-
accurate coprocessor prototyping platform. Finally, Section 1.5 gives
an overview of the remaining chapters of this thesis.

1.1 Motivation

The performance requirements for embedded systems grow steadily.
At the same time the market asks for systems that require less space
and less power at higher clock frequencies, and the systems have to
be more reliable. In return the Time-to-Market for a new product
becomes shorter and shorter as the success of a product—and there-
fore also its total revenue—depends mainly on its launch. Thus, the
available development time for an embedded system, as well as the
Product Life Cycle (PLC) is shortened. The development of embed-
ded systems, which is characterized by growing system complexity and
the above mentioned requirements, can only be handled with struc-
tured procedures and (semi-)automated tools.

1



2 CHAPTER 1. INTRODUCTION

The application domain for embedded systems spans every area of
our daily life in which electronic equipment supports our daily busi-
ness. In the multimedia domain, embedded systems are integrated,
e.g., into digital cameras, tablets and DVD players. In the telecom-
munication domain, they are everywhere from smartphones to the
switchboards. Also the car industry utilizes embedded systems all
over, e.g. in engine control, break control, or the navigation system.

The industry plans to integrate entire embedded systems, which
are realized nowadays as board-level-systems, into a single silicon die
(refer to Figure 1.1). Such silicon dies are also known as System-
on-Chip (SoC). According to Chang et al. [1], SoCs are defined as
a complex Integrated Circuit (IC) that integrates the major func-
tional elements of a complete end-product into a single chip or chip
set. SoCs have several advantages compared with board-level-systems.
SoCs require less space as they mainly consist of only one single chip.
Therefore they are also lighter and have lower power dissipation.

System−on−Board System−on−Chip

Figure 1.1: Evolution of the System-on-Chip (SoC) [1]

In 1999, Application Specific Integrated Circuits (ASIC) contained
on average 150kb of gates or of 400kb of memory. The design con-
sisted of about 104 lines of VHDL code. In 2005, it contained about
500kb of gates and 1Mb of memory. Such ASICs were designed with
105 lines of code. Economically, ICs that are five times bigger and
more complex are possible [2]. This phenomenon is called the produc-
tivity gap, i.e. there is a steadily growing gap between what is tech-
nologically can be designed and what is actually realized in praxis
owing to the short development time (Figure 1.2). Furthermore, both
the PLC and the available development time become shorter. These
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contradictions can only be resolved if the development efficiency can
be increased significantly. This can be achieved mainly through ab-
straction, automation, and reuse.

Gates / designer / day

1000

10,000

10

1980 20001990 2010

Behavioral
Compilers

Verification
System

Design
Reuse

Engineering
Productivity

Productivity
Gap

Schemtic
Capture

Synthesis
Logic

Moore’s
Law

Figure 1.2: Productivity Gap (From [2])

For the year 2015 the roadmap of the Semiconductor Industry
Association (SIA) [3] predicts a processor with 7 billion transistors
and a memory (DRAM) capacity of 68.7Gb [4]. The SIA therefore
recommends a minimal gate length of 30 nm for the underlying tech-
nology. The challenge is to make full use of the offered performance
and capacity, as well as to satisfy the need for fault-free systems.

One possible solution to this problem is design reuse of already de-
veloped and verified Intellectual Properties (IP). The IPs are claimed
to be the enabler of the SoC revolution [1]. By employing such com-
ponents, a complex system can be designed in shorter time, as the
redesign of every component would increase the development time.
However, while IP reuse and SoC platforms let a system developer to
compile a design rapidly, they do not guarantee that the composition,
including the software application, works correctly.

If the capacity of digital systems continues to grow at the rate of
Moore’s law, i.e. by a factor four every three years, also the time spent
at the verification step will increase. The verification step has a share
of about 70% [5] to 80% [6] in the project development time. This
factor demands more formal verification methods, but in praxis the
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simulation sill uses the bigger part of the verification. For embedded
systems, the hardware/software co-simulation is decisive in the veri-
fication process. As the application areas for the embedded systems
often are real-time domains, more and more software functions are re-
placed by special-purpose hardware, i.e. coprocessors. This happens
because pure software implementations may not achieve the desired
performance or use too much power. This trend results in a higher
fault probability at the hardware/software interface. To guaranty the
correct functionality of the system, the software has to be tested for
conflicts with the hardware. The problem is how the functionality of
the hardware/software interface can be verified sufficiently.

The formal verification method is the most accurate as it demon-
strate the correctness of a system with an exact mathematical proof.
However, automated verification of real-world systems [7] still is sub-
ject to research and is currently prevented by the complexity from
covering the system constraint exhaustively. Simulation techniques
are used for functional and timing validation of a system and rely on
the execution of software models of the Design Under Test (DUT)
on powerful computers. The simulation time mainly depends on the
abstraction level of the models and ranges from one cycle per sec-
ond for gate-level simulations up to 107 cycles per second for the
algorithmic level. Thus, simulation speedups are achieved by using
simplified models of the system. The simulation fails to verify cor-
rectness of a system sufficiently either owing to long runtime or due
to simplification. Working up to 105 times faster than simulation, the
FPGA-based emulation allows one to significantly extend the verifi-
cation coverage [8]. Logic emulation closes the wide verification gap
between simulation and actual silicon steps. Working close to the ac-
tual speed, the rapid prototyping provides extensive, “live” test cov-
erage. However, prototyping platforms come together with expensive
electronic equipment and inconvenient handling.

The main motivation for this work was to find a method to rapidly
prototype any combination of processors with their corresponding co-
processors. The flexibility of the platform has to offer the possibility
of using it in different stages of the verification step and the concepts
have to be configurable and rapidly adoptable to any environment.
Furthermore, the emulated system should not only run at almost the
same speed as the final product, but also have exactly the same real-
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time behavior.

1.2 Coprocessor Classification

Coprocessors (CoP) can be as varied as the applications they serve,
and consequently, there are many ways to classify them. The first
and possible most logical is along functional lines; i.e., math CoPs,
graphics CoPs, string or text CoPs, and so on. Within a function it is
possible to separate them into general-purpose versus special-purpose
implementations. At a lower level, hardware protocol may categorize
an implementation as tightly-coupled or loosely-coupled.

Hansen introduces in his Ph.D. thesis [9] in very detail the concepts
and issues of CoPs, which are still valid for today. Nevertheless, we
identify some characteristics of CoPs according to the hardware and
software issues. We seek to categorize them and identify types or styles
of CoPs architectures. Once classes are identified, we can define the
challenges for a CoP prototyping platform.

1.2.1 Software Issues

We define the CoP as a device that replaces software routines. One
of the primary considerations would be the integration of the CoP
with the rest of the software. The presence of a CoP in the SW
manifests in different forms. The CoP can be seen in the instruction’s
operation-code (opcode), or at the functional level, or not at all. These
are all determined by the nature of the various computational forms
and depend on whether the CoP assists at the instruction level, the
function level (e.g. a subroutine), or the entire algorithm level (e.g. a
program).

Software Interface

As an example of a CoP that assists at the instruction level, con-
sider floating-point arithmetic. Floating-point instructions normally
require two unique operands, generating a change to one operand or
possibly producing a third unique result. As the instructions of the
CPU are issued synchronous to the program flow, the interaction with
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a CoP to assist the floating-point computation must be quick and ef-
ficient.

As an example of a CoP at the function or subroutine level, con-
sider image processing. Often it is necessary to compute the convolu-
tion of an image with some filter. For each pixel, its value designated
as V (x, y), the Gaussian convolution of radius r is given in Equa-
tion 1.1

V ′(x, y) =

r
∑

i=−r

r
∑

j=−r

Ci,jV (x + i, y + j) (1.1)

This computes V ′, a new value for V . It is essentially a blurring step
to eliminate visual noise of frequency less than distance r. Given the
values for x, y, i, j, and r, the CoP could compute the pixel value V ′

without any other interaction or direction from the host.
As an example of a CoP that implements a complete program,

consider a complete image processing system. In addition to the fil-
tering function mentioned above, a complete image processing system
must include functions for contrast enhancement, noise rejection, edge
extraction, edge enhancement, and various transformations. The full
system might have CoPs for each of these functions.

Compiler Issues

For CoPs that are seen at the instructions level, compiler issues be-
come significant. First, the compiler needs to understand and rec-
ognize the execution model of the CoP. If the CoP consumes sev-
eral cycles for its basic operations, a compiler optimization to inter-
sperse instances of CoP commands with other non-data-dependent
and non-related code allows the CPU to execute concurrently. With-
out optimization, significant performance improvements may be lost.
As a means of accommodating a first-order level of concurrency—the
so-called Instruction-Level Parallelism (ILP)—the hardware protocol
may allow the CPU to proceed with other instructions after the is-
suance and before the completion of CoP instructions. To the extent
that sequential instructions are independent or do not require the CoP
resources, parallel execution can occur.

The best compiler solution would allow the inclusion of a CoP in a
software system and yet not require the compiler be modified at all to
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accommodate it. That is unlikely if performance is a consideration. A
widespread approach is to model the target processor architecture in a
dedicated Architecture Description Language (ADL) and to generate
the compilers automatically from the ADL specifications [10]. For C
compiler generation, however, most existing tools are limited either by
the manual retargeting effort or by redundancies in the ADL models
that lead to potential inconsistencies. Configurable Processor Cores
like the ARM [11], MIPS [12], Xtensa [13] and PowerPC [14] families
can be optimized by the user via addition of custom instructions. In
this case, semi-custom compiler systems, such as a modified GCC [15]
can be used, and retargeting is implemented by making new instruc-
tions available to the compiler in the form of intrinsic. It exist also the
class of retargetable compliers, like the CoSy [16]. These are highly
flexible, easy-targetable compilers, which are based upon their highly
modular design and extensible intermediate representation (IR). The
configurability and retargetability make them a particularly effective
environment for exploration of compiler effects on possible architec-
ture variations, thus enabling true hardware/software co-design.

CoP operations can be controlled either at compile time or run-
time. Even for systems equipped with a hardware CoP, it is often a
user-controlled feature of compilation to include explicit CoP instruc-
tions in the code generated. Without the instructions, library routines
are linked and parameters are passed to the CoP through memory, the
user-process stack. With explicit CoP instructions, transfers and op-
erations are defined functions of the hardware and operands may be
transferred from registers, memory, ore reused in the CoP. For some
systems, if the CoP is absent or disabled, executing the instruction
will result in a trap to routines that implement the function.

1.2.2 Hardware Issues

As with software, there are many hardware characteristics that differ-
entiate CoPs. Broadly speaking, there are six classifications, depend-
ing on various control and data-related factors. These include:� the instruction or command paradigm,� the data transfer protocol,
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There is a correlation between the physical placement of the processor
within the SoC hierarchy and these hardware issues. To guide our
discussion in the sections that follow, Figure 1.3 illustrates three levels
of CoP hierarchy within an SoC.

(a)

Peripheral Bus
(c)

(b)

System Bus

RISCCache

CPU Pre−Cache
Coprocessor

Memory
Coprocessor

I/O
Coprocessor
I/O−Level

Special
Instruction
Coprocessor

System−Level
Bridge

Figure 1.3: Topology of CoPs Interconnection

On the basis of the interconnection topology, CoPs are grouped in
three levels:

(a) CPU-level CoPs, including special instruction CoP and pre-
cache CoPs,

(b) Memory-level CoPs, and

(c) Input/Output-level CoPs.



1.2. COPROCESSOR CLASSIFICATION 9

At each of the three levels, there are two main things to consider:� instruction sequencing and/or control, and� data/operand manipulation.

In the following we discuss inter-level differences and similarities and
intra-level properties for control and data for each of the three levels
and relate them to the six classifications above.

Instruction and Control Issues

Some CoPs have built-in or hardwired instruction sequences and allow
no generalization as provided by an instruction stream. Such CoPs
can exist at any level.

For CoPs that do operate off the instruction stream, there are
several ways of providing control. The instruction could be:� fetched by the CPU and seen simultaneously by the CoP, or� fetched by the CPU and sent to the CoP, either in encoded or

decoded form, or� fetched by the CoP itself.

We call the first of these an instruction tracker CoP. As the name
implies the CoP tracks or follows the instruction stream as it comes
out of storage and decodes and executes those instructions intended
for it. The CPU execution unit essentially treats CoP instructions as
“no-ops.” These are either CPU-level CoPs or memory-level CoPs and
interact directly with CPU instruction fetch unit, CPU instruction
caches, and main memory. I/O-level CoPs do not use instruction
tracking protocols.

We refer to the second instruction-issue method as a master/slave
protocol. The CPU is the master and the CoP is the slave, and receives
direction and begins operation only on command by the CPU. These
are usually memory-level CoPs, but in some cases are found at the
CPU-level and I/O-level. This method is less tightly-coupled than
instruction-trackers and is used for general-purpose CoPs that may
operate asynchronously with the CPU and do not interact as closely
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with the CPU pipeline, for example. Many I/O-level CoP receive
some portion of their control in a master/slave manner.

The third instruction issue paradigm we refer to as autonomous,
since the CoP has the ability to control its own instruction stream
or continue execution under its own control. These types of CoPs
are nearly always found at the I/O-level of the interconnection hierar-
chy. In a multiprocessor system, a second CPU is used to implement
certain aspects of an algorithm may be considered an autonomous
CoP, e.g. the Cell Broadband Engine [17] from IBM consists of one
main PowerPC processor and several so-called Synergistic Processor
Units (SPU) which are free programmable SIMD processors. These
SPUs can be considered as CoPs. However, that has more to do with
software execution than hardware issues and will not be considered
further.

In many cases, CoP control units are combinations of all three
methods. One part of the CPU-to-CoP protocol may be master/slave
followed by autonomous action by the CoP as it continues to fetch and
execute its own instructions until finished. We next consider aspects
of data transfer and manipulation in CoPs.

Data Transfer and Memory Interaction

Besides the flow of instructions to the CoP control unit, operands
must also be provided. There are at least five ways that CoPs send
or receive data:� the CoP has “built-in” hardwired constant values,� the CPU executes load/store instructions, but the data are sent

or received by the CoP,� the CPU transfers data to its internal registers, then writes to
the CoP,� the CoP executes its own load/store and transfer operation,� the CoP has registers that shadow the CPU registers.

At the CPU-level, special function units extend the CPU data path
and operate on the same data types. Consequently, they are syn-
chronous with CPU operations. They may have their own registers or
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use CPU registers. Caches provide fast access to operands involved
in such specialized functions as fixed-point binary arithmetic, array
index manipulations, emulation functions, encryption tasks, and so
forth.

Memory-level CoPs often manipulate data types that are different
from those used in the CPU or special function units. Consequently,
they may maintain separate register files. They receive/send data by
monitoring the data bus or respond to move operations between it
and the CPU registers. The data involved are typically individual
words instead of large blocks. As the data types may be different
than those used by the CPU, the bandwidth between memory-level
CoP and storage may be quite different from the CPU. For example,
double-precision floating-point operands may pass directly between
floating-point CoP registers and the data cache in a single cycle, while
CPU access may require multiple-cycle to transfer the same data.

I/O-level CoPs typically transfer large blocks of data between de-
vices and main memory with little or no interaction with the CPU.
The interaction with main memory can either be cycle-stealing or
uninterruptible burst transfers. The model for data manipulation
matches that of control—very little interaction with the system once
initiated.

Having considered many of the issues that distinguish and separate
different types of CoPs at the interface level, and ways in which CoPs
interact with the rest of the system to send, receive, and manipulate
data, we next look in the Section 1.3 how and whether state-of-the-art
prototyping platforms fulfill the paradigm that have been evaluated
in this section.

1.3 Hardware/Software Co-Verification

Up to 80% of the project development time is spent at the verification
step. Moving towards the System-on-Chip (SoC) makes the verifica-
tion gap even wider than the design gap. In literature we find three
different verification methods [1, 18, 19], which are:

1. Formal Verification,

2. Simulation, and
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3. Rapid Prototyping.

Each verification method plays its own role in the design process. In
this section we briefly explain the individual methods, highlight its
strengths and its drawbacks. For the introduction of the prototyping
methods we discuss some of the state-of-the-art systems available.

1.3.1 Formal Verification

In Formal Verification the functional correctness of a system is demon-
strated with an exact mathematical proof. There are two approaches
to proof the correctness. Either we proof the equivalence of a model
with a reference model, Theorem Proving, or we assure model prop-
erties, Model Checking.

In theorem proving a process is considered to be theorem proving,
if it consists of a traditional proof, starting with axioms and producing
new inference steps using rules of inference [20, 21, 22]. This proof is
well suited for control flow-oriented applications and is mainly used
for regression tests.

The model checking is equivalent to brute-force enumeration of
many possible states, although the actual implementation of model
checkers requires much cleverness, and does not simply reduce to brute
force. It is good for liveliness and security tests of a system. However,
automated verification [23] is still subject to research and is currently
limited by long computational times for complex circuits.

For the hardware/software co-verification, however, is the formal
verification inapplicable as the complexity of such systems, and there-
fore the possible states, outreaches today’s computing power [1].

1.3.2 Simulation

Simulation techniques are used for functional and timing validation of
a system and rely on the execution of software models of the Design
Under Test (DUT) on powerful execution platforms, e.g. workstations.
The simulation time mainly depends on the abstraction level of the
models and range from one cycle per second for gate-level simulations
up to 107 cycles per second for the algorithmic level [24]. Nowadays,
static timing simulations have to be complemented with dynamic sim-
ulations in order to cope with deep-submicron effects such as crosstalk
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between metal layers because of parasitic capacitances. Moreover,
most systems are heterogeneous, i.e., they consists of analog/digital,
hardware/software and/or electrical/mechanical components which is
tackled by simulator coupling [8], such simulators are often called
co-simulators. As the targeted domains are diverse, simulation is ag-
gravated by different abstraction levels of models, stimuli, and time,
as well as synchronization problems.

Although domain specific simulators exist, realistic system simula-
tions still fail because of their long runtime. Simulation speedups are
achieved by using cycle-based instead of event-based simulators and
dynamic adaptable simulation models [25].

1.3.3 Rapid Prototyping

The term “rapid”, in rapid prototyping has two meanings:� the prototype is obtained rapidly and� the prototype works rapidly.

For this, a rapid prototyping technique almost automatically converts
an input specification into a hardware/software system, which is func-
tional equivalent to the DUT. Working up to 105 times faster than
simulation [24], the FPGA-based emulation allows to significantly ex-
tending the verification coverage. Logic emulation fills a wide verifi-
cation gap between simulation and actual silicon steps.

In functional prototyping approaches the architecture of the final
product is of minor interest, and only the functional correctness of
a specification has to be checked. In contrast architectural compliant
prototyping techniques focus on the real target architecture. This em-
ulation technique is well known on chip-level where gate-level net lists
of digital designs are mapped to acceleration platforms for validation
purpose. Almost all modern processor designs rely on chip-level em-
ulation [26]. In system-level prototyping the entire system, including
any ASICs, is retargeted to a programmable hardware environment,
consisting of FPGAs and of-the-shelf components such as microproces-
sors, memories, ASICs, or other IP-modules, so that the real system
architecture can be emulated [27, 28].
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Thus, rapid prototyping allows designers to explore the design
concepts, verify the hardware design and complete the development,
integration, and testing of the system firmware and software before
first silicon. This enables fast verification of complex system designs
in the real system environment which in turn results in higher-quality
products and shorter time to market.

1.3.4 State-of-the-Art in Rapid Prototyping

According to their role and their characteristics, the prototyping plat-
forms can be classified in two major categories:� Commercial Systems� Custom Platforms

The first category covers the logic emulation field. The commercial
systems’ common characteristics are their high capacity. They con-
sists of hundreds of FPGAs or processors placed on boards which are
combined into racks. The second category is the more heterogeneous
platforms which combine different logic together into one system. The
category also covers the single board development platforms.

Following we will give a few representative examples for each of
the two categories. The list is incomplete; however, the presented
prototyping platforms represent the main hardware concepts used all
over. The following literature references provides further general in-
formation about rapid prototyping [18, 19, 29, 30].

Commercial Systems

IBM’s Simulation Acceleration Hardware was originally built
as a custom platform on special purpose hardware accelerators. The
early version was called the Yorktown Simulation Engine (YSE) [31,
32]. It consists of a collection of special purpose processor, the so-
called logic processors, which were interconnected through a large
switch. The block diagram in Figure 1.4 illustrates this simplified
architecture with a situation where up to 256 logic processors are
connected.
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Figure 1.4: Yorktown Simulation Engine Overview

Each logic processor contains an instruction memory that stores
the interconnection and function type information for a logical net-
work, a data memory that holds logic values for signals in the network,
and a function unit that evaluates logical functions, like shown in Fig-
ure 1.5. During simulation, the logic processors simultaneously step
through their instruction memories and use the information fetched to
access and update values for signals stored in their data memories. In
addition, the logic processors transfer signal values between their data
memories and the switch to accommodate the communication intro-
duced by the partitioning. From a distant point of view the function
unit can be seen as a Configurable Logic Block (CLB) from an FPGA
which is evaluated with different configuration and data stimuli in
sequence. This way a small mesh of CLBs can be simulated within
a logic processor. After developing YSE, a robust production sys-
tem was developed, the Engineering Verification Engine (EVE) [33].
EVE used a massive network of logic processors. Typically, each run
through the sequence of all instructions in all logic processors in par-
allel constituted one machine cycle, this implementing the cycle-based
simulation paradigm. The theoretical speed of EVE was many orders
of magnitude faster than any software implementation 2.2 billion gate
evaluations per seconds.

In the late 1990s, AWAN, was built as a low-cost system which
improved on both the capacity and performance of EVE. AWAN is
much like the EVE machine, but it is made with smaller, faster com-
ponents and has a much improved interconnection strategy. Models
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exceeding 31 million gates have been simulated. Speed depends on
the configuration, model size, model complexity, and the amount of
host interaction. AWAN is marketed by Quickturn under the name
Radium. Utilizing the base EVE concepts, a hyper-acceleration and
emulation machine called ET3 [34] was developed. ET3 uses logic pro-
cessors which evaluate three-way input gates. In contrast to AWAN,
ET3 has a larger number of processors and a lower depth of sequential
three-way-gate instructions/processor. The breakthrough of this tech-
nology in the microprocessor and server system space occurred after
the latest capacity improvements [34]. ET3 is marketed by Quickturn
under the name CoBalt.

These are the only rapid prototyping platforms based on special
purpose ASICs. Successor platforms and competitor platforms are
hybrid systems combining general purpose processors combined with
FPGAs. Therefore, we explained it in greater detail.

Cadence’s Palladium Systems are processor-based supporting de-
signs of up to 256 million gates [35]. Hard IP with standard IP blocks
are supported through the Palladium IP chassis. Each standard IP
block is mounted on a customized board can have up to 1,248 bi-
directional signal pins each. Cadence supplies a number of turnkey
IP blocks, such as ARM processor models, Xilinx Virtex-II FPGAs,
and pin-grid array for user mounting of any silicon.
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Mentor Graphics offers three emulation systems: VStationPRO,
VStationTBX and iSolve [36]. The emulation is based on a Virtual-
Wires technology [37, 38], which overcomes pin limitations by intel-
ligently multiplexing each physical wire among multiple logical wires
and pipelining these connections at the maximum clocking frequency
of the FPGA. Wire multiplexing requires scheduling of virtual wires
to physical wires, which results in creating a FSM, and also synthesiz-
ing multiplexer/demultiplexer logic and registers. Hardware overhead
is largely compensated by increasing logic utilization ratio. The em-
ulation clock is broken into a number of micro-cycles determined by
a free-running µCLK. The micro-cycles are grouped into sequential
phases to support combinational paths that extend across multiple
chips. This is performed by the timing resynthesis step, which re-
places the user-clock by a single global synchronous clock. The em-
ulation speed is determined as the product of the virtual clock cycle
time by the number of virtual cycles in one cycle of the user’s clock.
The cycle time of the virtual clock is chosen to be the inter-FPGA
traversal time. The number of virtual cycles is equal to the number of
FPGA crossings in the longest combinatorial path. By solving the pin
limit problem VirtualWires approach increases the FPGA utilization
ratio from 10–30% in hard wired systems to over 45%. The architec-
ture used in SimExpress and Celaro is based on a full custom chip
specifically designed for emulation. The full custom chip comprises
an entire emulator, including programmable elements; interconnect
matrix, logic analyzer, clock generators, memory interface, and I/O
channels. An interconnect matrix guarantees that the propagation
delays between any two programmable elements within the chip are
fixed and predictable. All programmable element outputs are con-
nected to the on-chip signal probing circuitry, without relying on the
compiler to perform the routing, and, consequently, consuming pre-
cious interconnection resources otherwise available to the user logic.
A bank of I/O channels connects the emulator-on-a-chip to all other
emulators-on-a-chip in the system, via a fractal routing network.

Custom Platforms

In the category of the custom platforms we group the systems and
hardware of university projects as well as commercial boards which
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consists only of a few programmable logic devices. These boards are
centered on the recently announced logic devices. There are too many
different boards and system build by university and vendors to list
them up. We pick out four examples from one vendor and from three
universities, and briefly describe them. These systems are developed
for the research purposes in hardware-software co-design area, as well
as for pure hardware prototyping.

HARDI offers three products: HAPS-10, HAPS-20, and HAPS-
34 [39]. The HAPS system is based on two types of boards. The so-
called mother board consists of several sockets where daughter boards
can be plugged in. These sockets are connected among each other
with a configurable network. The flexibility allows the same board to
be reused in several projects or configurations by replacing daughter
boards containing I/O and custom subsystems. Each socket has 720
pins. Six pins are reserved for power, while the remaining can be
used freely. As an option, 708 of these pins can be used for LVDS
signaling, including 48 LVDS clocks. The sockets can be used either
for attaching daughter boards or for creating wider inter-FPGA buses
or for a combination of both.

REPLICA rapid prototyping system [40] is based on a scalable
and reconfigurable system architecture. Up to six processing modules
execute the tasks of the target system and communicate with each
other via communication links. Connectivity is established by SRAM-
based bit-oriented switches, which are used to switch one or more
signals at compile time. Based on non-blocking switch matrix these
devices allow a total flexibility in connecting incoming signals. Some
communication links may require additional hardware resources such
as memory, glue logic, etc. These resources will be allocated on the
interface modules. The set of current processing modules comprise
floating point signal-processors, 16- and 32-bit RISC-microcontrollers,
and an FPGA-based ASIC emulator.

WEAVER prototyping environment [41, 42] features up to four
Xilinx FPGAs on one so-called base module. Base modules can be
combined so that bigger designs fit onto the emulation platform. I/O
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and processor modules exist as well that can be connected to the
WEAVER.

BEE2 [43] is a general purpose processing module based on five
Xilinx FPGAs. In addition to the large amount of processing fab-
ric provided by the FPGAs, the BEE2 also provides up to 20GB of
DDR2 DRAM memory. Each of the five FPGAs has four indepen-
dent channels to DDR2 DIMMs which provides very high memory
bandwidth. Finally, the FPGAs on the BEE2 are highly connected
with both high-speed, serial and parallel links. The FPGAs are laid
out in a star topology with four user FPGAs in a ring and one con-
trol FPGA connected to each user. The user FPGAs each have four
independent high speed serial channels which are capable of transfer-
ring data at 10Gbps through the connectors. The user FPGA ring
consists of parallel connections of 138 high-speed LVCMOS traces be-
tween the FPGAs which can run at a maximum of 400Mbps. The
control FPGA has two high-speed serial channels, 64 LVCMOS traces
to each user FPGA, and connections to common peripherals such as
10/100 Ethernet, USB, RS232 serial, DVI, and GPIOs.

1.4 Problem Statement

1.4.1 Classification Summary

In Section 1.2 we have reviewed some of the hardware and software
issues related to the incorporation of CoPs in SoCs. The main con-
sideration in specifying a prototyping environment for all the issues
noted is based on the interaction between the CPU and the CoP.

On the software side, a possible prototyping platform must be able
to catch all CoP calls in either instruction form or load/store access.
The software tool-chain as well as the software application setup must
not be changed because they mainly influence the performance of the
application. Thus, the program compilation as well as the application
execution must not be different for the target architecture and for the
prototype.

A CoP may be coupled in any manner to a processor in hardware.
The way the CoP is coupled to the processor limits the resources
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the processor and the CoP can share. Whereas a tightly-coupled
CoP can access all internal resources of a processor, a loosely-coupled
one can only share the external memory. In return a loosely-coupled
CoP can run completely asynchronously to the processor, whereas a
tightly-coupled CoP runs synchronously to its CPU. A prototyping
platform has to interface to any type of CoP and provide it with data.
Furthermore, the timing behavior of the CoP must be appropriate to
its type.

1.4.2 Co-Verification Summary

Rapid prototyping combines the benefits of simulation with those of
hardware prototypes. Moreover, it allows designers to explore the
design concepts, verify the hardware design and complete the devel-
opment, integration and testing of the system software before first sil-
icon. This enables fast verification of complex system designs in real
system environment, which in turn results in higher-quality products
and shorter time to market.

In Section 1.3.4 we differentiate between commercial prototyping
systems and custom platforms. The commercial systems consist of
hundreds of FPGAs placed on boards which are combined into racks.
The whole system is integrated into the same base hardware and
therefore the overall clock can be simply scaled to the longest logic
path. This allows a cycle-accurate emulation of software and hard-
ware. However, processors have a highly optimized architecture. To
implement them into programmable logic devices requires the clock to
be scaled down to a very low speed. Thus, to speed-up the emulation,
the processors are simplified and only have the functional behavior.
This reduces the accuracy of the hardware/software co-verification as
the software does not perform like on the original processor architec-
ture. Furthermore, these prototyping racks are very expensive and
the update to newer FPGA technology is dictated by the vendor. To
shorten the compilation time of the prototype, one has to buy IPs
from the vendor and has to rely on the vendor’s selection.

The heterogeneous custom platforms have the advantage that ded-
icated devices can be combined with programmable logic devices.
Thus, the software runs on the original architecture and therefore
behaves cycle-accurately. However, the coprocessors that are imple-
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mented into programmable logic devices cannot be clocked with the
same rate as the real processor. Thus, the clock distribution over the
whole platform is not uniform and therefore introduces inaccuracies
to the hardware/software co-verification.

In Table 1.1 the main pros and cons of rapid prototyping tech-
niques are summarized.

Table 1.1: Pros and Cons of Rapid Prototyping
Advantages Disadvantages

• high speed • high costs
• real system environment • compilation times
• short time to market • short lifetime
• full design observability • no SW timing
• no sim. model required

1.4.3 Conclusions

Modern chip integration allows designers to steadily increase the com-
plexity of their architecture. A concern is whether these complex and
highly integrated SoCs perform their intended functional behavior as
specified in the system specifications. A complete design verification
of these SoCs has to cover not only the hardware part of the design,
but also the software considering cycle-accurate timing.

Extensive functional simulations of the system enable the detec-
tion of errors at the higher abstraction level in acceptable computation
times. Starting the verification at high abstraction levels is neces-
sary to increase the designer’s confidence in the design and to achieve
a functionally correct system. To complete the verification FPGA-
based rapid prototyping is used. Mapping the design of the target
SoC into an FPGA yields an accurate and fast representation, but
following the problems have to be solved to enable a cycle-accurate
hardware/software co-verification:� To reduce the costs and to give the user the freedom of choice

of the hardware used, the prototyping platform has to be inde-
pendent of the underlying hardware.
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with the original software design flow. Therefore, the design
flow cannot be replaced or changed.� Also the software itself cannot be changed.� If the original processor has to be used for the software, how
are instruction-set extensions for the processor emulated and
prototyped?� When using any kind of real processor with any programmable
logic device, one has to ensure that the data and signals ex-
changed are synchronized across the clock boundaries.

This thesis presents a design methodology that addresses these prob-
lems, and illustrates the development process with different exam-
ples.

1.5 Organization

This thesis is organized as follows.
In Chapter 2 we introduce the proposed prototyping platform

called CyCoP (Cycle-accurate Coprocessor Prototyping). Our method
allows a cycle-accurate coprocessor emulation which solves an impor-
tant problem in the hardware/software co-verification domain. More-
over, the platform is hardware independent and works with standard
tool-chains.

In Chapter 3 we present the implementation details of the platform
for tightly-coupled coprocessors. This type of coprocessor extends
the instruction set of a processor. We introduce a minimal invasive
method to cycle-accurately emulate the instruction-set extension.

In Chapter 4 we describe the implementation details of the plat-
form for loosely-coupled coprocessors. A loosely-coupled coprocessor
runs asynchronous to the processor. To be able to cycle-accurately em-
ulate the hardware and software events with the prototype platform,
we introduce a process synchronization method. The synchronization
method works with the context of the coprocessors and therefore, we
present a technique to access the context of the coprocessor.
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In Chapter 5 we give performance results of our prototyping plat-
form. Some results are based on real benchmark applications and are
compared to real hardware implementation, where it is applicable.
Other results are artificial for being able to demonstrate the correct-
ness of the used concept. In Chapter 5 we also give numbers on how
accurate the platform is working on the performed prototype. With
the Chapter 6 we conclude this thesis.

In the appendix some further implementation details are described
which are not required for the understanding of this thesis, but might
be of interest for the reader as well.





Chapter 2

CyCoP: Cycle-Accurate
Coprocessor
Prototyping

In Section 1.2, we classified coprocessors (CoP) and concluded that
from all the perspectives there are two relevant categories for a pro-
totyping platform. We mainly have to differentiate between loosely-
and tightly-coupled CoPs. The first category is accessed by a CPU
over an on-chip interconnect system. The second category extends
the data path of the CPU itself and therefore is accessed by the CPU
directly over a special-purpose interface.

In Section 1.3, we examined existing prototyping platforms. The
main disadvantages of the available systems are that these systems
cannot keep up with the progress of programmable logic devices, as
these devices are steadily gaining in capacity and speed. Furthermore,
there is no accurate timing behavior between the CPU and its CoP,
which is relevant for both the hardware/software co-verification as
well as the proof of the performance gained.

Because of the knowledge gained, we propose CyCoP, a Cycle-
Accurate Coprocessor Prototyping platform, and describe it in this
chapter. In Section 2.1 the platform as a whole is introduced to
clarify the concept of the platform. Sections 2.2 and 2.3 consider
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the hardware and software components of the platform. Section 2.4
presents the method to configure and set up the platform. Section 2.5
introduces the hardware used and software environment for the exam-
ple implementation. The last section summarizes the findings of this
chapter.

2.1 Platform Overview

The CyCoP platform has two main components: the processor sys-
tem and the coprocessor system. The processor system consists, in
fact, mainly of a standard processor chip with a host board-level
interconnect, e.g. a PCI bus. The CoP system consists of off-the-
shelf prototyping boards populated with programmable logic devices,
e.g. FPGAs. The prototyping components communicate with each
other over the board-level interconnect. Figure 2.1 shows an abstract
block diagram of how the CoP systems are embedded into the board-
level interconnect of the host processor system. In the following, the
processor system is simply called the CPU.

Bus

Processor

M
em

or
y

FPGA FPGA

Application

SW−Layer HW−Layer

LC−CoP

HW−Layer

TC−CoP

Board−Level

Figure 2.1: Coprocessor Prototyping Platform Topology

Thus, the CyCoP platform is simply assembled depending on the
needs of the user. It can be that as many FPGA boards are added
to the prototyping system as the board-level interconnect allows. On
the other hand, the number of CPUs is currently limited to one, as
the platform is designed to emulated CoP behavior. However, un-
der certain conditions more CPUs can be added to the prototyping
system.
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A special prototyping SW layer, subsequently called the Middle-
ware (MW), runs on the CPU. The MW enables the communication
of the software application with its CoPs in the prototyping environ-
ment. Therefore, the MW detects and identifies the FPGA boards
constituting the CoP system. At run-time the software application
accesses the individual CoPs via the MW. For the MW it does not
matter whether the application is a simple user application or an en-
tire Operating System (OS). Every CoP call from the application is
fetched by the MW and sent to the CoP addressed and the CoP re-
sults are provided by the MW to the application. The MW resembles
the Hypervisor concept for server virtualization, as it hides the real
hardware environment to the application.

Furthermore, the MW hides the delays of the emulation environ-
ment from the software application. Thereby, the MW maintains the
semblance of “real time” operation for the application. Also, the com-
putation time of the CoP request is taken into account by the MW.
Thus, the MW enables a cycle-accurate performance measurement of
the software application using the CoP.

In the CoP systems the application request are caught by a HW
layer. This HW layer is also integrated into the programmable logic
device like the CoP core itself. The HW layer works as a Wrapper for
the CoP core. It controls the CoP in- and output, and communicates
with MW. Owing to the communication between the Wrapper and
the MW, the prototyped SoC is synchronized and guaranties a cycle-
accurate emulation.

The communication between a loosely-coupled CoP (LC-CoP) and
the application or between a tightly-coupled CoP (TC-CoP) and the
application is basically the same. Merely the synchronization behavior
is different, as will be further explained in the following sections.

2.2 Middleware

The basic idea of the CyCoP platform is to use the target processor
core together with an FPGA, in which the CoP core resides (refer
to Figure 2.1). The software application requests the CoP as if the
CoP already resided on the same die as the processor core. The MW
enables the use of the CoP in the CyCoP platform for the application.
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The concept of implementing a specific SW layer to enable the
communication between different components in a prototyping frame-
work is known [44, 45]. These SW layers act as a sort of communi-
cation stack and enable the message passing from one component to
the other within the prototype. The SW application explicitly makes
use of these communication stacks. Our MW in contrast performs
the task of communication enabling without the SW application be-
ing aware of this process. Furthermore, as the MW is executed by
the CPU in which we measure the performance of the application, we
have to take care not to influencing the measurements as well as the
application flow.

The block diagram in Figure 2.2 shows in more detail how the
software stack is organized in the platform. The MW is between the
application and the hardware driver for the board-level interconnects.
On the same level as the MW is the OS, because the OS and the
MW are called directly by the application and they provide hardware
services for the application. On the other hand, the OS may also use
the CoP for certain routines or functions. Therefore, in our platform
the MW is also called by the OS. This is indicated in the figure by
the tilted boxes, with the OS box slightly overlapping the MW box.

Processor

Application

OSMW

Bus Driver

Figure 2.2: Software Layers

To pretend that the application runs in real time, the MW manip-
ulates the time base of the CPU. The time base is a register whose
content increments once in each period of the CPU clock. This reg-
ister provides a time reference. To measure the performance of the
application emulated using the CoP, the time base is read once at the
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start of the application and once at the end. The difference of the two
time values gives the computation time the application. The aim of
the CyCoP platform is that the measurement shows the performance
of the CoP as if it were implemented in the final target technology
and design method. The MW manipulates the time base during the
operation to achieve the correct result. SW debugger tools often make
use of the same mechanism to maintain the semblance of “real time”
operation while a system is being debugged [14, 46].

Furthermore, the MW has to execute the CoP requests of the
application because the real CoP is not available during the emulation.
Given that the real CoP is not available during the emulation, the
CPU will encounter an exception as soon as the application accesses
the CoP. If, for example, the MW is called in place of the exception
handler, then the emulation of the CoP can happen.

The principle of the emulation is then the following:

1. Each CoP request calls the MW.

2. The MW

- determines the CoP request,

- prepares operands,

- and sends the operands with the operation-code (opcode)
to the CoP.

3. The CoP returns the results and execution time to the MW.

4. The MW continues to

- prepare the results for the application

- and to manipulate the time base of the CPU to hide the
emulation time and to calculate the CoP processing time.

5. The application continues.

An application can access a CoP in two different ways. In the first
way, the application uses load/store instructions to access the memory
or the memory-mapped registers of the CoP over the on-chip inter-
connect system. In this case the CoP is mostly of a loosely-coupled
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type. On the other hand, the application can make use of coprocessor-
specific instructions, thus an extension to the original ISA. The task
of the MW is to fetch both kinds of CoP request from the application,
whether it is a load/store instruction or a coprocessor-specific instruc-
tion. This concept is different from the existing methods [44, 45] in
which the SW layer is explicitly called by the SW application during
the emulation. In the latter case, there are two ways to enable the
CoP instruction to call the MW for emulation, all of which belong to
the category of the precise exceptions. A pipelined processor is said
to have precise exceptions, if the pipeline can be stopped so that the
instructions immediately preceding the interrupting instruction are
completed and those after it can be restarted from scratch [47].

The first method is the illegal exception as explained above. An-
other method is to replace the original CoP instruction with an in-
struction that forces a software interrupt, e.g. a system call or a trap,
i.e. a breakpoint. These instructions mainly provide some immedi-
ate operand, i.e. a constant within the instruction itself, in which the
recoded CoP instruction takes place. The corresponding exception
handler then has to be replaced by the MW.

Thus, either the CoP instruction has to be replaced with a specific
MW call for the emulation or the MW will be called instead of an
illegal instruction exception handler. The choice which method is the
best suited depends on several aspects. If there is an OS running on
the CPU, the OS uses the system call for its own purposes. Therefore,
to avoid a modification of the OS for the purpose of emulation, we
avoid this method. Furthermore, if the recoded CoP instruction will
not fit into the immediate field of the system call or trap, we might
decide to use the illegal instruction exception to do the job.

If the CoP has to be accessed with load/store instructions we basi-
cally have the same choice as for the CoP instructions. We either keep
the original instructions or replace them during compilation with an
instruction that forces a software interrupt. If the original instructions
are not replaced the CPU has to provide a specific hardware facility
to monitor the addresses on the on-chip interconnect. When the CPU
accesses the CoP address space, this monitor raises an exception. The
PowerPC family [14], e.g., provides the data address compare (DAC)
debug event with its debugging facilities. In this case the debug event
handler would be replaced by the MW.
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If no such hardware monitor is provided by the CPU, we propose
to replace CoP load/store instructions for our CyCoP platform by a
specific MW call at compilation time. One can still decide whether
this instruction should be a trap or an illegal instruction, if the CPU
provides no debugging functionality at all.

However, these are the only approaches for the new concept of a
MW call. If we replace the CoP instruction, either load/store or spe-
cific, with an ordinary software function call to jump into the MW,
the compiler would generate much more code within the application
to save the current register context and to load the argument regis-
ters. This would influence the application execution time and flow
significantly, and is therefore not a suitable solution for the prototype
platform. Even if we used only a branch instruction to jump into the
MW, we would not get the correct emulation results because a branch
instruction is not precise. This fact is explained in greater detail in
the following chapters.

Replacing the CoP instructions with function calls will change the
size of the application. This has the effect that the original memory
organization of the original software has to be adopted. This con-
tradicts the aim of keeping the original design flow. Furthermore, it
influences the memory and cache behavior tremendously. If the be-
havior of the memory and the cache changes for the emulation, the
prototype can no longer guarantee cycle-accurate results.

Thus, if the MW call or the execution of the MW pollutes the cache
of the CPU, the cycle-accuracy can no longer be guaranteed. Not
only the call but also the execution of the MW must happen without
affecting the cache of the CPU. To avoid the contamination of the
cache, the CPU core has to provide the appropriate memory-managing
hardware. If it is possible to exclude a specific memory region from
being cached then all load, store, and instruction-fetch operations
perform their access in memory, rather than in the respective cache.
Though this slows down MW execution, application execution is no
longer affected.

If the CPU cannot prevent any memory region from being cached,
the MW has to restore the original state of the cache at the end of
its execution. Therefore, it has to flush the contaminated cache lines
and to touch the original memory region so that the corresponding
original cache lines are loaded. This method holds some uncertainties
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and should be avoided whenever possible. In the case of an associative
cache, the content of the individual cache lines can be constructed, but
the state of the replacement scheduler cannot be reconstructed. In an
associative cache, the cache has a choice of where to place the cache
line requested, and hence of which cache line to replace. Therefore, it
uses a replacement scheme like the least recently used (LRU). When
the MW manipulates the content of the cache, it also changes the
state of the replacement scheme, which cannot be reset to the old
state.

2.3 Wrapper

The Wrapper is programmed together with the CoP into the pro-
grammable logic device, like an FPGA. The Wrapper is the counter-
part of the MW for the hardware CoP core. Like the MW, it has to
handle the requests from the application coming over the board-level
interconnect and has to control the timing behavior of the CoP to
guarantee a cycle-accurate emulation.

However, the most important task of the Wrapper is that it stim-
ulates the input signal of the CoP and probes the output signal of
the CoP. Wrappers are well known in the world of HDL designers.
They have the task of simplifying the I/O signals of a core by merging
signals, by converting signals, or even by predefining constant signal
levels or parameters for the core. Moreover, the concept of stimulat-
ing the I/O signal of a core is used by Wrappers known as testbenches
in an HDL simulator [48]. The difference to our proposed Wrapper
is the special control mechanism which we implement in our Wrapper
for the purpose of synchronization. We will discuss this in greater
detail in Chapter 4. Figure 2.3 shows the different modules of the
Wrapper architecture and how they are connected with each other.

The module BusAccessor is the interface to the board-level inter-
connect. It manages communication between the Wrapper and the
CPU. In the real die implementation, this module can be replaced by
another module handling the access to the on-chip interconnect sys-
tem. Thus, the CoP core logic is independent of its environment. The
BusAccessor also connects to the WrapperController module. This
second interface is used to exchange control commands with the MW.
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Figure 2.3: Wrapper Architecture

As the name already implies, the WrapperController controls the
entire Wrapper functionalities and steers the according CoP. The
WrapperController receives the CoP operations and operands from
the MW. These CoP operations are temporarily stored into a specific
buffer, the Command/ResultBuffer, where they wait to be executed
by the CoP core. The MW tells the WrapperController how many
new operands have to be computed by the CoP and triggers the start
of the computation with a specific command. To hold the CoP in a
certain state, the Wrapper uses a clock gate to control the CoP clock.
The controller releases the clock gate and the CoP starts to compute
the new operations. At the same time the controller also starts its own
chronometer to measure the computation duration over all operations.

When the CoP has finished all operations, it stores the results back
into the Command/ResultBuffer. The controller notes the number of
results in the buffer and as soon as it reaches the expected number,
it stops the CoP again by switching off the clock gate. The controller
then notifies the MW that the results are ready to be fetched. Also
the computation time is fetched by the MW so that this time can be
taken into account for the latency in the application.

The Wrapper consists also of a MemoryController, which is an



34 CHAPTER 2. CYCOP

interface to either internal or external memory. In the memory the
controller stores the context of the CoP, which is needed by the syn-
chronization process between application events and CoP events. We
will explain this in greater detail in Chapter 4. In that chapter we
propose a new process synchronization algorithm which makes use of
the context manipulation.

2.4 Design Flow

In the previous sections, we introduced the two modules which enable
the cycle-accurate emulation on the CyCoP platform. For each one of
the modules we need a specific design flow to integrate the modules
into the customer’s designs.

2.4.1 Software Design Flow

Figure 2.4 shows the complete design flow for the software part of
the CyCoP platform. If we ignore for once the part between the
dashed lines, we recognize a standard tool chain for software compila-
tion. For example, this flow represents the GNU Compiler Collection
(GCC) [15].

The custom source codes may be available in two forms. The most
common form is a high-level programming language like C/C++, but
in embedded systems often also assembler is used to program software.
The first step therefore, is to bring all the source code into the same
form. There the assembler language predominates, as it is already
close to the hardware and high-level compilers are able to restore
their Intermediate Representation (IR) in the form of the assembler
language.

As soon as all source codes are available as assembler code, the
design flow starts to deviate from the original one. As we learned in
Section 2.2 the original CoP calls have to be replaced with correspond-
ing MW calls. A Perl script [49] parses all custom assembler codes
to find CoP instructions, which it replaces with the MW calls, e.g. a
trap. The parser script has to be configured accordingly by the user
so that it is able to recognize the right CoP instructions and encode
them in the specific MW call.
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Figure 2.4: SW Compilation Flow

At the same stage of the software design flow, the MW is included
into the design. Regarding the MW, the user has to make sure that
it is placed at the right position in the memory. The MW call is an
exception event which loads the according exception handler. This
handler has to be replaced by the MW code. The MW is highly
hardware-dependent and is therefore in almost every instance a new
design for each CPU type. Only the decoding of the MW call itself
can be automated and is taken over from the parser configuration file.

The following steps of the software design flow are retrieved from
the original flow. All parsed assembler source codes, including the
MW source code, are sent to the assembler, which exports them into
the machine code. After the linker, the individual machine codes
become a single binary of the complete software. This binary file is
then finally executed on the CyCoP platform.
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2.4.2 Hardware Design Flow

Figure 2.5 shows the complete design flow for the FPGA design of the
CyCoP platform. As in the software flow, we recognize that only a
small part of it is different from the standard flow. If we ignore for the
time being the part between the dashed lines, we recognize a standard
tool chain for FPGA synthesis. For example, this flow represents the
Xilinx ISE design flow [50].
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Config−File
FPGA

Config.
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Figure 2.5: HW Synthesis Flow

The CoP can be available in different forms. A core designed “in
house” mainly exists in form of a Hardware Description Language
(HDL), such as VHDL or Verilog. However, licensed IP cores mostly
are not available in HDL for copyright reasons. These IPs are dis-
tributed only in form of a net list. Thus, like in the software flow,
we have to choose an IR layer to make sure that we can handle all
the design elements needed for the prototype simultaneously. As the
synthesis tool exports its output into a net list form we choose the net
list as the IR to manipulate them for the CyCoP platform. The draw-
back of this approach is that almost every synthesis tool vendor has
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its own net list format. However, the Electronic Design Interchange
Format (EDIF) is predominantly used as a neutral net list format.
Only the EDIF format makes the licensing model of IP cores possible.
Therefore, EDIF is the favorite format as the IR layer in the CyCoP
synthesis flow. However, in the current implementation only Xilinx’s
net list format NGC is supported [50].

The Wrapper is available as VHDL code. This simplifies the con-
figuration of the in- and output ports to connect the CoP. Also the
size and depth of the command and result buffers must be specified
by the user, as well as the encoding of the Wrapper requests from the
MW. After the configured Wrapper has been synthesized, all proto-
typing modules are available as a net list.

The CyCoP design flow now enters into its specific stage, where it
diverges from the original one. To achieve full control over the CoP
core by the Wrapper, some modifications are done by a Perl script.
The modifications affect only the sequential logic of the CoP core. As
we learned in Section 2.3, the Wrapper controller steers the clock of
the CoP core. To implement real clock gates in an FPGA design is a
difficult task and requires numerous manual interventions. Therefore,
the Perl script extends a sequential component with a combinatorial
enable signal, which computationally has the same effect as the clock
gate.

Furthermore, the Perl script lines up all memory elements of the
CoP core in several scan-chains. This is done to control the context
of the CoP core. In Chapter 4 we will discuss this in greater detail.

After the manipulation of the net list of the CoP core by the Perl
script, the synthesis flow reenters the original flow. The net lists are
placed on and routed to a specific FPGA device by the PAR tool.
The output of the tool is a Bitfile, which can be downloaded into the
FPGA itself. This is the final configuration file for the FPGA, and
we are now ready to run the CoP with the CyCoP platform.

2.5 Hardware Setup

To show the feasibility of the CyCoP concept, the platform is imple-
mented in real hardware. Figure 2.6 shows the setup used for the
platform. The CyCoP platform is designed to make use of real hard-
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ware components, like a processor chip, combined with programmable
logic devices, like an FPGA. On the right half of the figure we find
a motherboard-like PCB, on which a processor chip is mounted. The
PCB consists further of PCI slots. In one of these slots a PCI card
is plugged in on which an FPGA is mounted. Thus, these are the
components needed by the CyCoP platform. On the left hand of the
figure we find some additional equipment which is not part of the
CyCoP platform, but they are used to monitor and measure the test
runs.
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Figure 2.6: Hardware Setup

2.5.1 The Processor Board

One of the main components is the processor board. This board con-
sists of the processor which has the real CPU core implemented on a
real die. All the evaluated applications are running on this chip. Also
the MW is therefore programmed on this processor.

We used the IBM PowerPC 440GP Evaluation Board [51] for the
purpose to evaluate the feasibility of the CyCoP concept. The IBM
evaluation board is similar to a normal PC motherboard. The board
comprises� a PowerPC 440GP,� 128MB of DDR 266MHz memory,� two Ethernet 10/100Mbps ports,� two RS-232 ports,
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The board-level interconnect is the PCI-X bus which is compatible to
the normal PCI bus. Thus, either PCI-X cards or PCI cards can be
used in the slots.

The main component on the board is the PowerPC 440GP. It
is a 32-bit RISC processor. This processor is a SoC design with a
PowerPC440 core as the main processing unit, which is connected
over an on-chip bus with many peripheral cores. The PowerPC440
core runs at 400MHz and its ISA is a 32-bit implementation of the
Book E Enhanced PowerPC architecture. To enhance the performance
of this embedded processor, its architecture comprises pipelined and
superscalar operation and large L1 caches.

An important advantage of the PowerPC 440GP is that there are
8 KB of on-chip SRAM connected to the on-chip bus. The Middleware
(MW) has to be implemented into a cache inhibited memory region
which reduces the execution performance of the MW drastically. As
on-chip memory can be accessed faster than off-chip memory, the
performance penalty can be reduced by storing the MW in this on-
chip memory.

The Ethernet and serial port of the evaluation board are used
to monitor the outputs of the prototype system. The board has no
possibility to connect neither a display nor a keyboard, therefore, all
in- and outputs are made over these ports.

2.5.2 The FPGA PCI-Board

The CoP system of the CyCoP platform is implemented in program-
mable logic devices which are connected over the board-level intercon-
nect to the CPU. As the IBM evaluation board provides a PCI-X bus,
the CoP system consists of a PCI card mounting an FPGA. At the
beginning of the project we only used the Spyder-Virtex-X2E FPGA
prototyping board [52] (see Figure 2.7) to implement the CoP system.

The FPGA on the Spyder board can be arbitrarily configured,
enabling the implementation of any application-specific extension for
the PowerPC core. The board comprises� a Xilinx Virtex-Series FPGA device XCV800,
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Figure 2.7: Spyder FPGA Board� 8 Mb of SRAM memory,� and a dedicated PCI bus arbiter PLX9080.

The FPGA consists of 800K of equivalent gate logic and runs at
40MHz. Thus, an implemented CoP core on this FPGA runs ten
times slower than the CPU core. The FPGA is indirectly connected
to the PCI bus. Thus, the BusAccessor in the Wrapper of the CoP
system does not consist of the PCI protocol which is rather complex
and therefore space consuming in an FPGA. The actual PCI protocol
is executed by the PLX9080 which is a PCI bus arbiter. This arbiter
acts as a bridge between the PCI bus and a local board bus. The local
bus is much simpler in its architecture and fits therefore well into the
FPGA in place of the BusAccessor of the Wrapper. A drawback by
using the arbiter is that it introduces additional delay on the PCI bus
access, which reduces the overall performance of the CyCoP platform.

The Spyder board only consists of volatile memory, therefore, on
every power-up of the system the board has to be reconfigured with
the CoP core and the Wrapper. The configuration is done over the
PCI bus by the MW. Thus, the software driver of the MW must be
able to configure the FPGA over the PCI bus. The introduced latency
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can be ignored as the configuration happens only once at the startup
of the platform.

A bigger problem of the Spyder board is that it comprises an
outdated FPGA device. For most modern CoP cores the FPGA is
too small. Therefore, a second PCI board is added to the project.
The second board is from Amirix and is called AP130 platform FPGA
development board [53] (see Figure 2.8). The board comprises� a Xilinx Virtex-II Pro FPGA device XC2VP30,� 64MB of DDR memory,� 4MB of Flash memory,� a dedicated PCI bus arbiter PLX9056,� and a non-transparent Intel PCI-PCI bridge 21555.

Figure 2.8: Amirix FPGA Board

This board has the advantage that it comprises non-volatile memory
where the FPGA configuration can be stored. The FPGA config-
uration is programmed only once and is available afterwards after
every power-up. Also the FPGA has higher capacity than the one on
the Spyder board. The Virtex-II Pro series also consist of embedded
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PowerPC405 cores. However, they are unused for this project as the
PowerPC405 is significantly different from the PowerPC440. Due to
the more modern process technology the FPGA can also be faster
clocked. The Virtex-II Pro is running at 100MHz.

The drawback of this board, however, is that the board comprises
two bridges to access the host PCI bus from the FPGA. Like on the
Spyder board, these bridges introduce additional delay on the PCI bus
access. The impact of this delay is discussed in detail in Chapter 5.

2.5.3 The Monitor Equipment

The IBM evaluation board provides no ports to attach a display or a
keyboard. In order to provide the user a terminal to interact with the
prototype, an additional PC is used. On this PC a terminal program
is configured to communicate with the PowerPC 440GP over a serial
port. At runtime the application’s terminal output, like a printf,
can be monitored at the PC.

At the power-up of the PowerPC 440GP boots with a program
called U-Boot [54]. This boot-loader provides the user with basic
functions to control the PowerPC 440GP. For example, binary files
can be downloaded into the evaluation board memory per TFTP.
Afterwards the boot-loader jumps to the address of the downloaded
binary and user application is executed. Thus, the Ethernet port of
the evaluation board is used to download binary files to the memory.

In Figure 2.6 we find additional equipment which is connected
to the IBM evaluation board. The RISCWatch [55] is a hardware
and software development tool for the PowerPC family. The source-
level debugger and processor-control features provide the user with
the tools needed to develop and debug hardware and software quickly
and efficiently. With the RISCWatch the complete internal state of
the PowerPC 440GP can be monitored and manipulated. This part
of the equipment actually is a feature, but the CyCoP platform also
works without it.
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2.6 Summary

In this chapter we introduced the CyCoP platform, which enables
cycle-accurate emulation of a coprocessor with its processor. The
concept of the platform is hardware-independent and can be adapted
to any hardware environment. Only two modules are needed to en-
able the emulation. The Middleware resists on the same CPU as the
software application. The Middleware offers the application to access
the prototyped coprocessor as if it already resided on the same die.
Furthermore, the Middleware hides any latency introduced by the pro-
totype from the application and simulates a real-time environment for
the application.

The Wrapper is the counterpart of the Middleware for the copro-
cessor core. All coprocessor requests that the Middleware fetches from
the application are sent from the Middleware through the Wrapper to
the coprocessor core. The Wrapper controls the coprocessor core so
that the core only runs when requests are present. The Wrapper also
counts the computation cycles of each request to provide the Middle-
ware with the time. The Middleware is then able to take this time
into account for the application run time.

Subsequent chapters describe the implementation of the platform
for the two coprocessor classes, namely, the loosely- and tightly-coupled
coprocessors. The implementation details are kept as general as pos-
sible and independent of the underlying hardware setup. However,
certain implementation details are specific to the hardware used and
emphasized as such.





Chapter 3

Tightly-Coupled
Coprocessors

In the previous chapter we introduced the concept of the CyCoP plat-
form and the details of its architecture. We learned in Section 1.2
that the coprocessors (CoP) can be divided into two main categories;
tightly- and loosely-coupled once. This chapter handles the imple-
mentation details of the CyCoP platform for the tightly-coupled CoPs
(TC-CoP).

In principle the task of verifying a TC-CoP demands only to sim-
ulate or emulate the new instruction-set architecture (ISA) of the
processor. Many solutions to this task are already available and in
Section 3.1.1 we briefly describe the advantages and the drawbacks of
these solutions. In Section 3.1.2 we face the challenges of the CyCoP
approach, which originate from the modern processor architecture.

With the solution introduced by the CyCoP platform we overcome
the drawbacks of the other solutions. Section 3.2 introduces the con-
cept of replacing original CoP instructions with MW calls applicable
for the CyCoP platform.

To analyze the capabilities of the MW call concept we sum up in
Section 3.3.1 the emulation latencies and overhead. With the findings
of Section 3.1.2 we examine in Section 3.3.2 the emulation accuracy
of the CyCoP platform emulating TC-CoPs. This leads us to the
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limitations of the platform which we discuss in Section 3.4.
In the previous chapter we consciously omitted certain details

about the Middleware (MW) and the Wrapper. In Section 3.5 we
describe the details of the MW and Wrapper relevant for the TC-
CoP emulation, which were omitted in the previous chapter. The last
section of this chapter summarizes the findings and concludes this
chapter.

3.1 State of the Art

3.1.1 Related Work

For the verification of a new ISA many tools and techniques already
exists. In this section we list only the ones which have the capabil-
ity to cycle-accurately emulate or simulate the target system. We
briefly describe the method with their strength and their drawbacks
regarding the co-verification.

Simulators

Instruction-Set Simulators (ISS) mimic the behavior of software ap-
plication on a target processor, running on a host computer. These
simulators should be fast to handle the increasing complexity of pro-
cessors, flexible to handle all features of applications and processors,
e.g. runtime self-modifying codes, multi-mode processors; and retar-
getable to support a wide spectrum of architectures. Although in the
past years, performance has been the most important quality measure
for the ISA simulators, retargetability is now an important concern,
particularly in the area of embedded systems and SoC designs.

The ISSs perform up to a few tens of MIPS on a desktop PC [56].
As the processor models for these simulators are simplified to improve
simulation performance, such the simulators do not indicate exactly
the performance of future processor. Furthermore, the software ap-
plication has to be adapted to the simplified processor model and the
simulator environment. Some ISS even only emulate the behavior of
the instruction without any details of the actual processor architec-
ture [57]. Even so the simulators allow decent software verification;
the verification of the hardware core is ignored with this method.
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Co-Simulators

Co-simulators combine an ISS with an HDL simulator [58]. This pro-
vides the possibility to emulate the CoP at the Register-Transfer Level
(RTL). Such a co-simulator is significantly slower than a single ISS,
as the level of simulation details is high in an HDL model. Because
of the many events necessary to simulate the software operations, this
level of simulation needs to be fast. Thus, the models are required to
be high-level [1]. The co-simulator has therefore, only one advantage
over the ISS, that it also simulates the hardware.

FPGA Emulators

Many designers choose programmable logic devices, e.g. FPGAs, as
an alternative prototype platform to implement the entire proces-
sor [59, 60, 61]. This has the advantage that software and hardware
can be verified at the same time. Furthermore, modern FPGA allow
clock frequencies of several 100MHz, which provide a good emulation
performance. Configurable and extensible processors like the Xtensa
from Tensilica [62] are soft-core processors and therefore they can be
compiled into an FPGA.

Hard-core extensible processors are highly optimized on the gate
level as well as on the architecture level. As the use of the FPGA
is limited by the number of Configurable Logic Blocks (CLBs) and
the routing capability, it is difficult to implement the processor with
all its functionalities in the FPGA without simplification of the core.
Furthermore, the vendors of hard-core extensible processors do not
grant any access to their processor net lists. Therefore, the use of an
FPGA emulator is limited to the available processor net lists.

3.1.2 Processor Characteristics

Modern processor architectures are highly optimized. These architec-
ture optimizations affect the instruction flow of the code sequence.
The following subsections introduce the main optimizations concepts
and describe how they affect the emulation accuracy of the CyCoP
platform.
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Pipelining

Today’s processors are all pipelined in order to enhance their instruc-
tion throughput and clock frequency. For instance the processor in
Figure 3.1 has a five-stage pipeline. Thus, up to five instructions are
being executed simultaneously. Also the data path extension, caused
by the TC-CoP, can be pipelined.

Dec.

Dec.
CoP

D−$
I−$

GPR

WBMEMEXIDIF

SPRCoprocessor

Processor

Figure 3.1: Pipelined Processor with a CoP

The CyCoP concept denotes that it makes use of the original CPU
core for the emulation. Thus, the instructions of the original ISA are
perfectly pipelined on the platform. A sequence of original instruc-
tions is perfectly “emulated”. To achieve the same perfect emulation
for a CoP instruction sequence the MW has to parse after the call at
the address of the caller instruction whether other CoP instructions
are following. If so, the MW has to send them all to the CoP to-
gether. The wrapper stores them in the sequence of their arrival and
issues them into the CoP itself. The CoP executes the instructions in
a pipelined manner. Thus, the emulation is also perfect.

However, the situation changes if either of the sequences is inter-
rupted by the other type of instructions. Let us assume we have the
example five-stage processor of Figure 3.1 with an integer multiply-
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accumulate (MAC) CoP and the following code is executed:

add r7, r3, r4; /* r7 = r3 + r4 */

sub r5, r3, r4; /* r5 = r4 - r3 */

madd r8, r5, r7; /* r8 = r8 + (r5 · r7) */

In every cycle one instruction is issued into the pipeline, starting with
the addition. After the subtraction is issued, the MAC instruction
(madd) will follow in the next cycle. As both operands for the MAC
operation have not been yet computed at this point in time this in-
struction cannot be issued. The instruction will not issue until both
operands are available. In such a case with a data hazard [47] between
a CoP instruction and a processor instruction, the time to wait for
the operands of the CoP instruction is not constant.

To emulate the issue time of a CoP instruction after a processor
instruction correctly, the MW needs to know the exact state of the
processor. As the MW is running on the processor itself, it is not
able to determine the exact state of the processor. The MW call
must ensure that all instructions that are issued into the CoP have
no data hazard any more. All processor instructions have to commit,
i.e. that all results are safe. Therefore, the MW call has to be a precise
exception.

Thus, the data hazards and their influence on the instruction
throughput are perfectly emulated among instructions sequences of
the same type—original or CoP. For accurate emulation between the
two types further measures have to be taken.

Instruction-Level Parallelism

Instruction-level parallelism (ILP) is a further method to enhance the
performance of a processor [47]. It exploits possible parallelism among
instructions. A processor which consists of several execution pipelines
has the ability to execute multiple instructions in the same pipeline
stage simultaneously. For example the processor in Figure 3.1 actually
has two execution pipelines in parallel. Therefore, it is theoretically
possible for the processor to issue one original and one CoP instruc-
tion concurrently. The processor core could, of course, have even more
execution pipelines than only one. This requires that at the Instruc-
tion Fetch (IF) stage of the processor more the one instruction can
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be fetched at once. The Instruction Decode (ID) stage decides how
many and where the instructions are issued. Such architectures are
called a superscalar processor [47].

The parallelism between an original instruction-flow is perfectly
explored as the application runs on the real processor. If the MW
explores after a call the subsequent instructions as well, it can provide
a CoP with multiple execution pipelines also with more than only one
CoP instruction at once. Therefore, also the parallelism between a
CoP instruction-flow is explored perfectly. However, the problem is
again up to the instruction type transition. To emulate the issue time
of a CoP instruction after an original instruction correctly, the MW
needs to know the exact state of the processor. As the MW is running
on the processor itself, it is not able to determine the exact state of
the processor.

For the CyCoP platform, the question is whether the processor
core provides a separate issue port for the CoP. As these issue ports
are expensive area-wise, the core usually only has issue ports for
the original execution pipelines—the CoP has to share one with a
processor-specific execution pipeline.

Flow Control Instructions

Flow control instructions are instructions that influence the execution
flow of an application. In a C-program, e.g., the if-statement or
the goto-statement are flow control instructions. When the execution
reaches these points in the source code, the next instruction to be
executed is out of the old instruction sequence.

The conditional branches are a challenge to improve the perfor-
mance of pipelined processors. The execution of the condition, e.g. a
compare operation, might be still in execution when the branch in-
struction is issued. The problem is that the processor cannot calculate
the address for the next instruction until it knows whether the branch
has to be taken or not. Therefore, the processor tries to predict the
outcome of the condition computation [47]. These processors start to
execute the following instructions even though it might be wrong. If
it turns out that the processor did predict wrongly, the current results
have to be deleted, i.e. the pipeline has to be flushed.
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3.2 The Middleware Call

In Chapter 2 we discussed the principals of the CyCoP platform. The
MW enables the use of the TC-CoP in the CyCoP platform for the
application. The MW has to execute the CoP requests of the applica-
tion because the real TC-CoP is not available during the emulation.
For example, we assume an application that performs floating-point
calculations on a TC-CoP. If the application is written in C, typical
statements performing floating-point and integer calculation are

float fx, fy;

int ix, iy;

ix = iy + ix;

fx = fy * fx;

This compiles as the following sequence of PowerPC assembly instruc-
tions:

add r4, r3, r4; /* integer addition */

fmul f7, f8, f7; /* float multiplication */

Given that the real TC-CoP is not available during the emulation,
the CPU will encounter an illegal instruction at the fmul instruction.
Thus, the CPU generates an illegal instruction exception because it
will not recognize the opcode of the CoP instruction. If, e.g., the MW
is called in place of the illegal instruction exception handler, then
the emulation of the CoP can happen. Thus, the task of the MW is
to fetch coprocessor-specific instructions from the application and to
execute them for the emulation environment.

There are two ways to enable the CoP instruction to call the MW
for emulation, all of which belong to the category of the precise excep-
tions. A pipelined processor is said to have precise exceptions, if the
pipeline can be stopped so that the instructions just before the inter-
rupting instruction are completed and those after it can be restarted
from scratch [47].

The first method is the illegal exception as explained above. An-
other method is to replace the original CoP instruction with an in-
struction that forces a software interrupt, e.g. a system call or a trap,
i.e. a breakpoint. These instructions mainly provide some immedi-
ate operand, i.e. a constant within the instruction itself, in which the
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recoded CoP instruction takes place. The corresponding exception
handler then has to be replaced by the MW.

Thus, either the CoP instruction has to be replaced with a specific
MW call for the emulation or the MW will be called instead of an
illegal instruction exception handler. The choice which method is the
best suited depends on several aspects. If there is an OS running on
the CPU, the OS uses the system call for its own purposes. Therefore,
to avoid a modification of the OS for the purpose of emulation, we
avoid this method. Furthermore, if the re-encoded CoP instruction
will not fit into the immediate field of the system call or trap, we
might come to the decision to use the illegal instruction exception to
do the job.

If we would replace the CoP instruction with an ordinary soft-
ware function call to jump into the MW, the compiler would generate
much more code within the application to save the current register
context and to load the argument registers. This would influence the
application execution time and flow significantly, and is therefore not
a suitable solution for the prototype platform. Even if we used only
a branch instruction to jump into the MW, we would not get the
correct emulation results because a branch instruction is not precise.
This fact is explained in greater details in the following chapters.

By replacing the CoP instructions with function calls the size of
the application will be changed. This has the effect that the original
memory organization of the original software has to be adopted. This
contradicts with the claim to keep the original design flow. Further-
more, this influences the memory and cache behavior tremendously.
If the behavior of the memory and the cache changes in for the emula-
tion, the prototype cannot guarantee cycle-accurate results anymore.

3.3 Analysis

3.3.1 Emulation Performance

To be able to compare the CyCoP approach of emulating instruction-
set extensions with the methods described in Section 3.1.1, we have
to analyze the possible emulation performance of the CyCoP. During
emulation, the latencies introduced by the prototyping environment
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is hidden from the application. However, to estimate the performance
of the CyCoP platform itself, these latencies must be known.

The principle of the emulation in the point of view of latencies is
the following:

1. Emulation is setup at power up.

2. Each CoP instruction rises a precise exception.

3. The MW decodes the CoP instruction and sends the operands
with the opcode to the wrapper over the PCI bus.

4. The Wrapper runs the CoP and returns the results and execu-
tion time to the MW.

5. The MW prepares the results and returns to the application.

In Figure 3.2 the sequence of the listing is shown graphically and
tagged with a variable which will be discussed later in this section. As
we can see, the application and the coprocessor runtime of the future
architecture is delayed in the emulation by the MW and Wrapper
execution time.
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MW C
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C
Wrapper
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Wrapper
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Figure 3.2: Emulation Timing Sequence

The total runtime of the emulation TEm can be expressed with the
following equation:

TEm = CSetup + TApp + CEm (3.1)

The sum includes the constant setup time CSetup of the emulation,
the runtime of the application on the target system, consisting of
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the CPU and the CoP, TApp and the emulation latency CEm. In the
list above the points 2–5 represent in detail the emulation latency.
For the further analysis the terms time and latency are defined as a
number of clock cycles of the CPU. Thus, all the measurements are
made relatively to the clock cycles of the CPU even when performed
elsewhere in the system.

Point two of the listing represents the trap latency CTrap which
consists of two parts. The first part comes again from the fact that
the trap is a precise exception, thus the trap “waits” for all older
instructions to commit. The number cycles the MW has to wait is
expressed with the variable EMWCall. We will discuss this in greater
detail in Section 3.3.2. The second part is the time the processor
needs to actually execute an exception, TIRQ. The total trap latency
is the sum of these two parts multiplied by the number of MW calls
nMWCall:

CTrap = nMWCall · (EMWCall + TIRQ) (3.2)

Point three in the list describes the actual execution of the MW and
the data transfer over the PCI bus. It is similar to the point four
where the execution time of the Wrapper has to be taken instead of
the MW. The execution time of the MW TMW is constant for all CoP
instructions nCoP and as the MW parses the source for subsequent
CoP instructions this time counts for all CoP instructions executed
by the application. The fact that the MW is executed of a cache
inhibited memory region only slows down TMW.

CMW = nCoP · TMW (3.3)

The PCI transfer time CPCI depends on the bandwidth of the bus
and the amount of data to be transferred. For every CoP instruction
(nCoP) two words has to be transferred; one for the request and one
for the result. For every MW call (nMWCall) two additional control
words are needed for the Wrapper controller.

CPCI =
(nMWCall + nCoP) · 2 · words

PCIBandwidth
(3.4)

The Wrapper has only a small fixed amount of FPGA cycles k of
overhead every time it is call. Since the k cycles are executed within
the FPGA we have to take the frequency ratio between the FPGA
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fFPGA and the CPU fCPU into account. The number of Wrapper calls
is equal to the number of MW call nMWCall. For the total Wrapper
overhead CWrapper the following equation can be written:

CWrapper = nMWCall · k ·
fCPU

fFPGA

(3.5)

Summing all up the following equation results from all emulation la-
tency:

CEm = CTrap + CMW + CPCI + CWrapper (3.6)

In Chapter 5 we will get real numbers for the individual latencies and
can quantify them.

3.3.2 Emulation Accuracy

In Section 3.1.2 we pointed out some architectural specialties of mod-
ern processors. These characteristics highly affect the execution be-
havior of the source code. On CyCoP this behavior is exactly modeled
for instruction sequences of the same type; either original or CoP in-
structions. However, at the transition from one type to the other
CyCoP we need some additional information about the internal state
of all pipeline registers of the processor, to extract the real issue time
of the CoP instruction or vice versa. In this section we express the in-
troduced emulation inaccuracy of the CyCoP platform by using only
precise exception as the MW call without further arrangements.

Instruction-Level Parallelism and Pipelining

In case of a superscalar architecture the processor may issue CoP
instructions in parallel to the original instruction set. We take the
following pseudo-code of intermixed assembler instructions of original
instruction set and CoP instruction set as a simple example and map
it onto a architecture model:

cpu 0; /* processor’s original instruction */

cpu 1;

cop 0; /* coprocessor instruction */

cop 1;

cop 2;
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cpu 2;

cpu 3;

This could be mapped on an abstract example architecture like the
one shown in Figure 3.3. The figure only shows the issue unit with two
ports for the original instructions (nCPUport = 2) and two dedicated
for the CoP instructions (nCoPport = 2) and the according execution
pipelines.

4
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cycle
CoP issue CPU issue

cop_2
cop_1cop_0 cpu_0 cpu_1

cpu_2
cpu_3

Figure 3.3: Exploiting the full ILP

We see that this instruction sequence could be executed back to
back and would take three cycles, not comprising the execution latency
of the pipeline. If we map the same instruction sequence on the CyCoP
platform, the execution would virtually look as pictured in Figure 3.4.
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Figure 3.4: Emulated Coprocessor ILP

Additional cycles are introduced in the emulation. The emulator
hides the latencies of the emulator platform and accurately performs
the execution of the instruction sequences within the CPU and the
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CoP. In this figure we can quantify the number of cycles (EILP) that
the emulated run time differs from the actual one, depending on the
number of dedicated CoP issue ports nCoPport. EILP is again propor-
tional to the number of MW calls nMWCall:

EILP =

{

2 · nMWCall if nCoPport > 0

0 else
(3.7)

However the picture in Figure 3.3 could show also a slightly differ-
ent situation, in case there would be a data dependency between that
CPU instruction cpu 1 and the CoP instruction cop 0, so-called data
hazard. The execution of the CoP instruction would be delayed until
the data is ready from the previous instruction. Then the Figure 3.4
would show a too little number of delayed cycles. If the CPU instruc-
tion is of an arithmetic type the delay between the two instructions
can be quantified with the length of the execution pipeline of the CPU
instruction nCPUpipe.

In case the CPU instruction is of a load type, causing a data hazard
with the following CoP instruction, the delay depends on the latency
of the data to be transferred from its source (e.g. external memory)
to the internal register. This number is very system specific but can
be quantified as well, since the source and its latency is known. For
memory accesses we have to distinguish between a cache miss (nmiss)
or hit (nhit) to model the latency and for other external sources a
fixed bus latency (nbus) can be modeled.

However, the MW call “waits” until all instructions, which are
issued previously into the individual execution pipelines, are finished
with execution. Only after all instructions have committed, the MW is
called and the application time is stopped by the MW. If any of these
instructions trigger a data hazard on the following CoP instruction,
this CoP instruction would have to wait for the previous instruction
to commit as well. Therefore, the emulation behaves exactly the same
as in the future architecture. No inaccuracy in the cycle-behavior of
the emulation appears.

For an instruction sequence without any data hazards between the
CPU instruction and the CoP instruction, the stopping of the time
happens too late, as the CoP instructions in the final architecture do
not wait for all instructions in the pipelines to commit. To quantify the
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number of inaccurate emulated cycles (EMWCall) the same numbers
are taken into account as already estimated for the data hazard case:

EMWCall =



















nCPUpipe − 1 if arithmetic CPU instruction

nhit − 1 if memory cache hit

nmiss − 1 if memory cache miss

nbus − 1 else

(3.8)

We need the same discussion on the transition from the CoP instruc-
tions to the CPU instructions. From a theoretical standpoint all eval-
uated architectural details about the opposite transition are here true
as well. The Wrapper waits until all instructions, which are issued
into the CoP, are finished with execution before it sends it back to
the MW. In case of a data hazard between the CoP and the CPU
instruction the behavior would be expected to be correctly reflected.
This is true for the arithmetic types, however, the load latency has
to be performed and measured on the CPU side and sent to the CoP
together with the actual request and the loaded value. The Wrapper
takes this number into account for the emulation of the load instruc-
tion.

For the non-hazard case we quantify the number of inaccurate
emulated cycles (EWrapper) the same way as already done for CPU.
The only change is the number of pipeline depth, which now is equal
to the CoP execution pipeline depth:

EWrapper =



















nCoPpipe − 1 if arithmetic CoP instruction

nhit − 1 if memory cache hit

nmiss − 1 if memory cache miss

nbus − 1 else

(3.9)

The MW can detect any kind of data hazards between the CPU and
CoP instructions and vice-versa. At a data hazard only the inaccuracy
EILP is taken into account for the final time base manipulation, the
rest of the measurement already show the correct cycle times. If
there is no data hazard, either way, the MW has to trace at least
⌈IPC⌉ (Instructions Per Cycle) —since the time base for the analysis
is the CPU clock, the IPC turns into a number without a unit—
instructions from either the CPU or the CoP instruction trace to
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find the most lasting instruction and pick the according EMWCall or
EWrapper. With that a very high accuracy also in the emulated run
time can be achieved and the error can be quantified at the end of the
run time.

Flow Control Instructions

As the MW call is also issued in the processor core, it will be predicted
in the same way as any other instruction and there will be therefore no
difference between emulation and future CoP instructions behavior.
However, as we use a precise exception for the MW call, the CoP
never has to be flushed: The prediction of a processor instruction will
never affect the emulated CoP, even though the MW call behaves in
an accurate way within the processor itself.

3.4 Limitations

In the section above we discussed the sources of inaccuracy for the
CyCoP method of emulating instruction-set extensions. These inac-
curacies can only be eliminated if the MW knows the entire internal
state of the processor core. With this information it would be possible
to calculate the exact issue time of the CoP instruction and manipu-
late the processor time base accordingly.

There are processors, such as the PowerPC 440GP [14], which are
able to trace the running code in real time. This tracer would pro-
vide the kind of information CyCoP needs to emulate the CoP 100%
cycle-accurate. However, the emulation time would then increase sig-
nificantly because at every MW call, the entire trace would have to
be read and analyzed. Hence, in our first implementation we omitted
the tracer method.

A more general solution to this problem is the following. In Chap-
ter 2 we learned that in the software design flow the original source
code is parsed to replace CoP instructions with MW calls. If this
parser checks also how many instructions are executed simultaneously
in the processor before the transition happens, the parser can estimate
the “waiting” time of the MW call for all instructions to commit. This
estimation can be encoded together with the rest into the MW call
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and the MW takes this time into account for the emulation. With
this method the introduced emulation inaccuracy is reduced. How-
ever, effects like a cache miss for instructions or for data are ignored.
Nevertheless, this solution clearly enhances the emulation accuracy.

3.5 Implementation

In Chapter 2 we gave an overview of the concept of the CyCoP plat-
form. This section describes in greater details how the MW and
the Wrapper are adapted to our hardware setup, to emulate tightly-
coupled CoPs.

3.5.1 Middleware

As MW call we used the trap instruction, thus the MW replaces the
debug interrupt handler. Using trap instructions within the PowerPC
has a great advantage: to maintain the semblance of “real time” op-
eration while an application is being debugged, the PowerPC trap in-
struction automatically stops incrementing the time base for as long
the debug event bit is set. This greatly facilitates the cycle measure-
ment.

The time-base value at the end of a MW call is calculated with
the equation

tBase = tBase + CoPCycles ·
fCPU

fCoP

− tTrap (3.10)

The CoP execution time CoPCycles is multiplied with the ratio of the
frequencies. For the CoP frequency the target frequency of the future
architecture is taken. The product is added to the current time-base
value. Furthermore, the exception execution of the trap call takes a
constant time, which we have to subtract from the new time. The
trap instruction needs a constant time to stop the time-base register.

The PowerPC trap instruction twi provides a 23-bit immediate
operand. This provides sufficient space for our implementation to
encode the CoP instructions, e.g. we used eight bits for the CoP
opcode and five bits for three operand register. Thus, we can encode
28 = 256 instructions and address 25 = 32 registers.
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Normally, application code is stored in cached external SDRAM.
Calling the MW from there causes its code to be loaded into the in-
struction cache. Therefore, when the application continues, the cache
content has changed, which influences the further execution time of
the application. Owing to the cache architecture and the necessary
flexibility of the MW, it is difficult to predict how the instruction
cache will be modified and what the impact on the application will
be.

An easy solution is to disable caching of the MW’s memory page.
However, this increases the emulation time, because every instruction
is fetched from uncached external SDRAM, which has much higher
access latency than the cache. The PowerPC 440GP provides a fast,
on-chip 8 kB SRAM. Thus, the MW code is placed into this on-chip
memory and the caching is inhibited for this address space.

Also the MW stack is placed within the on-chip memory region.
Accordingly, also data cache is inhibited during the MW execution and
avoids “contamination” of the data cache of the application. However,
to provide a realistic emulation, there might be CoP load and store
instructions that actually have to contaminate the data cache of the
application.

A big part from all instructions of an application is load/store
instructions, as the operations must be provided with operands which
are mainly located in the external SDRAM. Thus, a major part of
the processor performance depends on the memory access delay. By
the introduction of data caches the memory delay has been reduced
significantly. A data located within the cache is accessed in a single
cycle. However, if the data is not located within the cache, the bigger
the penalty is.

To provide a realistic emulation, the CoP load/store instructions
have to contaminate the data cache of the application. On the one
hand the CoP data are faster accessed, but on the other hand valuable
cache space is occupied. To properly emulate the external memory
access time, the CoP load/store instructions are not directly replaced
by a trap instruction, but by a load/store instruction of the proces-
sor core. Thus, the memory access is done with a General-Purpose
Register (GPR). This is performed in real time.

However, if the compiler does not schedule already at compile time
a GPR to store the CoP data, the content of the GPR has to be tem-
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porarily stored somewhere else. If the original GPR content is store
temporarily into the MW stack, this would create significant artifi-
cial latency within the application execution time. Thus, the original
content has to be moved into another register within the processor.
The link register could be one possible target, because its content is
automatically stored in the procedure stack by the compiler. Some
processors like the PowerPC provides some additional registers in the
processor core that are never allocated by a compiler. Therefore,
these registers are predestinated to temporarily store the content of
the GPR. For example, the PowerPC single-precision floating-point
load instruction

lfs FRT, D(RA); /*load content at D+RA into FRT*/

is replaced by

mtsprg SPRX, RX; /* move RX to SPRX */

lwz RX, D(RA); /* load into RX */

twi <lfs FRT, RX>; /* trap call */

The PowerPC instruction mtsprg moves the content of the GPR RX

into the special-purpose register SPRX. This special-purpose register
is specific for the PowerPC architecture. The integer load instruction
lwz then gets the memory content at the address D+RA and stores
it into the GPR RX. After performing the load in real time the MW
is called with the trap instruction twi. The immediate field of this
instruction tells the MW that a CoP load has been performed and
that the value is stored into the GPR RX. The MW has to restore the
original content of the GPR RX and sends the loaded CoP value into
the designated CoP register FRT.

The move instruction introduces for every CoP load/store instruc-
tion within the application, nCoPLS, an additional latency which ap-
pears only in the emulation. Due to this additional latency the overall
emulation latency would increase by

ECoPLS = nCoPLS · tRegMV (3.11)

Where tRegMV represents the number of cycles the move instruction
takes. Fortunately, the move instruction is performed in constant time
and can be taken into account by an appropriately manipulating the
time base of the processor.
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3.5.2 Wrapper

The Wrapper provides the specific processor interface for the CoP.
To emulate the CoP pipelining or superscalar capabilities, a series of
instructions and operands are processed in consecutive cycles. As we
cannot reliably transfer instructions from the processor to the FPGA
in each clock cycle, the Wrapper buffers them first. When the CoP
has computed the results, these are stored back into that buffer (refer
to Figure 2.3).

The Figure 3.5 shows a simplified block diagram of the Wrap-
per. It only shows in detail the wiring between the CoP core and the
command and result buffer of Figure 2.3. This simplification assists to
better understand the mechanism between the CoP and the command
and result buffer.

W/R_en Data_w

Adr_w

Adr_r Data_r
+1

+1

Result CommitNextInstr

Issue Operand

Coprocessor RAM

Figure 3.5: Coprocessor Access to the Command and Result Buffer

The main core of the command and result buffer is a dual-port
RAM, with one write and one read port. The address pointers of the
individual ports (Adr w and Adr r) can be incremented automatically
with some steer signals. The WrapperControl (refer to Figure 2.3) is
responsible that these address pointers are set at the right position
every time the controller restarts the CoP core.

The CoP consists of five port signals. The Result and Operand
ports are the main data in- and output of the CoP. The other three
signals Issue, NextInstr, and Commit are handshake signals for the
data ports. If data is valid at the Result port, the CoP rises the Com-
mit signal. This signal automatically enables the write port of the
RAM and the result data is stored at a predefined position. Further-
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more, the Commit signal triggers the address pointer of the write port
to increment. Thus, the next result data will be stored in the next
higher address position within the RAM.

The Issue signal notifies the CoP that a new instruction is ready
for execution at the Operand port. The Issue signal increments also
the address pointer of read port of the RAM. Thus, in the next read
cycle the next operand is read from the RAM. As soon as the CoP is
ready for a new operand, it raises the NextInstr signal. This signal
is actually the same signal as the Issue signal. Thus, if the CoP core
is ready for the next operand it issues itself a new operand from the
RAM. It is up to the WrapperControl to ensure that as soon as all
operands are read from the buffer, that the Issue signal is disabled
and as soon as the last result is committed it switches off the clock
for the whole CoP core (refer to Figure 2.3).

3.6 Conclusions

In this chapter we presented how the CyCoP platform emulates a
tightly-coupled CoP. Compared with the conventional tools, like the
simulator or the co-simulator, CyCoP enables more emulation perfor-
mance on the highest possible hardware accuracy which allows the
designer to efficiently verify hardware/software co-design. Further-
more, the software runs already on real hardware. With CyCoP the
designer is independent of processor vendors to provide him the net
list, which he can integrate into an FPGA emulator.

A significant advantage of the CyCoP platform is that the ap-
plication runs on the real processor and can therefore stay unmodi-
fied. Instruction sequences of the same type, either original or CoP
instructions, are perfectly emulated and result in real run time behav-
ior. The emulation of the transition in-between these two instructions
types is affected by the processor specific architectural optimizations.
Pipelined and superscalar processors introduce an inaccuracy in to
the CyCoP platform. However, we can quantify the error, in order
that the designer can take this error of measurement into account.

This chapter also introduces solutions to minimize the error of
measurement in the CyCoP platform. The general solution requires
only a small extension in the software design flow, but it does not
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neglect the whole error of measurement. The second solution requires
additional hardware equipment and special processor support, which
is available for only a selection of processor types. With this hardware
support a 100% cycle-accurate emulation is possible, but it slows down
the emulation performance.

In Section 3.3.1 we identified the emulation overhead. The indi-
vidual elements, which are responsible for the overhead, are hardware
specific and we quantify them in Chapter 5.





Chapter 4

Loosely-Coupled
Coprocessors

In the previous Chapter 3 we handled the tightly-coupled coprocessors
(CoP) and how they are realized in CyCoP. This chapter addresses
the category of the loosely-coupled CoPs.

As we learned in Section 1.2, loosely-coupled CoPs can run fully
independent to the CPU. As the processes are running either on the
CPU or on the CoP causal event ordering is required to provide cycle-
accurate emulation. Section 4.1 introduces the process synchroniza-
tion and describes the problem that has to be solved to successfully
emulate loosely-coupled CoPs. Known methods for the synchroniza-
tion problem are evaluated in Section 4.2. This section points out the
limits of the methods to use them in a hardware prototyping environ-
ment.

In Section 4.3 we come up with a new algorithm which overcomes
the limitations of the known methods. The emulation behavior of
this new algorithm is analytical analyzed in Section 4.4. Due to the
implementation of the algorithm in a real application we learned also
the limitations of it. In Section 4.5 we list them up. In Section 4.6 we
handle the real implementation of this theoretical algorithm into Cy-
CoP. Finally in Section 4.7 we summarize and conclude our findings
of this chapter.

67
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4.1 Process Synchronization

Loosely-coupled CoPs can be roughly categorized in two types; state-
less and state-dependent CoPs. The result of a stateless CoP depends
only on the current input. The space-time diagram in Figure 4.1 shows
how a CPU process communicates with a process of a stateless CoP.
The vertical direction represents space, and the horizontal direction
represents time. The dashed arrows denote messages. As soon as the
request message of the CPU process arrives at the CoP, the latter
starts to compute the result, which is sent back to the caller.

CPU

CoP

t
ResultRequest

Figure 4.1: Stateless Coprocessor

As we can see in Figure 4.1 the CoP process is automatically syn-
chronized by the CPU request. With the aim to emulate such a sys-
tem cycle-accurately, the CPU sends with the request a time-stamp.
When the CoP receives the request, it can update its internal timer
with the received time-stamp. The CoP then computes the result of
the request and sends back a message to the CPU consisting of a new
time-stamp. The conveyed time-stamp is equal to the old time-stamp
plus the computation time of the request.

In the meantime, when the CoP is computing the result, the CPU
process is waiting for the CoP messages and holds its own internal
timer. As soon as the result arrives at the CPU, the process checks the
new time-stamp obtained with the message. In case where the CPU
in reality would interrupt its work until it receives the result from the
CoP, the CPU process then updates its internal timer with the new
time and resumes work. If the CPU in reality wouldn’t interrupt its
work, denoted with the dashed line in Figure 4.1, the CPU process
resumes work only for the time difference between the two time-stamps
without considering the CoP result. After the time difference the CPU
“officially” takes over the result for its further progressing.
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For the second category of loosely-coupled CoPs the introduced
simple synchronization method cannot be applied anymore. Figure
4.2 shows the same situation as Figure 4.1, but this time the CoP
is state-dependent. The example shows that the arrival time of the
request message is important, as the state of the CoP changes any
time. The arrival time may also influence the result.

CPU

CoP

t
ResultRequest

Figure 4.2: State-Dependent Coprocessor

An example for this type of CoP is a timer CoP. A timer CoP
consists of a large array of timers [63, 64]. CPU processes can arbi-
trarily start and stop every individual timer within this array. Thus,
the request to stop a timer has to be accurate in time. Otherwise the
timer may expire and generate an expiration event; even so the CPU
process has already requested to stop this timer.

If we use the same blocking-read synchronization method as in
the stateless example, we lose accuracy in the emulation. Both pro-
cesses in Figure 4.2 are able to rise any time a message event for the
other process, as their internal state can change any time. With the
blocking-read method one process becomes the “slave” of the other
process. The slave can only progress, when the master has issued a
message. On return the slave only can rise a request event, after the
master has done so. Thus, the accuracy of the slave events for the
master depends on the frequency of master events for the slave.

The next section gives an overview on related work. It briefly
introduces other synchronization methods and prototyping platforms
which use the method to synchronize the processes with the method.
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4.2 Related Work

4.2.1 Kahn Process Network

The synchronization model we presented in the previous section was
introduced by Kahn [65] and is called a Kahn Process Network (KPN).
The KPN model of computation assumes a network of concurrent pro-
cesses that communicate in a point-to-point fashion over unbounded
FIFO channels, using blocking-read synchronization primitives. In
Figure 4.3 three concurrent processes P1–P3 are represents. The ar-
rows denote how messages are exchanged between the processes, thus
they represent the unbounded FIFO channels between the processes.
For example, process P3 reads the content of the FIFO coming from
P1. If the FIFO is empty, P3 is blocked. As soon as P1 puts a message
into the FIFO channel, P3 restarts to process.

P1

P2

P3

Figure 4.3: Simple Kahn Process Network (KPN)

The model is primary used for signal processing applications. In
the streaming data domain data chunks are sent from one process to
the next. A process is waiting for the next data chunk to appear at
its input FIFO. To achieve cycle-accuracy emulation the data chunks
are provided with a time-stamp when it leaves the previous process.
The next process updates its own time-base according the incoming
time-stamp of the received data chunk.

There are many rapid prototyping platforms which are special-
ized for the signal processing domain. The underling synchroniza-
tion method of these platforms is the KPN model [44, 45, 66]. The
KPN model cannot be applied to a system where processes cannot be
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blocked, like state-dependent processes which again runs on real hard-
ware. Incoming events can change the internal state of such a process.
However, as the process cannot be blocked, it can have progress fur-
ther in time as the time-stamp of the event, thus it would have missed
this event already in an earlier state.

4.2.2 Communicating Sequential Processes

In the Communicating Sequential Processes model (CSP) [67], every
node or block is a thread-like process that continuously executes unless
suspended by a communication. These processes execute concurrently,
and the rendez-vous communication protocol dictates that transfer of
data only occur when both communicating processes are ready to
communicate. Thus, the CSP model is similar to the KPN model
with the difference that its processes stop at communication unlike
the KPN process, which starts only after communication.

The CSP model is also a data driven model, like the KPN, and
therefore, it has the same drawbacks when it is used to emulate state-
dependent processes in a hardware prototyping platform. The cycle-
accuracy cannot be ensured.

4.2.3 The Logical Clock

Lamport [68] introduced a logical clock that can be used to totally
order the events in distributed systems. Implementing his method
into a hardware prototyping platform to emulate time-dependent data
flows would assume that all processes run on physical clocks, which
are scaled the same and are synchronized, at least with only a small
error.

The scaling of the logical clock to the slowest process is an obvi-
ous approach. The RPM [69] prototyping platform makes use of this
model. The goal of the platform is to emulate multiprocessor systems
with nine identical boards. However, if the platform consists of differ-
ent components such as any real processor combined with any FPGA
boards, it becomes difficult, if not impossible, to scale the logical clock
of the system to the slowest process. A CoP which is realized in an
FPGA runs only at very slow clock rates, but a real processor cannot
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be scaled down to any possible clock rate. Due to the complex clock-
ing architecture of a processor consisting of PLLs or equivalent, the
scaling range of the clock is limited [70].

4.3 The Roll-Back Algorithm

In this section we present a new process synchronization method,
which is used in the CyCoP platform to cycle-accurately emulate
state-dependent CoPs [71]. This method not only manipulates pro-
cess internal time-bases like in the KPN or CSP model, but it also
handles the state of a process at any time. Consequently the new
method is able to handle also state-dependent CoPs running different
clock domains.

Figure 4.4 shows the fundamental problem of message event syn-
chronization between two processes on CyCoP where the clock do-
mains are scaled differently. Events are either a request or a result
message from or to any process. In the example the two time lines
represent the progress of two different processes on CyCoP. One pro-
cess runs on an FPGA and the other on a CPU. The time segments
of the two time lines represent the logical clock, i.e., the virtual clock
for the entire system. As the process on the FPGA runs slower than
it will run on the future architecture, the ticks on the FPGA time line
are delayed compared with the ticks on the CPU time line.

2EFPGA

EFPGA1

t0

FPGA

CPU

Cycles

Cycles

Figure 4.4: Space-time diagram of a CPU and an FPGA process run-
ning on differently scaled clock domains

Let us assume that at a specific time t0 both processes are syn-
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chronized, as shown in Figure 4.4. If the FPGA process generates
an FPGA event EFPGA ➀ after nFPGA ticks, this event would have
appeared much earlier in time at the CPU process ➁.

Therefore a solution to emulate the appearance of the events cor-
rectly is shown in Figure 4.5. The processes are started at time t0
separately and in sequence. There the FPGA process is started first
and will run until it generates an event EFPGA ➀ and then it is held.
The CPU process, which has been held at time t0 up to now, will
be started to run exactly nFPGA ticks ➁. The idea is that the CPU
process will progress after nFPGA ticks using the new input from the
FPGA process. A problem occurs if during the nFPGA ticks, the CPU
process also generates a new event ECPU ➂. However, the FPGA
process has progressed already for nFPGA ticks, but without the new
input from the CPU process, which may have changed the result of
the event EFPGA. And thus a conflict arises.

ECPU EFPGA

1

3

EFPGA

CPU

FPGAnFPGA

nFPGA2

Cycles

Cyclest0

Figure 4.5: Order conflict when processes progress sequentially

The problem can be solved if we can reset the FPGA process to
the state at time t0. As SRAM-based FPGA have the capability to
be reconfigured, we are able to reset the FPGA process to the original
state if we have stored the context of the FPGA process at time t0. In
Figure 4.6 the FPGA process has been reset, and now runs for nCPU

ticks ➃. At this new synchronization time, t0 + tEventCPU, the context
of the FPGA process is stored again and the process progresses with
the new input of the CPU until it generates a new event EFPGA ➄.

The Roll-Back Algorithm (RBA) to synchronize processes on Cy-
CoP with differently scaled clock domains is rather simple. At ini-



74 CHAPTER 4. LOOSELY-COUPLED COP

3

n

5 EFPGA

CPU

FPGACycles

Cycles

nFPGACPU

CPUn
t0

t
0
+ tEventCPU

ECPU

ECPU

4

Figure 4.6: Event-ordering algorithm by resetting of the initial state
of a process

tialization both processes are synchronized and held at a specific time
t0.

1. Store the context of the FPGA process at a specific synchro-
nization time ti.

2. Progress the FPGA process until either it generates an event
EFPGA or the number of ticks nFPGA reaches a maximum num-
ber nmax.

3. Hold the FPGA process at this state.

4. Progress the CPU process for nFPGA ticks. If the CPU pro-
cess generates in the meantime an event ECPU itself, the CPU
process is held at this time ti + tEventCPU. Then

(a) Restore the context of the FPGA process to reset it to the
state at time ti.

(b) Progress the FPGA process for nCPU ticks.

(c) Use the new input from the CPU process for the further
progress.

(d) Repeat the algorithm starting at step number 1.

5. Take the new input from the FPGA process for the further
progress of the CPU process.
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6. Repeat the algorithm at step number 1.

This algorithm can be adapted to more than only one FPGA process.
In this case the context of each FPGA process is stored at time ti.
Then all FPGA processes run in parallel until they generate an event
or reach the maximum number of ticks nmax. All of the numbers of
ticks used are then compared with each other, to find the minimum
number nmin of ticks. The FPGA processes that have a higher num-
ber of ticks than the minimum are reset to the state at time ti and
restarted for nmin ticks. Also, the CPU process is restarted for nmin

ticks. The remainder of the algorithm is the same as listed above.

4.4 Analysis

4.4.1 Emulation Performance

During emulation, the latency produced by the RBA is hidden from
the CPU application. However, to estimate the performance of the
CyCoP platform itself, this latency must be known. The term time
or latency within this analysis determines a number of clock cycles of
the CPU if not otherwise specified.

The total runtime of the emulation TEm can be expressed with the
following equation:

TEm = CSetup + TApp + CAlg (4.1)

The sum includes the constant setup time CSetup of the emulation,
the runtime of the application on the target system TApp and the al-
gorithm latency CAlg. In the remainder of this section we analyze the
algorithm latency and show that there is an optimum of the maximum
number of exploration cycles nmax.

Figure 4.7 illustrates again in a timing diagram how the algorithm
latency is embedded in the actual application runtime. The diagram
shows the latency of a CoP event (EvCoP) and an application event
(EvApp) during the emulation.

In the following subsections we separately analyze the latencies of
the application event and the CoP event for the emulation.
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Figure 4.7: Timing Diagram of the Roll-Back Algorithm

Coprocessor Event

The RBA starts with the progress of the FPGA to explore CoP for
any event. First, the context is stored to be able to roll-back from the
exploration phase (refer to ➀ in Figure 4.7). The time needed for this
process, CStore, depends on the data volume NData to be saved and
the bandwidth BSRAM of the SRAM:

CStore = fCPU ·

⌈

NData

BSRAM

⌉

(4.2)

The remaining latency of the exploration phase (refer to ➁ in Fig-
ure 4.7) depend on whether a CoP event appears. This probability
is described by the function pCoP. At an appearing CoP event, the
exploration phase is stopped and the CPU is run up E[TEvCoP] cycles
to the CoP event time and the MW generates a software interrupt,
which costs CemInt cycles.

If new CoP event appears in the exploration phase ➁, the maxi-
mum cycles nmax are progressed in the algorithm and the MW initiates
another step with latency CInt. The total latency for a CoP event can
be expressed as follows:

CStep = CStore + pCoP

(

fCPU

fFPGA

E[TEvCoP] + CemInt

)

+

(1 − pCoP)

(

fCPU

fFPGA

nmax + CInt

)

(4.3)

The frequency fraction of the CPU and the FPGA is multiplied to the
cycle numbers to normalize the equation to a single clock domain.
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The Equation (4.3) contains the expectation E[TEvCoP]. It speci-
fies where in the exploration phase the event is expected. This value
has also an influence on the expected duration of a step, which can
be computed the following way:

E[TStep] = pCoPE[TEvCoP] + (1 − pCoP)nmax (4.4)

Replacing the probability pCoP with its probability density function
p(t) following can be expressed:

pCoP =

∫ nmax

0

p(t) dt (4.5)

E[TEvCoP] =
1

pCoP

∫ nmax

0

t · p(t) dt (4.6)

Using a constant probability p for the CoP event and assuming that
1
p > nmax sets the following parameters for Equation (4.13):

p(t) =

{

p for 0 ≤ t < 1
p

0 else
(4.7)

pCoP = p · nmax (4.8)

E[TEvCoP] =
1

2
nmax (4.9)

Application Event

An application event appears in the phase when the algorithm progress
the application for exploration time dictated by the CoP exploration
phase. The FPGA is therefore farther advanced in time as the CPU.
If now an application event appears, the CoP has to be reset to the
last saved context before the application event and run up to it. The
latency for the application events can be expressed as follows:

CApp = CInt + CLoad +
fCPU

fFPGA

E[TEvApp] (4.10)

CInt introduces the latency of the MW interrupting the application
process and executing the event instruction. The context of the CoP
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must be loaded by the Wrapper into the CoP (refer to ➀ in Figure 4.7).
The time needed for this process is expressed by CLoad:

CLoad = CStore (4.11)

The last term in Equation (4.10) is the time needed to run the CoP
from the last saved context time to the current CPU time (refer to
➁ in Figure 4.7). E[TEvApp] represents the expectation of nCPU. It is
multiplied with the frequency fraction of the CPU and the FPGA to
normalize the equation to a single clock domain.

The expected offset E[TEvApp] depends on the event distribution
over the application. For an equal distribution of the application
events, this will result in:

E[TEvApp] =
1

2
nmax (4.12)

Total Emulation Latency

Now as we have analyzed the individual latencies for an application
event and a CoP event, we are able to put all together in a single
equation to express the total algorithm latency:

CAlg = TApp

(

pAppCApp +
CStep

E[TStep]

)

(4.13)

It consists of the application event latency CApp and the per iteration
step latency CStep. These latencies are multiplied with the probability
that events appear during the emulation. The processor events are
modeled with the probability pApp. E[TStep] represents the expected
number of cycles each iteration step will take.

Replacing all parameters in Equation (4.13) results in:

CAlg

TApp

= pApp

(

CInt + CLoad +
fCPU

2fFPGA

nmax

)

+

CStore + p · nmax

(

fCPU

2fFPGA
nmax + CemInt

)

nmax −
p
2
n2

max

+

1 − p · nmax

nmax −
p
2
n2

max

(

fCPU

fFPGA

nmax + CInt

)

(4.14)
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The resulted fraction in the Equation (4.14) represents the emulation
overhead factor which is the ration between original application run
time and the algorithm latency. Choosing the right exploration time
nmax for the RBA is an optimization problem of Equation (4.14) in
order to minimize the emulation overhead. The exploration time de-
termines how long the CoP can run in advance until it is stopped and
the CPU allowed catching up. Choosing a long exploration time gen-
erates fewer exploration phases and reduces the latency for them. On
the other side, when a CPU accesses the CoP it must be set back to
its last saved context. If the exploration time is too long, the latency
associated to setting back and running it up to the CPU time base
will grow much larger. Additionally, more unnecessary exploration
phases are conducted.

An optimal exploration time can be calculated analytically from
Equation (4.14). The solution of the derivation of the following equa-
tion gives the optimum:

∂CAlg

∂nmax

= 0 (4.15)

The derivation of Equation (4.14) results in a quadratic formula and
has therefore an analytical solution. However, the solution of the
quadratic formula does not reduce the complexity and we are not in-
terested in exact solutions but rather in good estimations. Therefore,
a plot of Equation (4.14) should be sufficient enough.

Figure 4.8 shows the plot of the emulation overhead factor (Equa-
tion 4.14) for different probabilities p with varying maximum explo-
ration time nmax. It clearly shows that the length of the exploration
time has an optimum. There is a trade-off between the exploration
time and the number of context handling. If the probability of an
event is high, it is worth choosing a higher exploration time to in-
crease the probability that an event happens during the exploration
phase. Thus, the number of context store should be reduced to a
minimum. However, if the exploration time is too long, the number of
context loads increases. And this increases again the total emulation
latency.
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Figure 4.8: Plots of Equation (4.14) for constant probabilities p – 4p

with varying nmax.

4.4.2 Emulation Overhead

The key function of the RBA is the capability to load and store the
CoP context. It allows the emulation system to set the CoP state
back to an earlier time as needed by the algorithm.

The context of the CoP could be retrieved using a configuration
interface of the FPGA, as used in many projects [72, 73]. These inter-
faces allow one to write and read the configuration of parts of or the
entire FPGA. The configuration stream obtained from such a con-
figuration interface includes information about the memory element
contents as well as the configuration of the combinatorial logic of the
FPGA. From this information, the memory element contents can be
retrieved and a new configuration stream can be formed to restore
their values. However, the bandwidth of these interfaces is limited
and considerable effort is needed to filter the interesting data out of
the stream.

Another possibility for storing and loading the CoP’s context is
to use a scan path [74]. With a scan path all memory elements are
interconnected at a specific mode, such that they form one large shift
register, or scan chain. Figure 4.9 shows three such chains, each inter-
connecting one row of memory elements. The little clouds symbolize
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Figure 4.9: Scan Chains with Loop Backs

the connections to the logic during normal operation. Data presented
on the input of this chain can then be shifted consecutively from one
memory element to the other. The data stream appearing at the out-
put includes the contents of all memory elements in the circuit. As
the state of sequential logic is represented by the contents of its mem-
ory elements, the data stream through the scan chain contains the
complete CoP context.

The context of a CoP may not only consist of the content of its
registers, but also of the content of potential RAM modules. There-
fore, these RAM modules have to be included into the scan path.
Figure 4.10 shows an example scan-wrapper for a dual-port RAM
module which is inserted by the script. The scan-wrapper consists of
a counter (CNT) which addresses every memory address line sequen-
tially. The output of the RAM is then latched into a Register of the
length of the RAM data width. These output register again are part
of the scan path. After every memory read access the content of the
output registers are scanned out.

By using multiple scan chains in the CoP logic, the data can be ac-
cessed in parallel and the context can be exchanged very efficiently. In
Equation 4.2 we already consider to use the full bandwidth BSRAM of
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the SRAM. Thus, the whole port width to the SRAM is used. If only
a single scan chain is implemented, then only a fraction of the SRAM
bandwidth utilized. Considering that one bit at the clock frequency
of the FPGA can be stored, the equation becomes the following:

CStore = fCPU · NData (4.16)

Thus, by using the full bandwidth the store penalty can be reduced
by almost a factor of the number of the SRAM port width. Therefore,
not only a single scan chain is implemented into a CoP core, but a
number of scan chains, that is equivalent to the SRAM port width
(see Figure 4.9). As the number of scan elements is normally not
equal to the multiple of the memory data width, additional registers
are inserted in the chains, to create equal chain length. The darker
boxes in Figure 4.9 are the registers inserted to generate scan chains
of equal length.

The ends of the scan chains are connected to the chain inputs
such that the chains form loops. During context storage, the chain
end data is written to the memory and at the same time loops back
to the scan chain inputs. After a complete context save, all memory
elements contain again their initial value, and the CoP can resume its
operation without further interference. On a context load, the scan
chain inputs are fed from the memory output, whereas the scan chain
outputs are not used.



4.4. ANALYSIS 83

Some experiments show [75] that a D flip-flop instrumented for
scan in FPGAs is around 80% larger in area.

4.4.3 Emulation Accuracy

The RBA theoretically allows a 100% accurate timing behavior in the
emulation of a CPU with its according CoP. With the possibility to
set the state of a CoP to any time the accuracy is assured. The CPU
application is interrupted either when the application accesses the
CoP or when the CoP notifies the application in any manner—either
with an interrupt or a status flag.

For the application interruption we use two methods. One is the
MW call, which represents the access of the application on the CoP,
and the other method is the use of a timer interrupt. The accuracy
of the application emulation behavior depends therefore on these two
interrupts and how accurate they are.

The MW call belongs to the category of the precise exceptions. A
pipelined processor is said to have a precise exceptions, if the pipeline
can be stopped so that the instructions just before the interrupting
instruction are completed and those after it can be restarted from
scratch [47]. The exception is precise in the aspect of the instruction
flow; however, the cycle-accuracy of the exception depends on the
number of instructions which are on the fly to be executed and their
latency.

For the other application interrupt we analyze the behavior of the
timer interrupt. This interrupt is in contrast to the MW call cycle-
accurate in the appearance of the interrupt. The error of this interrupt
comes from the uncertainty when it is started. The MW starts this
timer, but the MW has to take into account that the application has
to be relaunched again. Thus, the timer must start exactly at the
relaunch of the application. This relaunch, however, does not take
a constant time. Therefore, a small error is introduced in the start
of the timer interrupt. Furthermore, certain timer may not offer the
accuracy of single cycles, but of higher granularity.

Putting all our findings together into a single equation, the follow-
ing can be written:

Etotal = nMWcall · IPC · nPipe + nTimer (eStart + eGran) (4.17)
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The error introduced by the instruction precise behavior of this excep-
tion is expressed by the product of the number of MW calls (nMWcall),
of the typical instructions per cycle (IPC) of the CPU, and of the
pipeline depth (nPipe). The second product in the equation expresses
the uncertainty of the start of a timer (eStart) and the granularity
of the timer (eGran) multiplied by the number of timer interrupts
(nTimer).

The total cycle-error Etotal finds its minimum in the case of a
minimal nMWcall. This is the case of a maximum exploration time
nmax of the RBA. If nmax → ∞, then no intermediate steps are
made by the RBA and then nMWcall becomes minimum. This conflicts
therefore with the performance of the emulation.

4.5 Limitations

The RBA relies on the fact that the context of a CoP is the sum of
all its memory and register content. This implies that the CoP does
not get any external data inputs others than the one from the CPU.
Of course such an external input could also be buffered together with
a timestamp of the arrival time. The buffer content would be cleared
in the next exploration phase of the algorithm.

If the CoP issues data to a process external from the CyCoP en-
vironment, the output of the CoP must be kept in a buffer, like the
one for the external input data, and can be released only at the next
exploration phase of the RBA. The external output thus is not as
cycle-accurate any more. Its cycle-accuracy depends on the expected
exploration time of the emulation.

Theoretically also the context of the CPU-like CoP could be stored
and restored so that the RBA can synchronize several different pro-
cessors. The problem here is that this usually is very memory- and
time-intensive, and therefore not very efficient.

4.6 RBA Implementation

The goal of the implementation is to provide CyCoP the capability to
cycle-accurately emulate any type of loosely-coupled CoPs. A CoP,
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which will reside on the same die as the processor on the target chip,
will communicate over an on-chip interconnect system with the pro-
cessor. During the emulation, messages cannot simply be exchanged
between the processor and CoP over this on-chip interconnect system,
but must instead pass a series of additional devices of the prototyp-
ing platform. This emulation latency must be hidden for an accurate
performance measurement.

The execution of the algorithm is mainly controlled by a Finite-
State Machine (FSM) shown in Figure 4.11. The synchronization
protocol used in the emulation follows from the explanation of how
the Wrapper FSM works.

Access

Halted

Store Load

Explore Synchronize

Figure 4.11: Finite-State Machine

Initially, the FSM is in its halted state, where it waits for events
from the CPU process. While in this state, the clock for the CoP is
turned off. As soon as a CPU process wants to access the CoP, the
MW stops the CPU process. The MW then first sends a timestamp
with the current processor time base, nCPU, to the Wrapper. The
Wrapper compares its local time, nFPGA, with the received timestamp.
If the local time is larger than the processor time, meaning that the
CoP has progressed further than the CPU process, the last saved
CoP context is restored in the load state. Then the CoP runs in the
synchronize state until it reaches the CPU time nCPU
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If the local time nFPGA is smaller than the received timestamp,
the load state is omitted, and the CoP is directly progressed until it
reaches the CPU time nCPU. While the FSM is in the synchronize
state, any events generated by the CoP are ignored. After the FSM is
synchronized with the processor time base, it enters again the halted
state.

The MW now passes the actual CPU message to the CoP, and the
FSM enters into the access state and enables the CoP clock. It returns
to halted upon completion of the data exchange. The processes are
then still considered to be synchronized.

The MW then orders the FSM to enter an exploration phase, i.e.,
the Wrapper runs the CoP until the later generates an event or it
reaches the maximum number of ticks nmax. As the Wrapper must be
able to reset the CoP to the current state, it needs to save the current
context before the FSM is moving to the explore state. When the CoP
has either reached nmax or generates an event, the FSM returns to the
halted state. After this exploration phase, the MW starts the CPU
process to progress until the CPU reaches the CoP’s local time. If the
CPU process does not generate an event, i.e., if it wants to access the
CoP during this time, a new exploration phase is initiated. Otherwise
the procedure as described above is repeated.

4.6.1 Wrapper

The Wrapper state machine described in above is implemented in the
WrapperControl module (see Figure 2.3). It controls all other modules
and manages the time base for the CoP. This time base is incremented
at every clock cycle of the access, explore, and synchronize states. A
copy of the time base is saved together with the context at the store
state and written back when a context load occurs. In addition, the
WrapperControl module reacts on events generated by the CoP.

4.6.2 Middleware

There are two possibilities for the communication between processor
and CoP. A software application uses load/store instructions to access
the memory or the address-mapped registers of the CoP over the on-
chip interconnect system. The CoP notifies the application of some
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event by raising either an interrupt signal or a status flag. For the
CyCoP this communication scheme has to be emulated by the MW.
The MW ensures that the behavior of these communication methods
is identical to that of the target system during the emulation. This
also implies control of the time base of the processor, which must be
synchronized at data exchange. The time base is used for performance
measurements and should therefore always reflect the execution time
as it would appear on the target system.

The resulting tasks for the MW are the following:

1. All load and store instructions that access the CoP memory or
registers must be intercepted and synchronized with the recipi-
ent.

2. Interrupts or status flags set by the CoP must appear in the
correct moment and may also interrupt the application flow.

3. The time base of the processor should always reflect the execu-
tion time on the target system when the application is running.

For the first task all load/store access of the software application to
the CoP region must force the application to branch into the MW
part. One possibility to intercept load/store instructions that access
the CoP is to actually replace them with software interrupts equivalent
to the tightly-coupled scheme. On encountering such an instruction,
the processor enters into a specific interrupt handler which will be
replaced by the MW. For example, the PowerPC ISA contains the
twi instruction, i.e., a breakpoint, which provides a 23-bit immediate
field. These bits can be used to encapsulate the original instruction
information. The MW extracts this information and it then executes
the access to the CoP in the FPGA, updates the time base, and returns
to the application, as the RBA dictates.

The drawback of this approach is that it requires the applica-
tion code to be manipulated. Furthermore, it uses the same 23-bit
immediate to encode the load/store instructions as well as the new
instructions of the tightly-coupled CoP.

The debug facilities of the PowerPC 440GP [70] offers the feature
to monitor all memory accesses and to interrupt on specific address
ranges, i.e., a so-called Data Address Compare (DAC) event. Using



88 CHAPTER 4. LOOSELY-COUPLED COP

this feature, the application process execution is interrupted before
the actual instruction and the MW is entered. The MW then exe-
cutes the original instruction in the same manner as when using a twi
instruction.

The DAC event is a very valuable feature for the implementation
of the RBA in the PowerPC. The drawback of the use of this feature
is, that the debug facility introduces on every load/store instruction
an additional one extra cycle of latency. For a typical application
up to 36% [47] of all instructions are load/store instructions. Thus,
the introduced latency of the emulation is quite striking. To get rid of
the extra latency and therefore, to achieve a higher cycle-accuracy, the
only solution is to not make use of the DAC event. Instead one should
replace all CoP related load/store instructions with a trap instruction
(refer to Section 2.2).

By using the DAC event as a MW call the Equation 4.17 has to be
corrected. nl/s represents the additional cycle the MW call introduces
for every load/store instruction within the application. The error
introduced by the instruction precise behavior of this exception is
expressed by the product of the number of DAC events (nDAC), of the
typical IPC of the CPU, and of the pipeline depth (nPipe). Putting
all our new findings together into a single equation, the following can
be written:

Etotal = nl/s + nDAC · IPC · nPipe + nTimer (eStart + eGran) (4.18)

The second task of the MW is to generate interrupts for the software
application at the same moments as the CoP would do in the target
system. To determine the time of such an event, the MW lets the
CoP explore the next nmax cycles to see whether it generates an event
during this time as dictated by the RBA. It then lets the processor
synchronize with the CoP time. If the exploration phase stopped on an
event generated by the CoP, the MW performs the appropriate actions
such that the application receives the CoP event. One possibility is
that it starts the interrupt handler that the application provided for
what it assumed to be the CoP interrupt. In this way the MW fulfills
its second task. If the CoP did not generate an event during its last
exploration phase, the MW continues with the next CoP exploration
phase.
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The processor can be forced to enter the MW after a certain num-
ber of application cycles using a General Purpose Timer (GPT) timer
of the processor. The GPT generates an interrupt after a previously
configured number of cycles have elapsed. The MW intercepts this
interrupt and performs the actions as described above. If the CoP did
not generate an event, the GPT interrupt is hidden, and the applica-
tion process does not notice that it has been interrupted.

The third task of the MW is to emulate the correct advancing
of the time base on the processor. Therefore it must subtract the
time used for the execution of the MW code and the communication
overhead of the emulation system. The MW then adds communication
delays of the target system to the time base as needed.

On the PowerPC 440GP this task is simplified as it allows stopping
the time base on the interrupts used for the emulation. The MW
then only has to add the appropriate delays to the time base before
continuing the application process.

4.6.3 Design Flow

The emulation of loosely-coupled CoPs on CyCoP impacts the design
flow as described in Section 2.4. Due to the powerful debug facility of
the PowerPC 440GP, however, only the hardware flow is influenced.

FPGA Synthesis

Figure 2.5 of Section 2.4 shows that the goal for the CyCoP FPGA
synthesis is to keep it simple as possible. The scan path through the
CoP, which is needed by the RBA, is inserted directly into the net
list of the CoP. This gives us the opportunity to not only emulate
HDL-designs but also FPGA net lists of custom CoPs.

A Perl script parses the CoP net list and replaces all registers found
with a scanable equivalent (shaded in Figure 4.9). Such a scanable
equivalent contains a copy of the replaced module and a multiplexer
which allows the selection between a normal input and the input dur-
ing scan mode. Furthermore, the scanable equivalent contains two
more input ports, namely, one for the scan-enable signal, and one for
the preceding register element of the scan chain. All memory modules
are replaced with scanable RAMs (Figure 4.10).
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All scan inputs and memory element outputs of the CoP are then
connected to the ScanHandler module of the Wrapper, and a com-
plete synthesis including the scanable CoP and all Wrapper modules
is performed.

4.7 Conclusions

In this chapter we showed how the CyCoP platform has to be ex-
tended with the RBA to permit a cycle-accurate emulation of state-
dependent CoPs. In contrast to existing solutions, the RBA offers the
possibility to emulate state-dependent CoPs even on differently scaled
clock domains within the platform. This avoids having to scale all sys-
tem elements accordingly and furthermore provides the possibility to
replace the interconnect system with a board-level system.

The emulation performance and the cycle-accuracy of the imple-
mentation in the real hardware environment highly depend on the
number of message events between the CPU and its CoP. The higher
the number of exchanged message events the lower the performance
and the accuracy of the emulation. To optimize the numbers within
an emulation run one has to decide either for a better performance
or for a higher accuracy. A formula to make an estimation for both
numbers is given.

The RBA relies on the fact the complete context of a CoP can
be stored and reproduced in any point in time. Therefore, for the
emulation of external input and output special actions have to be
taken. The size of the context theoretically is not limited for the
algorithm, however, in real environment it is limited to the available
memory and the performance of the emulation.



Chapter 5

Experimental Results

To demonstrate the feasibility of the CyCoP concept, the platform is
implemented in real hardware. Two case studies, one for a tightly-
coupled coprocessor (CoP) and one for a loosely-coupled CoP, illus-
trate our concept and the quality of the results.

In this chapter, we first examine the performance and the accu-
racy of an example implementation of a tightly-coupled CoP in Sec-
tion 5.1. We extend the ISA of the PowerPC 440GP with single-
precision floating-point instructions. We assess the quality of the
result by comparing it with a PowerPC 440EP chip which consists
already of a hardware floating-point CoP.

In Section 5.2 we examine the performance of CyCoP on loosely-
coupled CoPs. As an example implementation we choose a large
timer manager CoP which perfectly fulfills the requirement of a state-
dependent CoP. The last Section 5.3 summarizes our findings.

5.1 Tightly-Coupled Coprocessor Results

We extend the basic PowerPC 440GP [14] core with a single-precision
Floating-Point Unit (FPU). This comprises the advantage that all
standard compilers do support floating-point source code, so we can
build our prototype upon standard software design flows. Further-
more, there are many test applications and benchmarks freely avail-
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able which make use of the floating-point operation. Thus, we are
able to operate with a real tool-chain and real applications.

We first introduce the implemented FPU with all the available
instructions. Then we describe the work load with which we tested
and measured the FPU. The results are presented at the end of this
section.

5.1.1 Floating Point Unit

To demonstrate the operativeness of the CyCoP platform, the publicly
available single-precision FPU from the OpenCores.org project [76] is
used. This FPU is configured for the Virtex-II Pro FPGA of the
Amirix AP130 platform FPGA development board [53]. We modified
and extended the FPU to fit our needs as CoP core. Figure 5.1 shows
the block diagram of the CoP core.
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Figure 5.1: Single-Precision Floating-Point Unit
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We added 32 Floating-Point Registers (FPR) to the FPU to pro-
vide a load-store architecture, i.e., a register-register architecture. The
FPR file is realized as a three port FPGA RAM. Two ports are read
ports and one port is the write port. The CoP core consists of five-
stage pipeline. Thus, the address and write enable signal for the write
port are simply the pipelined input signals issue and FRT, with FRT
being the address of the result register of the CoP instruction. The in-
put signals FRA and FRB are the addresses for the operand registers
coming from the CoP instruction.

The operands coming from the FPR are fed together with the
OpCode from the instruction into the FPU where the result of the
operation is computed. The CoP core is able to execute the following
floating-point instructions:

fadd FRT,FRA,FRB FRT = FRA + FRB

fsub FRT,FRA,FRB FRT = FRA − FRB

fmul FRT,FRA,FRB FRT = FRA · FRB

fdiv FRT,FRA,FRB FRT = FRA ÷ FRB

fcfi FRT,FRB Convert from Integer
fcti FRT,FRB Convert to Integer
fcmp FRA,FRB Compare
fabs FRT,FRB Absolute Value
fneg FRT,FRB Negate
lfs FRT,IM Load Immediate
stfs RT,FRB Store to GPR
fmr FRT,FRB Move Register

The conversion functions of the FPU are special and will play an im-
portant role when we run the test applications. Detailed information
will follow in this section.

The CoP core has a five-stage pipeline and every instruction except
the division takes equally long for the execution. The division takes
nine clock cycles to compute. As the CoP is pipelined data hazards
are detected and hold the instruction from being executed until the
result is committed. The result is by-passed one stage before the final
stage to shorten the stall time in the CoP.



94 CHAPTER 5. EXPERIMENTAL RESULTS

5.1.2 Work Load

For the test application software, the benchmark suite MiBench [77]
is used as it targets the embedded-processor market, for which the
PowerPC 440GP is designed. It provides numerous test programs
from areas such as,� consumer,� office,� automotive/industrial,� network,� security, and� telecommunication.

Given that not all of these applications make use floating-point oper-
ations, only a selection of applications are prepared for CyCoP:

basicmath: The basic math test performs simple mathe-
matical calculations that often don’t have dedicated hard-
ware support in embedded processors. For example, cubic
function solving, integer square root and angle conversions
from degrees to radians are all necessary calculations for
calculating road speed or other vector values. The input
data is a fixed set of constants.

FFT/IFFT : This benchmark performs a Fast Fourier Trans-
form (FFT) and its inverse transform (IFFT) on an array
of data. Fourier transforms are used in digital signal pro-
cessing to find the frequencies contained in a given in-
put signal. The input data is a polynomial function with
pseudorandom amplitude and frequency sinusoidal com-
ponents.

lame: Lame is a GPL’ed MP3 encoder that supports con-
stant, average and variable bit-rate encoding. It uses small
and large wave files for its data inputs which are converted
into the MP3 format.
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susan: Susan is an image recognition package. It was
developed for recognizing corners and edges in Magnetic
Resonance Image (MRI) of the brain. It is typical of a real
world program that would be employed for a vision based
quality assurance application. It can smooth an image
and has adjustments for thresholds, brightness, and spatial
control. Two pictures, with different size and complexity,
are processed with either the corner or the edge detection
function from Susan. The small input data is a black and
white image of a rectangle while the large input data is a
complex picture.

At this point it shall be mentioned that most of the original benchmark
applications make use of Operating System (OS) library functions
such as memory allocation and file-system access. However, for the
measurements of the experiments on the CyCoP no OS is installed.
The benchmark applications run in a standalone mode and all the OS
library functions are statically compiled into the applications’ binary
and therefore, some modification in the original code were taken.

Furthermore, all applications are compiled with the GNU Com-
piler Collection (GCC) [15] using different compiler optimization lev-
els (O0–O3). This allows us to get different instruction-stream be-
havior out of a single application. The optimization levels contain the
following strategies:

-O0 : At this optimization level GCC does not perform any optimiza-
tion and compiles the source code in the most straightforward
way possible. Each command in the source code is converted
directly to the corresponding instructions in the executable file,
without rearrangement.

-O1 : This level turns on the most common forms of optimization that
do not require any speed-space tradeoffs. With this option the
resulting executables should be smaller and faster than with -
O0.

-O2 : This option turns on further optimizations, in addition to those
used by -O1. These additional optimizations include instruction
scheduling. Only optimizations that do not require any speed-
space tradeoffs are used, so the executable should not increase in
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size. This option is generally the best choice for deployment of
a program, because it provides maximum optimization without
increasing the executable size.

-O3 : This option turns on more expensive optimizations, such as func-
tion in-lining, in addition to all the optimizations of the lower
levels -O2 and -O1. The -O3 optimization level may increase the
speed of the resulting executable, but can also increase its size.
Under some circumstances where these optimizations are not
favorable, this option might actually make a program slower.

Due to the redistribution of the instructions because of the different
optimization strategies the number of MW calls of the CyCoP vary,
thus we expect also a change in the emulation time. However, with the
optimizations we still expect the platform to provide us an increase of
the application performance due to the compiler optimizations. To get
a reference on how the compiler optimizations effect the application
performance we run the same application again on a PowerPC440
with an integrated FPU.

5.1.3 Emulation Performance

With the term emulation performance we address the performance
of the CyCoP platform itself. The performance metric is the ratio
between the benchmark program execution time and the number of
executed instructions. This provides us the instruction rate (MIPS)
for the individual benchmark applications of the CyCoP.

Figure 5.2 shows the numbers of the instruction rates achieved for
the individual MiBench applications. For this diagram the application
are compiled with the optimization level -O0 of the GCC compiler.
Thus, each command in the source code is converted directly to the
corresponding instructions in the executable file, without rearrange-
ment.

The performance reaches from 0.6MIPS for the FFT application
up to 21.2MIPS for the Susan corner calculation of the large picture.
This big difference in performance between the two test applications
can be explained with the ratio between the number of MW calls
and the number of integer instructions. The right ordinate gives the
number of this ratio for the individual test applications. The number
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Figure 5.2: Performance achieved for MiBench with Optimization -O0

for the FFT function is at 0.30, thus almost every third executed
instruction is a MW call which reduces the performance. On the
other hand, for the Susan corner calculation the ratio is at 0.004 which
results in a high performance.

At this point one must say that the Susan corner application runs
52 times longer and it executes 74 times more instructions than the
FFT function. In point of view of a meaningful result the Susan
corner application is to favor. The test application with most executed
instructions is the Susan smooth calculation for the large picture. It
executes 1632 times more instructions than the FFT function and
performs with 1.7MIPS at a MW call ratio of 0.07.

Figure 5.3 and Figure 5.4 show the same diagram as Figure 5.2,
but in these diagrams the test application are compiled with the opti-
mization level -O2 and -O3 of the GCC compiler. These optimization
levels of the GCC compiler tries to mix floating point sequences in-
struction with integer instructions which reduces the data hazards in
the pipelined architecture and makes better use of the superscalar ar-
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chitecture, as the FPU is a separate execution pipe. Thus, on a real
processor this optimization results in a better performance.
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Figure 5.3: Performance achieved for MiBench with Optimization -O2

However, for the CyCoP platform this sort of optimization results
into a higher MW call ratio. For the FFT function the ratio reaches
up to 0.5, which basically means that every second executed instruc-
tion by the processor itself is a MW call. The performance decreases
to 0.5MIPS. The same effect can be observed at the Susan corner ap-
plication. Its performance reaches with -O2 18.4MIPS and the MW
call ratio increases to 0.005. An increase of 33% in the MW call ratio
results in a 20% performance loss. We can conclude that the emula-
tion overhead is significant for our example hardware setup. In the
following we investigate the emulation overhead in more detail.

5.1.4 Emulation Overhead

In Chapter 3 we theoretically analyzed the total emulation overhead
depending on the number of MW calls and CoP instructions. Ta-
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Figure 5.4: Achieved Performance for MiBench with Optimization
-O3

ble 5.1 lists the latencies for the individual emulated instructions.
The latency is measured in CPU cycles, with the PowerPC 440GP
running at 400MHz.

We observe that the most emulated instructions have about the
same latency except the store and the compare instruction. The rea-
son for this is that, in contrast to the other instructions, these two
instructions provide results to be read by the MW. Thus, the results
of the other operations are kept within the CoP registers and the re-
sults are not sent back to the MW over the PCI bus. This saves about
additional 700 cycles of latency, which are a significant portion of the
overall latency. In the theoretical estimation we estimated that all
CoP instructions provide a result to be read back by the MW. As we
can see by doing this only selectively we avoid unneeded overhead.

Form the instruction latencies we can conclude that the PCI bus
access makes a big difference. Table 5.2 lists the latencies of read
and write operations for a single word on the PCI bus. The numbers
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Table 5.1: Emulator Floating-Point Operation Latencies
Instruction Cycles

Arithmetic 3116.23
Load 3199.94
Store 3849.56
Move 3152.28
Compare 3846.21

are given in CPU cycles (400MHz). The measurements prove the
observation for the instruction latency, that the PCI bus access takes
a significant part of the emulation.

Table 5.2: Hardware Latencies
Operation Cycles

PCI Read 1134.46
PCI Write 6.57
CTrap + CMW 1242
Measuring Fault 6

In Chapter 2 the Amirix board used was introduced. This board
consists of two dedicated PCI bridges. Thus, the FPGA cannot access
the PCI bus directly. This matter of fact affects significantly the
overall performance of the example implementation of the CyCoP
platform. A more careful selection of the PCI board can improve the
performance.

Table 5.2 lists also the CTrap + CMW time. This is the accumu-
lated time that it takes the processor to load the according exception
handler, i.e. the MW, and the basic MW operations without the em-
ulation of an actual CoP instruction. Together with the PCI bus
access the sum of these latencies make up two third of an arithmetic
CoP instruction latency. However, in contrast to the PCI access the
CTrap + CMW time cannot be improved anyhow.

The internal processor behavior as well as the internal timing of the
individual instructions, was analyzed by using the PowerPC’s trace
capabilities. An external trace tool, such as RISCWatch, allows non-
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invasively tracing of the code running in real time. The trace not
only provide the actual execution flow but also timing information
of every individual instruction. This tool allowed us to measure the
CTrap + CMW time of the system cycle accurate.

In case a tracing capability was absent the interrupt latency was es-
timated by using the decrementer exception. The decrementer contin-
ues to tick after passing through a zero count, a free-running counter,
it is well suited for latency measurements. The decrementer exception
can be used to measure interrupt latency by the following method:� Enable the decrementer exception and initialize the decrementer

count by writing the desired value to the decrementer.� Ensure the decrementer exception handler code reads the decre-
menter count value at the earliest possible point.

Because the decrementer continues to tick after passing through zero
and generating the interrupt request, the ones complement of the
decrementer count is the elapsed count corresponding to the inter-
rupt latency. The error bound of our calculated result, ranges from
zero to three. This error margin will always be positive. In order
to gather a statistically significant data sample, we ran a total of
1024 decrementer exception loops. The exception handler code logs
the decrementer count. The decrementer exception handler generates
and writes a random number to the decrementer, resetting the decre-
menter countdown value. Utilizing this method, the decrementer will
generate interrupts at various points in the code so that we can get a
random sampling.

Figure 5.5 shows the overall emulation overhead factors for the
individual MiBench applications. The diagram presents the numbers
for the different GCC optimization levels of every application at once.

The diagram shows the inverse behavior as the performance dia-
gram in Figure 5.2 and Figure 5.3 or Figure 5.4. This becomes clear if
we take into account that the performance of the emulation decreases
indirect proportionally to the emulation overhead. We observe that
the overhead within an individual benchmark application increases,
as the MW call ratio increases. Thus, the CTrap + CMW time takes a
significant part of the overhead. For example, for the large BasicMath
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Figure 5.5: Emulation Overhead for MiBench with different Optimiza-
tions

application the call ratio increases by 60% and also the overhead in-
creases by 62.6%. If the MW call ratio is over 50% like in the FFT
application at the optimization level -O3, then the emulation overhead
almost takes 400 times longer than the original computation. On the
other hand if the call ratio is about 0.4% then the overhead only takes
3 times as long as the original computation.

5.1.5 Emulation Accuracy

Up to now we only looked at the emulation performance of the CyCoP
platform for the IBM evaluation board. Even though the results are
of interest, equally interesting is the question of accuracy. We want
to quantify the inaccuracy of the introduced method. In the following
the measurements refer to the same work load and prototype as for the
performance measurements. The shown numbers refer to the emulated
run time of the application, thus the time CyCoP pretends for the
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application. The emulated time is measured without the optimization
of a parser estimation during compilation time (refer to Section 3.3.2).
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Figure 5.6: Measurement Error Ratios (Optimization -O0)

The PowerPC440 core [14] is a seven-stage pipelined and dual-
issue superscalar architecture. The PowerPC440 core contains three
execution pipelines. Each of these execution pipelines consists of four
stages. With the analysis of Chapter 3 we are able to estimate the
emulation inaccuracy. In Figure 5.6 the relative emulation error for
the individual test application is shown. For the PowerPC440 core the
pipeline error and the superscalar error apply. The diagram shows the
two error types individually.

As both emulation errors depend on the number of MW calls,
the situation is the same as in the performance measurements. The
more MW calls are done per original instruction, the worse becomes
the result. Therefore, we observe again a big difference between the
FFT function and the Susan corner calculation. But even though in
the FFT emulation almost after every second instruction a MW call
follows, the measurement error for the pipeline reaches not more than
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8.6%. The error for the superscalar reaches only 4%. For the biggest
test application among the MiBench, the Susan smooth calculation,
the pipeline error reaches 3.8% and the superscalar error only 1.9%.
This application is more representative due to its long run and the
fact that 7% of all instructions are floating-point instructions.
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Figure 5.7: Measurement Error Ratios (Optimization -O2)

In Figure 5.7 and Figure 5.8 the MW call ratio is increased again
by using the compiler optimization level -O2 and -O3. The ratio
number for the FFT function is over 51% and the number for the
pipeline error is 13.2%. But more interesting are the numbers of the
BasicMath application at the -O3 optimization level. Even though
the MW ratio is less for the BasicMath application than for the FFT
function it is performing worse. Its pipeline error reaches 14.2% and its
superscalar error 7.1%. The explanation of this phenomenon is found
in the IPCav number of the BasicMath application. The compiler
optimization improves the IPCav number for the FFT function, but
it stays almost constant for the BasicMath application. With the -O3
optimization option the compiler starts to in-line certain functions,
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which is not very effective for the BasicMath application, but for the
FFT it clearly improves its performance.
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Figure 5.8: Measurement Error Ratios (Optimization -O3)

Thus, it is time to also have a look at the processor’s performance
numbers. To monitor the emulated performance the emulated run
time is divided by the total number of executed instructions, without
the MW instructions. This results in Cycles Per Instruction (CPI)
which specifies the actual processor architecture performance very
well.

Furthermore, we compare the CPI numbers of the prototype with
the numbers of a real processor. The PowerPC 440EP comes with
a PowerPC440 core and it does support floating-point instructions.
Its FPU does single- and double-precision operations, thereof we only
use the single-precision operation. The Yosemite evaluation board [78]
used consists of a PowerPC 440EP.

However, we have to point out that the architecture of our pro-
totype FPU and the architecture of the PowerPC 440EP FPU fun-
damentally differ. The PowerPC440 FPU incorporates a five-stage
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arithmetic pipeline working in parallel with a four-stage load/store
pipeline. The pipelines enable two instructions (one load/store and
one arithmetic) to be issued during each cycle. Floating-point instruc-
tions execute with three- to five-cycle latency, except for division. Our
FPU allows only single-issue and has a fixed latency for all instruc-
tions.

Most important difference between both FPUs is the integer con-
version capability. The PowerPC440 FPU makes use of the fact that
its internal architecture is 64-bit width and therefore it incorporates
only the fcti instruction (converts floating-point to integer) as ded-
icated function. As our prototype is a true single-precision architec-
ture, also the fcfi instruction (converts floating-point from integer)
are implemented into the FPU. Readers, who are interested in more
details about the conversion function in the PowerPC, should refer to
the Appendix A in this book.

Figure 5.10 show the CPI numbers of the individual test applica-
tion for each processor. We can see that the numbers for the first
three applications are close together between the two processors. The
difference can be explained with the architectural difference between
the two FPUs. The prototype demonstrates the same behavior like
the real FPU within an application. The CPI number decreases if the
work load is increased in the same application.

The applications Susan edge and corner highly depend on the con-
version function. On the right ordinate of the Figure 5.10 we indicate
the difference between the instruction counts. As explained above,
the two architectures convert integers in different ways. By the num-
bers provided by the Figure 5.10 one could conclude that it would
be worth to integrate a dedicated conversion function into the Pow-
erPC440 FPU. However, the impression is deceptive, as the rounding
of the conversion results also plays a significant rule in the observed
instruction count difference.

Beside the fact that the two FPU architecture are different and
therefore the direct comparison between them provides no quanti-
tative results, we can check the relative behavior of the prototype
against the real implementation according to the compiler optimiza-
tions. Figure 5.9 and Figure 5.11 show again the graphs with the
compiler optimizations options enabled.

Comparing the individual CPI numbers of the applications once
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run on the prototype and once run on the real hardware we observe
that it shows the same behavior comparing -O0 with -O2. Also the
same is true for the real applications for the number of -O3. Thus,
running the prototype with real applications and performing longer
tests, which is exactly the target tasks of a having a rapid prototyping
environment, the application behavior is accurately reflected.

5.2 Loosely-Coupled Coprocessor Results

To demonstrate the feasibility of a cycle-accurate emulation of a state-
dependent, loosely-coupled CoP on the CyCoP platform, such a CoP
must be found. The test CoP has to generate events which can be
measured upon their timing correctness. This is important for be-
ing able to verify the process synchronization between software and
hardware.
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A perfect example CoP for the test is the so-called timer man-
ager [63, 64]. Such a timer manager consists of several thousands
of timers, which can be individually started and stopped. At the
expiration of a timer the timer manager notifies the owner of the in-
dividual timer about the expiration. Network protocols, such as the
Transmission Control Protocol (TCP) or the Stream Control Trans-
mission Protocol (SCTP), make use of timers to guarantee a reliable
data transfer. For every set data packet a timer is started. If this
timer expires without having received the acknowledgement from the
destination, the source has to retransmit the same data packet again.
Therefore, these timers are called retransmission timers.

First we briefly introduce the test application together with the
timer CoP used. Then we present the performance results of this timer
CoP, is configured for the Virtex FPGA of the Spyder development
board [52].
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erPC 440EP (Optimization -O3)

5.2.1 Timer Coprocessor

Although used informally in the literature, the notions for the timer
facilities are terms that are not generally used in protocol specifica-
tions. Therefore, we will use the notation as introduced in [79].

Timeout denotes an event. Such an event is produced by a timer,
and can be consumed by a network protocol machine. A timer is a
device that generates timeouts. The point in the time when a timer
has to produce the timeout is specified in terms of an absolute or
relative time quantity. In conjunction with a timer, this quantity is
called time value.

A timer manager is a device which contains multiple timers. Every
timer can be accessed over a single interface and the timer manager
autonomously serves all the timers.

The definition of the timer in terms of operation primitives ex-
changed over the entity boundary of the protocol machine [79] is as
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follows:

Table 5.3: Timer Primitives
Primitive Parameter

start time value, timer identity
stop timer identity
expire timer identity

Table 5.4: Parameters of Timer Primitives
Parameter Description

time value the time duration of the timer specified
timer identity the name or label of a related timer

The first two primitives are commands to initiate and terminate
the operation of a single timer. In the network protocol code, they
appear as normal instruction calls. The third primitive is the notifica-
tion of the actual timeout, and communicated to the protocol entity
as an interface event. From the protocol entity’s point of view, the
timer manager can be characterized as an abstract data type “timer”.
The first two operations create and delete instances of timers. The
third operation is the “expired” message produced by a timer upon a
timeout.

By implementing a timer manager in a hardware CoP, the Timer-
CoP, the individual timers managed by this CoP cannot be imple-
mented as dedicated hardware decrementers. This is due to the fact,
that there are too many of them and this would take too much die
size. Therefore, they are stored in some kind of RAM. The TimerCoP
presented in [63] is able to manage ten-thousands of timeout values.
However, it is over designed for our needs to test the CyCoP plat-
form. Figure 5.12 shows the block diagram of the simpler TimerCoP
architecture used.

The central element of the TimerCoP is the RAM, where all time-
out values are stored. This RAM is continuously addressed by a
counter to retrieve all stored timeout values in sequence. Then the
value is compared again the time base of the TimerCoP. Thus, the
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Figure 5.12: Timer Coprocessor Block Diagram

timeout values are stored in absolute values. This allows a simple
comparison without further arithmetic.

The specialty of this TimerCoP is that the minimum timer gran-
ularity for this kind of timer manager is

Tmin =
nTimers

fCounter

(5.1)

Thus, it cannot be smaller than the counter takes to check all stored
timeout values. In the example implementation of the TimerCoP we
used 2048 timers running with a Frequency of 3 MHz.

The controller in Figure 5.12 receives the start and stop com-
mands from the network protocol over the on-chip interconnect. The
controller manages the RAM according to the command from the
protocol. If the controller detects a timeout event, it then notifies the
protocol.

A detailed report for this TimerCoP architecture and its function-
ality can be found in [80].

5.2.2 Work Load

The perfect work load to stimulate the TimerCoP would therefore be
a network protocol like the TCP. The protocol stacks of such network
protocols is rather complex. To modify an existing protocol stacks,
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to adopt it for our needs, is a big task and the resulting testbench
does not fulfill our needs completely. To verify the correctness of our
Roll-Back Algorithm (RBA) implemented in the CyCoP platform we
have to prove that all CoP events are issued at the right time for the
software application.

Therefore, we decided to produce an artificial stimuli stream for
the TimerCoP, executed by the CPU. A Perl script generates a se-
quence of commands that starts, stops or checks on timers. The com-
mands generate a Poisson-distributed sequence of start commands
and use a uniform distribution for the timeout value of the timers.
The timers are then stopped with a certain probability or allowed to
expire.

The script intends to generate a usage pattern that resembles the
one of a TCP stack. The idle time in between two commands is filled
with a wait loop, which sums up a counter to a certain value. This
simulates the processing of the TCP stack. The MW is called when
the application accesses the TimerCoP during the StartTimer and
StopTimer commands. If the MW receives a timeout event from the
TimerCoP, it generates an interrupt to notify the software application.
The application provides an interrupt handler for this case, which
simply reads the timer identity, and records the current processor time
as expiration time. The script also generates function calls CheckExp,
which checks whether the timer that should have expired actually did
so.

...

StartTimer( 43, 1396 );

WaitTicks( 452 );

StartTimer( 44, 2456 );

WaitTicks( 245 );

StopTimer( 43 );

WaitTicks( 3497 );

CheckExp( 44 );

...

The code sequence above shows an extract of a sample code generated
by the Perl script. The script has three parameters to customize the
stimuli; the number of timers used, the mean value for the Poisson-
distribution, and the percentage of expiring timers can be set.
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5.2.3 Emulation Performance

In this section we address the RBA performance of the CyCoP plat-
form. As we use an artificial work load to stimulate the TimerCoP,
we have to define first a meaningful value to be able to measure the
emulation overhead. In the following we use an emulation overhead
factor, which is calculated by dividing the real time by the emulated
time. The reader has to keep in mind, that the work load is artificial.
Thus, this factor should not be taken as a quantity but rather as a
quality factor.

In Chapter 4 we discussed the theoretical overhead behavior by
varying the maximum exploration time TExp of the RBA. The graph
of the equation shows that there is an optimum for the exploration
time which leads to the lowest possible emulation overhead. In Fig-
ure 5.13 the graph of the equation is shown again.
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Figure 5.13: Comparison of Model and actual Measurements

The graph of the equation has been computed with the measured
parameters of the hardware setup used. Table 5.5 lists the measured
values of the needed parameters for the equation. The numbers are
given in CPU cycles (400MHz). The variable probability values are
computed by dividing the number of CoP accesses and interrupts by
the emulated time.

Measuring points are added to the graph in Figure 5.13. These
measuring points are gained from the TimerCoP with a work load
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Table 5.5: Hardware Costs for the RBA
Operation Parameter Cycles

Interrupt costs CInt = 1427
Emulated CoP interrupt CemInt = 273
Clock frequency ratio qF = 12
Store/Load CoP context CStore = 786,480

that matches the probability value used by the equation. The graph
shows that the model overestimates the costs by about 2% at the
computed minimum. The slope of the asymptote is less steep than
the measurement. This indicates that the costs for the steps CStep

are lower than measured because of the measurement error of the
individual analysis. The computed optimum for the exploration time
TExp is also higher than actually required by the measurement.

The numbers in the graph of Figure 5.13 show that the overhead
factor is about 14 for the optimal exploration time TExp. This is
mainly due to the fact that the FPGA runs 12 times slower than the
CPU. As the RBA requires that the CPU and the FPGA run in
parallel, the theoretical minimum for the real runtime would be the
emulated time on the FPGA plus the emulated time on the CPU:

TMinEmulation = TFPGA + TCPU = TApp · (12 + 1) = 13 · TApp (5.2)

The fact that the emulation reaches a minimum factor of 14 compared
to the theoretical minimum of 13 shows that the RBA performs well.

The minimum for the measurements depends on how many events
have to be synchronized during the emulation. Figure 5.14 shows the
graphs for the same TimerCoP under different loads. Note that the
ordinate only shows the range of interest. This is done to highlight
the difference among them.

The graphs in Figure 5.14 show that the optimal TExp becomes
smaller the higher the number of events. The probability increases
that a CPU event happens during an exploration phase, if it is too
long. At a CPU event the explored cycles are lost and run again. Thus,
if there are many CPU events, the exploration time should be shorter.
The figure also shows that the costs increase in general, and also the
slope of the asymptote becomes steeper. This is the consequence of
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Figure 5.14: TimerCoP Behavior at increased Usage

the higher penalty of restoring the CoP context on a CPU event.

5.2.4 Emulation Overhead

The RBA not only introduces an overhead in time but also in space.
The algorithm requires to have access to the whole context of the
CoP. This access is granted to the Wrapper by inserting scan-chains
into the design during the synthesis. These scan-chains cause the
original design to increase by the size, as for every register additional
multiplexers are inserted.

Table 5.6 lists the utilization of FPGA resources by the original
CoP design. The most important number is the slice utilization. Xil-
inx groups several CLBs together into a slice. Thus, the slices are
an indication of how many configurable resources are occupied by the
design.

The numbers in the third column of the Table 5.6 shows the re-
source utilization of the TimerCoP after adding the scan-chain. The
design uses now 66% more of the FPGA resources. This number
matches with the results of other analyses [75].

The Wrapper resources are listed in the fourth column of the Ta-
ble 5.6. Its size is manly constant over all projects in which it is used.
Only the number of filler cells used to balance the scan-chain lengths
and the size of the command buffer vary from project to project. In
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Table 5.6: FPGA Resource Allocation by the TimerCoP
CoP Scanned Wrapper Total

Flip Flops 473 579 279 858
4 input LUTs 1353 2151 762 2913
Occupied Slices 746 1241 376 1617
Size Increase 66% 50% 117%

our example implementation the Wrapper increases the CoP design
by 50%. Thus, the most resource overhead results from the insertion
of the scan-chain.

By adding a multiplexer to every register in the CoP design for
the scan-chain, we extend also the critical path in the design with
an additional delay. Therefore, the maximum frequency achieved of
the original design reduces. The original maximum frequency for our
TimerCoP design is 500MHz. With the scan-chain the design achieves
90.9MHz. The numbers are gained from the synthesis tool, but not
evaluated with the hardware.

5.2.5 Emulation Accuracy

Because of the artificial work load used to measure the performance
of the RBA the analysis, the measurement of the real accuracy com-
plicates. The Equation 4.18 requires the work load IPC and the
number of total load/store instructions, nl/s, to quantify the accu-
racy. As explained in Section 5.2.2, not a real protocol stack has been
implemented for the TimerCoP, but an artificial one. Therefore, the
directly measured number of load/store instructions and IPC are also
artificial. To overcome this problem we decided to take the numbers
of the MiBench benchmark used for the FPU, as they correspond to
numbers of a real application. Furthermore, we present the numbers
with relative values, to facilitate to weigh the individual factors of the
equation.

Table 5.7 lists the parameters taken from the MiBench application
Susan with GCC optimization O2. The number of load/store instruc-
tions, nl/s, are already given as relative values. Means the numbers
are divided by the total runtime cycles of the according application.



5.2. LC COP RESULTS 117

Table 5.7: Parameters for Accuracy Estimation
Smooth Edge Corner

small large small large small large

IPC 0.392 0.418 0.381 0.425 0.320 0.403
nl/s 0.185 0.197 0.179 0.199 0.151 0.189
IPC · nPipe 1.570 1.673 1.522 1.699 1.281 1.610
eStart + eGran 4 4 4 4 4 4

The DAC debug facility of the PowerPC is a very powerful func-
tionality. However, the drawback of using this functionality is that
it introduces an extra latency cycle to every load/store instruction
of the application. We experience that up to 45% of all instructions
at runtime are load/store instructions. Thus, its portion to the total
inaccuracy is not negligible. In Table 5.7 we learn that the DAC event
makes up 20% of a constant inaccuracy for the emulation. One might
consider not to use the DAC event as MW call because of its strong
effect on the emulation accuracy.

Figure 5.15 shows the graphs for the different parameter sets com-
ing from the MiBench applications. The graphs represent the ratio
of total accuracy error over the total runtime with different numbers
of DAC and timer events. The offset of the graphs comes from the
above mentioned extra latency of the load/store instructions. A work
load for which 1% of all instructions are CoP instructions, the inaccu-
racy is about 22% of which already 20% are from the debug facility.
Thus, by replacing the MW call with trap instructions we can reach
an inaccuracy of about 2%.

A work load with 10% CoP instructions of total instructions, thus
a very heavily used CoP, the inaccuracy reaches about 38%. With a
trap instruction as MW call, therefore, we would reach an inaccuracy
of about 18%.

Thus, the biggest portion of the emulation inaccuracy we can avoid
by using a different MW call type. The other factors are hardware-
dependent and therefore, cannot be reduced. However, with realistic
numbers of total CoP instructions, the inaccuracy comes to acceptable
few percent.
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Figure 5.15: RBA Accuracy Estimation

5.3 Summary of Experimental Results

In the first part of this chapter we presented the measurement results
for a tightly-coupled CoP implementation in the CyCoP platform.
We extended the PowerPC 440GP with a single-precision FPU and
run the test application of the MiBench benchmark with it. The
results demonstrate that our CyCoP platform outperforms any sim-
ulator which reaches the same detail accuracy. Depending on the
ratio between floating-point and integer instructions of an applica-
tion, the prototype emulation achieves a performance in the range of
0.6–21.1MIPS and accuracy in the range of 85.8% – 99.9% without
further optimization. We compared the emulated performance of the
prototype with the performance of a real hardware FPU integrated in
the PowerPC 440EP. Despite of the architectural differences between
the two FPUs qualitatively the prototype showed the same behavior
as the real FPU. We conclude that using the CyCoP approach to
prototype a tightly-coupled CoP delivers high emulation performance
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at detailed architecture combined with high accuracy.
In the second part of the chapter we presented the measurement

results for a loosely-coupled CoP in the CyCoP platform. As a case
study we took a timer manager as CoP and stimulated it by randomly
starting and stopping individual timers in the CoP. To verify the
correctness of the RBA we measured the expiration event of a timer
in the application and compared them with our expectations. For
the exploration variable of the RBA we tried different values for the
maximum and measured the emulation overhead. The measurement
fit very well with our theoretical mathematical analysis. Thus, the
maximum for the exploration variable can be estimated up front the
emulation to achieve a minimal emulation overhead. CyCoP enables
the event synchronization between a software process and a hardware
CoP which allow a cycle-accurate hardware/software co-verification.





Chapter 6

Conclusions

In this thesis, we investigated problems in the hardware/software co-
verification methods. We observed that simulators suffer from the
tradeoff between accuracy and performance. The higher the level of
detail for a model is, the slower the simulator performs. To overcome
the performance issue, developers take a higher abstraction level for
their models but this causes inaccuracies in the simulation results. On
the other hand, hardware emulators run orders of magnitude faster
than every simulator at the highest level of detail. However, hardware
emulators are inflexible, expensive, and have a short lifetime. Further-
more, it is a rather complex task to implement a complete processor
in programmable logic devices.

For state-dependent coprocessors (CoP), we argued that existing
approaches for process synchronization cannot handle the events be-
tween hardware and a software process strictly cycle-accurately. The
solutions described in the literature have been designed for pure soft-
ware process synchronization and can therefore be used only to a
limited extent for hardware-prototyping platforms.

In the work presented here, we addressed these problems by means
of a new rapid prototyping method. Our solutions are summarized in
Section 6.1. We conclude this thesis in Section 6.2 with an outlook
on future work, for which this research laid the foundation.
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6.1 Contributions of this Thesis

The research presented in this thesis has contributed a new rapid
prototyping method to the field of hardware/software co-verification:� We proposed a novel rapid prototyping method we call Cycle-

accurate Coprocessor Prototyping (CyCoP). The CyCoP plat-
form consists of several contributions, which are designed to fit
together. The two main components of the platform are the
processor system and the coprocessor system. The processor
system consists, in fact, mainly of a standard processor chip
with a host board-level interconnect, e.g. a PCI bus. The CoP
system consists of off-the-shelf prototyping boards populated
with programmable logic devices, e.g. FPGAs. The coprocessor
(CoP) accesses of the software applications, running on the real
processor, are enabled with a software layer called Middleware
(MW). The CoP cores, running on programmable logic devices,
are stimulated and controlled by a hardware layer called Wrap-
per. The MW hides the hardware architecture of the prototype
and its introduced delays from the software application, to pre-
tend real time behavior for the application. Thus, the MW en-
ables a cycle-accurate co-verification of the hardware/software
co-design.� We introduced a new process synchronization method that en-
ables the event synchronization between hardware and software
processes. The events of a state-dependent CoP cannot be syn-
chronized by using a blocking read primitive as used in other
synchronization methods, such as the Kahn Process Network
(KPN). The Roll-Back Algorithm (RBA) introduced exploits
the fact that the CoP core is implemented into a programmable
logic device. Therefore, we can grant the Wrapper full access to
the CoP context during the synthesis of the design. The manip-
ulation of the CoP’s context is key for the RBA. It allows the
Wrapper to control the CoP’s state and, if needed, to set it back
to an older state. This principle allows us to cycle-accurately
emulate events between a state-dependent CoP and a software
process.
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request by the SW application without the invocation of the
SW programmer or the application. The MW call introduced
either keeps the original CoP instructions of the application or
replaces them by trap instructions. Because of the nature of the
MW call introduced, the software binaries for the CyCoP exhibit
the same behavior as the original once. The size of the binary
stays the same in any case. Therefore, the entire addressing
scheme of the emulation is equal to the original one.� The modular concept introduced for the CyCoP platform with
the two main elements MW and Wrapper makes the platform
hardware-independent. Therefore, the CyCoP concept can be
adapted to any hardware environment providing a real proces-
sor connected to any programmable logic device. This has the
advantage that the prototyping hardware can be compiled with
modules from different technologies and vendors. For example,
if during the prototyping phase a more powerful FPGA is issued,
the user can simply replace the old hardware with the new one.
If several equivalent hardware modules are available from differ-
ent vendors, the user can take also the prices into account for
the evaluation. Being able to combine the prototype hardware
with any vendor modules also has the advantage that the user is
independent of any vendor and therefore does not have to wait
for the vendor to switch to newer technology, for example.� The CyCoP design flow can be seamlessly integrated in user-
defined design flows using conventional tools. Both flows, the
software and the hardware flow, make use of a characteristic
Intermediate Representation (IR) to integrate the CyCoP design
layers into a standard design flow. For both design flows we
chose an individual IR that is currently supported by all tools
needed. Thus, CyCoP neither depends on a specific support of
a design tool, nor does the design flow differ from the original
flow, which is crucial for the software flow. This allows the
design to use the original design tools for the software of the
future architecture.� The CyCoP introduces an efficient and accurate way to emulate
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tightly-coupled CoPs. An Instruction-Set Simulator (ISS) has to
deal with the tradeoff of being either accurate or achieving high
performance. Our emulation performance measurements with
benchmark applications on the sample implementation yielded
the same numbers as the fastest IISs, but with the advantage
of high accuracy and that the test application ran in the real
hardware environment.

6.2 Future Work

In this thesis we presented the concept of the CyCoP platform with
its software and hardware modules, enabling cycle-accurate emulation.
During the implementation and testing of the CyCoP platform some
interesting problems arose which are worth further investigations. In
this section we outline the most interesting once.

6.2.1 Design Automation

The design flow of the current implementation of the CyCoP platform
is simple, but nevertheless efficient. However, it still involves consid-
erable manual configuration by the user. A goal of the CyCoP design
flow should be to have a “single button press” solution. Thus, many
configuration steps should be automated in the design flow.

In the software flow, the replacement and re-encoding of the CoP
instructions into trap instructions can be performed by the compiler
itself. A retargetable compiler can be extended with a switch that
forces it to give the output either with the real CoP instructions or
with the re-encoded trap instructions. The new encoding is then au-
tomatically provided to the MW source code during compilation.

The automation of the hardware design flow is almost achieved
by the automatic scan-chain insertion into the CoP design. However,
the Wrapper’s direct ports to the CoP core have to be configured
manually. The in- and output signals are wired by the user with the
command and result buffer of the Wrapper. An automation of this
task should be possible by parsing the appropriate HDL testbench of
the CoP core. Thus, the testbench is recompiled and the outcome is
the Wrapper for the prototype.
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6.2.2 Roll-Back Algorithm

For the RBA we see one potential improvement. In the current im-
plementation only one process is active while the other is idle. If
the Wrapper could store multiple contexts and keep track of them,
it would be possible for the CoP to run in parallel to the software
process. At a software event the Wrapper must know which context
it has to restore. The MW can also already set the timers for possible
CoP events, but it must be able to clear them at a restore of the CoP
context.

It is also desirable to extend the algorithm to the Bus Functional
Models (BFM) on an FPGA. This BFM could be used by several CoP
concurrently on the FPGA. The Wrapper would sit as a master port
at the BFM and monitor only those events that apply to the CPU.
In this way a complete SoC design could be synchronized with the
software process.

6.2.3 Design Flow Parser

In Chapter 3 we investigated the limitations for the accuracy due to
architectural characteristics of processors. In the software design flow
the original source code is parsed to replace CoP instructions with
MW calls. This parser can be enhanced to check also how many
instructions are executed simultaneously in the processor before the
transition happens, the parser can estimate the “waiting” time of
the MW call for all instructions to commit. This estimation can be
encoded together with the original instruction opcode into the MW
call, and the MW takes this time into account for the emulation.
With this method the emulation inaccuracy introduced is reduced.
However, effects such as a cache miss for instructions or for data are
ignored. This solution would, however, clearly enhance the emulation
accuracy.

6.2.4 Hardware Debugging Capabilities

A software debugging tool like the GNU Debugger (GDB) [46] allows
a user to see what is going on “inside” a software application while
it executes. It provides the user with information on the state of the
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application at the moment it crashed.
In Chapter 4, where we introduced the possibility to store and load

the context of any coprocessor we focused only on the implementation
of the RBA. In fact, this capability can be used for efficient debugging
of the CoP core.

In [81] the authors propose a Source Level Emulator (SLE) as a
method to close this gap by combining behavioral simulation with
hardware emulation. The idea of SLE is to run the hardware appli-
cation on an emulator hardware and to keep the correlation between
hardware elements and the behavioral VHDL source such that it is
possible to stop the hardware by interrupting the clock and to ex-
tract values of variables in the source code by reading registers of
the circuit. This correlation is mainly obtained through logging the
synthesis steps of the high-level synthesis.

In contrast to the SLE in our CyCoP platform, the breakpoints are
not set in the behavioral HDL source but in the software application
running on the CPU.
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Data Format Conversion

High-level languages define rules specifying various implicit conver-
sions or coercions, in addition to the explicit conversion requests in
the source code. Compilers may execute these conversions between
different types using calls to functions in the run-time library. For
simple cases, the compiler may emit the code directly.

In this chapter we investigate how the GCC compiler specifically
handles the integer to single-precision floating-point conversion for the
PowerPC target. This is for interest for us as the conversion algorithm
involves double-precision operations which are not supported by our
prototype implementation. To provide still an accurate comparison
between the real FPU in the PowerPC 440EP processor and our pro-
totype, we need to find a solution to overcome the double-precision
operation. The following sections we discuss the conversion from a
single-precision floating-point value to an integer value and vice versa
respectively.

A.1 Floating-Point to Integer

The PowerPC ISA provides an instruction fctiw which converts a
single-precision floating-point value to an integer value and stores the
result into a FPR. Thus, there is a hardware supported operation
which does the job.
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In the example given in Table A.1 a floating-point value in FR1

is converted to an integer in R3. The processor always transfers val-
ues between the FPR and the GPR through memory. However, even
though the value in FR2 contains only a 32-bit value after the conver-
sion the compiler uses a double-precision store instruction (stfd) to
store the content of FR2 into the program stack. The load instruction
(lwz) makes sure it gets the lower word from the stack, where the
actual integer is stored, into the R3.

During the emulation all double-word load/store are replaced with
single-word once, as our prototype FPU only contains 32-bit FPR. To
ensure that the lwz instruction gets the right value from the stack,
the displace value (disp) from the original stfd instruction has to be
adopted, i.e. increased by four (see Table A.1).

Table A.1: Floating-Point to Signed Integer
GCC Compiler =⇒ Prototype

fctiw FR2,FR1 fctiw FR2,FR1

stfd FR2,disp(R1) =⇒ stfs FR2,disp+4(R1)

lwz R3,disp+4(R1) lwz R3,disp+4(R1)

Before the emulation we parse the original source code for the
fctiw instructions. If the parser finds a conversion instruction it
replaces the according stfd instruction with a stfs instruction and
increases the displace value by four.

A.2 Integer to Floating-Point

In contrast to the previous conversion the PowerPC 440 ISA does not
provide a specific instruction for the conversion of an integer value
into single-precision floating-point value. The GCC compiler inserts
therefore a software routine. The routine first flips the integer sign bit
and places the result in the low-order part of a double-word in the pro-
gram stack. Afterwards the routine creates the high-order part with
sign and exponent fields such that the resulting double-word value in-
terpreted as a hexadecimal floating-point value is 0x1.00000dddddddd·
252. 0xdddddddd is the hexadecimal sign-flipped integer value. Then,
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the double-word is loaded as a floating-point value. Finally, the hex-
adecimal floating-point value 0x1.0000080000000 · 252 is subtracted
from the previous value to generate the result.

The code sequence in Table A.2 converts an integer in R3 to a
floating-point value in FR1.

Table A.2: Signed Integer to Floating-Point
GCC Compiler =⇒ Prototype

# FR2 = 0x4330000080000000

lis R0,0x4330 lis R0,0x4330

stw R0,disp(R1) stw R0,disp(R1)

xoris R3,R3,0x8000 =⇒ mr R3,R3

stw R3,disp+4(R1) stw R3,disp+4(R1)

lfd FR1,disp(R1) =⇒ lfs FR1,disp+4(R1)

fsub FR1,FR1,FR2 =⇒ fcfiw FR1,FR1

frsp FR1,FR1 =⇒ fmr FR1,FR1

In contrast to the real FPU our prototype coprocessor consists of
a special instruction to convert an integer to a floating-point (fcfiw).
Thus, for the emulation we have to make sure that the integer value
is loaded unchanged into a FPR. The xoris operation has to be
replaced by a dummy operation like a move operation mr (refer to
Table A.2). Before the emulation a parser checks for three things.
It observes whether the value 0x4330 is stored into the stack. Fur-
thermore, whether there is an fsub instruction followed by an frsp

instruction, which operates on the result of the subtraction. If these
conditions are fulfilled the parser replaces the xoris, fsub and frsp

with the according instructions like described in the example.
Also care has to be taken with the stack manipulation. The double-

word load instruction (lfd) is replaced with a single-word, thus the
displace value (disp) has to be increased by four as well.

The code sequence in Table A.3 converts an unsigned 32-bit integer
to a floating-point value. This code example is similar to the example
given for the signed case in Table A.2.

The floating-point value is constructed in the stack, as before,
but the sign bit is not flipped. For the subtraction the hexadecimal
floating-point value 0x1.0000000000000 · 252 is used to produce the
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result.

Table A.3: Unsigned Integer to Floating-Point
GCC Compiler =⇒ Prototype

# FR2 = 0x4330000000000000

lis R0,0x4330 lis R0,0x4330

stw R0,disp(R1) stw R0,disp(R1)

stw R3,disp+4(R1) stw R3,disp+4(R1)

lfd FR1,disp(R1) =⇒ lfs FR1,disp+4(R1)

fsub FR1,FR1,FR2 =⇒ fcfiw FR1,FR1

frsp FR1,FR1 =⇒ fmr FR1,FR1

The parser works the same as in the signed case except for the
xoris operation which is not used in this conversion.
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Patents§1. A. Döring, S. Dragone, A. Herkersdorf, R. Hofmann, and C.
Kuhlmann, Method and Apparatus for Using FPGA Technol-
ogy with a Microprocessor for Reconfigurable, Instruction Level
Hardware Acceleration, JP3900499, 2007-01-12§2. S. Dragone and A. Döring, Coupling a General Purpose Proces-
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Kuhlmann, Method and Apparatus for Using FPGA Technol-
ogy with a Microprocessor for Reconfigurable, Instruction Level
Hardware Acceleration, US7584345, 2009-09-01§5. A. Döring, S. Dragone, A. Herkersdorf, R. Hofmann, and C.
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