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Abstract
This thesis studies the treatment of graphs in a proof assistant and analyzes certi�cates for

planarity of graphs.

For a proof assistant to be of practical use, a comprehensive library of formalized mathematics

is crucial. Graph theory is often a weak point: isolated results have been formalized, but a

common vocabulary is missing.

This thesis describes a theory of directed graphs in the Isabelle/HOL proof assistant and

therefore provides such a common vocabulary. This theory is used for reasoning about directed

and undirected graphs. In particular, two planarity certi�cates are formalized.

The second contribution of this thesis is the veri�cation of programs checking these planarity

certi�cates. Tools dedicated to program veri�cation are weak when it comes to proving the

underlying theory of a program. On the other hand, proof assistants lack a convenient language

for the actual veri�cation. This gap is closed by a new technique for structuring proof obligations

arising from program veri�cation.

Zusammenfassung
Diese Dissertation befasst sich mit der Darstellung von Graphen in Theorembeweisern und

der formalen Analyse von Zerti�katen für Planarität.

Für die praktische Einsetzbarkeit eines Theorembeweisers ist eine umfassende Bibliothek

formalisierter Mathematik entscheidend. Graphentheorie ist hier häu�g ein Schwachpunkt:

Vereinzelte Resultate wurden formalisiert, aber es fehlt eine gemeinsame Basis.

Diese Arbeit beschreibt eine Formalisierung von gerichteten Graphen im Theorembeweiser

Isabelle/HOL und stellt damit eine solche gemeinsame Basis zur Verfügung. Diese Formalisierung

wird für Beweise über gerichtete und ungerichtete Graphen genutzt. Insbesondere werden zwei

Planaritätszerti�kate formalisiert.

Der zweite Beitrag dieser Arbeit ist die Veri�kation von Programmen, die ein solches Planari-

tätszerti�kat überprüfen. Eine Schwäche von dedizierten Werkzeugen zur Programmveri�kation

ist die Formalisierung der einem Programm zugrunde liegenden Mathematik. Auf der anderen

Seite fehlt Theorembeweisern eine geeignete Sprache für die eigentliche Veri�kation. Diese

Lücke wird durch eine neue Technik geschlossen, die es ermöglicht, die bei der Programmveri�-

kation entstehenden Beweisverp�ichtungen zu strukturieren.
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1. Introduction

Graph theory is an area of mathematics with a wide range of applications, in particular in

computer science. Its beginning as a �eld of mathematical studies dates back to Leonhard

Euler. The Königsberg bridge problem proved by Euler is perhaps one of the most well-known

problems in graph theory. A graph is commonly depicted as a set of vertices or nodes, connected

by edges. Drawing a graph on a piece of paper immediately poses the question whether this is

possible without edges crossing other edges, leading to the notion of planarity.

This thesis formalizes a theory of directed graphs and two de�nitions of planarity. It then

moves into the domain of algorithms and provides veri�ed implementations of programs

checking (non-)planarity certi�cates. A new technique for structuring proofs supports the

program veri�cation.

1.1. Outline

This thesis is structured as follows.

Chapter 2 presents a proof of the Girth-Chromatic Number theorem. It uses the probabilistic

method pioneered by Erdős [25] which is notable for deriving de�nite results by using

tools from probability theory. The results build on a very minimal formalization of

undirected graphs.

Chapter 3 introduces a library for reasoning about directed graphs. Building on a very general

representation of digraphs, it serves as the foundation for the rest of the thesis. It

also contains a characterization of directed Euler graphs and incorporates the result of

Chapter 2.

Chapter 4 formalizes two characterizations of planarity. I give a result for the relation between

these two characterizations and proof the correctness of a decision procedure for planarity.

Chapter 5 recapitulates the concept certifying algorithms. I formalize a certi�cate for the

non-planarity of graphs and verify two programs checking these certi�cates.

Chapter 6 considers proof obligations arising in program veri�cation. Such obligations are

unstructured and large, making their proofs hard to read and maintain. This chapter

introduces a method for structuring such proofs.

Chapter 7 completes the work of Chapter 5 with the veri�cation of a program checking

planarity certi�cates. The veri�cation serves as a case study for the method presented in

Chapter 6.

1



1. Introduction

Chapter 8 recapitulates the results and makes suggestions for future work.

The chapters are written to be read in chronological order. Exceptions are Chapter 2 and

Chapter 6, which are independent of the other chapters. Readers not interested in the technical-

ities of program veri�cation can skip Chapter 6, while readers only interested in my method for

structured program veri�cation proofs may con�ne themselves to Chapter 6 and Chapter 7.

All results have been formalized or implemented in the Isabelle/HOL proof assistant.

1.2. Publications

This thesis builds upon the following four publications, ordered chronologically:

[65] Lars Noschinski. “Proof Pearl: A Probabilistic Proof for the Girth-Chromatic

Number Theorem”. In: Interactive Theorem Proving. LNCS. 2012

[67] Lars Noschinski, Christine Rizkallah, and Kurt Mehlhorn. “Veri�cation of Certi-

fying Computations through AutoCorres and Simpl”. In: NASA Formal Methods.
LNCS. Apr. 2014, pp. 46–61

[60] Lars Noschinski. “A Graph Library for Isabelle”. In: Mathematics in Computer
Science 9.1 (June 2014), pp. 23–39

[66] Lars Noschinski. “Towards Structured Proofs for Program Veri�cation (Ongoing

Work)”. Isabelle Workshop (Interactive Theorem Proving). 2014

Chapter 2 is based on [65] and Chapter 3 extends [60]. I reuse parts of [67] with the permission

of Christine Rizkallah and Kurt Mehlhorn for Chapter 5. An early prototype of the technique

described in Chapter 6 has been presented at the Isabelle Workshop at ITP 2014 [66]. The results

in Chapter 4 and Chapter 7 have not been published before.

All results have been proven (or, for Chapter 6, implemented) in the Isabelle/HOL theorem

prover. Most of these formalizations have been published in the Archive of Formal Proofs (AFP).

[61] Lars Noschinski. “A Probabilistic Proof of the Girth-Chromatic Number Theorem”.

In: Archive of Formal Proofs (Feb. 2012). Formal proof development

[63] Lars Noschinski. “Graph Theory”. In: Archive of Formal Proofs (Apr. 2013). Formal

proof development

[62] Lars Noschinski. “Generating Cases from Labeled Subgoals”. In: Archive of Formal
Proofs (July 2015). Formal proof development

[64] Lars Noschinski. “Planarity Certi�cates”. In: Archive of Formal Proofs (Oct. 2015).

Formal proof development

The veri�cation of the C implementation in Chapter 5 has not yet been published in the AFP,

as it has external dependencies not yet included in the AFP.
1

1
For now, the veri�cation of theC implementation is available at h�p://www21.in.tum.de/~noschinl/Non_Planarity_

Certificate/.
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1.3. Isabelle/HOL

1.3. Isabelle/HOL

All chapters of this thesis are concerned with formalizing (or implementing) a result in Is-

abelle/HOL. Isabelle/HOL (or just Isabelle) is a proof assistant based on polymorphic higher-

order logic [58], following the LCF tradition. That is, every theorem accepted by Isabelle

follows from the axioms of the logic and a few primitive inference rules. If one trusts the kernel

implementing these inferences, one can be con�dent that the derived theorems are correct.

I mostly use standard mathematical notation with a few changes as described below. Variables

are written in an italic font and constant and function symbols in sans-serif. HOL types include

type variables (α , β, . . .), function types (α → β), tuples (α × β), sets (α set), lists (α list), and

number types (N, R). The type α of a term t is indicated as t : α and function application is

written f t . To apply a function f : α → β pointwise to a set X : α set, I use the notation

f X B { f x | x ∈ X }.

List variables usually are named xs, ys and so on. Lists are constructed from Nil ([]) and Cons

(x :: xs) and list literals are denoted by [x1, . . . ,n ]. Concatenation of lists is written xs ++ ys, and

hd and tl decompose a list such that hd (x ::xs) = x and tl (x ::xs) = xs. The expression map f xs
applies the function f to every element of a list xs and set xs refers to the set of elements of xs.
As on sets, x ∈ xs is the membership test and xs \ ys is the list derived from xs by removing all

elements of ys. For a single element list, I also write xs \ x instead of xs \ [x].
New types can be de�ned as subsets of other types (typedef), as records (i.e., tuples with

named �elds, record), or inductively (datatype). I write record literals as tuples and the selector

functions have the same name as the �eld. The logical connectives follow the standard notation

from mathematics. Lemmas are denoted [[P1; . . . ; Pn]] =⇒ Q where P1, . . . , Pn are premises

and Q is the conclusion. The [[ . . . ]] notation is shorthand for P1 =⇒ . . . =⇒ Pn =⇒ Q .

Terms bound by λ-abstraction or a quanti�er extend as far to the right as possible.

The two reasoning styles commonly used in Isabelle are rewriting and natural deduction.

Rewriting is mostly performed with the simpli�er, which uses conditional equations and dis-

charges the conditions again by simpli�cation. Natural deduction rules are applied by hand or

by one of various classical reasoning tools. Isabelle’s most popular proof methods combine both

styles. The proof tools can be con�gured to solve common goals automatically by declaring

appropriate rules as simpli�cation rules (for rewriting) or introduction or elimination rules (for

natural deduction).

Locales Isabelle provides locales [6] for modularization of locales. They allow to structure

formal proof developments by providing a local collection of constants and assumptions, as in

the example below:

locale L = fixes c : τ assumes P c
locale K = fixes d : τ assumes Q d

The �rst command declares a new locale L with a local constant c of type τ and introduces a

local assumption P c . All type variables occurring in τ are also �xed locally. The number of

constants and assumptions is arbitrary. The �xed constants are called the parameters of the

locale. Once de�ned, a locale can be extended with theorems and de�nitions, relying implicitly

3



1. Introduction

on the locale parameters and assumptions. We can also declare a locale inheriting from another

locale:

locale L′ = L + fixes c ′ : τ ′ assumes P ′ c c ′

The parameters of L′ are c and c ′, and the assumptions P c and P ′ c c ′. The locale L′ also inherits

all the theorems and de�nitions from L.

It is possible to access the theorems and de�nitions in a locale from the outside. In this case,

the locale assumptions become explicit assumptions of the theorems and locale parameters

(and type variables) are universally quanti�ed. For constants de�ned in the locale, the locale

parameters are now passed explicitly. To improve clarity, such parameters will be denoted as a

subscript (if not clear from the context).

To apply a locale to concrete parameters, it can be interpreted. An interpretation of L instanti-

ates the parameter c with a concrete value t . Moreover, one can give arbitrary equations s = s ′

to re�ne the interpretation. After proving that P t and the additional equations hold, all the

lemmas of L become available as in the locale, with c instantiated to t and s rewritten to s ′. An

embedding is an interpretation of a locale in another locale. The command

sublocale K ⊆ L t where s = s ′

embeds K into L, instantiating d with t and replacing s by s ′. The terms t , s, s ′ may contain the

parameters of K.

4



2. A Probabilistic Proof of the
Girth-Chromatic Number Theorem

The Girth-Chromatic number theorem is a theorem from graph theory, stating that graphs with

arbitrarily large girth and chromatic number exist. In this chapter, I formalize a probabilistic

proof of this theorem in the Isabelle/HOL theorem prover, closely following a standard textbook

proof, and use this to explore the use of the probabilistic method in a theorem prover. An earlier

version of this article was published in the proceedings of the ITP 2012 [65].

A common method to prove the existence of some object is to construct it explicitly. The

probabilistic method, which I explain below, is an alternative if an explicit construction is hard.

In this paper, I explore whether the use of the probabilistic method is feasible in a modern

interactive theorem prover. Consider the Girth-Chromatic Number theorem from graph theory.

The girth д is the size of the shortest cycle in the graph. The chromatic number χ of a graph is

the minimal number of colors which is needed to color the vertices in a way such that adjacent

vertices have di�erent colors. The Girth-Chromatic number theorem then states that there are

graphs with a large girth and a high chromatic number, i.e., for an arbitrary natural number `

there exists a graph G with both χ G > ` and д G > `. On a �rst glance, these properties seem

contradictory: For a �xed number of vertices, the complete graph containing all edges has the

largest chromatic number. On the other hand, if the cycles are large, such a graph is locally

acyclic and hence locally 2-colorable. This discrepancy makes it hard to inductively de�ne a

graph satisfying this theorem.

Indeed, the �rst proof of this theorem given by Erdős [25] used an entirely non-constructive

approach: Erdős constructed a probability space containing all graphs of order n. Using tools

from probability theory he then proved that, for large enough n, randomly choosing a graph

yields a witness for the Girth-Chromatic Number theorem with a non-zero probability. Hence,

such a graph exists. It took 9 more years before a constructive proof was given by Lovász [48].

This use of probability theory is known as probabilistic method. Erdős and Rényi are often

considered the �rst conscious users of this method and developed it in their theory of Random

Graphs [13, 26]. Other applications include Combinatorics and Number Theory. In this work, I

explore how well this technique works in a modern theorem prover.

The well-known Girth-Chromatic Number theorem is one of the early applications of Random

Graphs and often given as an example of applications of the probabilistic method. The proof

presented here follows the one given by Diestel [18]. The Isabelle/HOL theory �les of this

formalization can be found in the Archive of Formal Proofs [61].

This chapter is structured as follows: Section 2.1 de�nes basic graph properties and opera-

tions and Section 2.2 introduces a probability space on graphs. In Section 2.3, I describe how

asymptotic properties are handled. Section 2.4 gives a high-level description of the proof of the

Girth-Chromatic Number theorem before the formal proof is described in Section 2.5. I re�ect

5



2. A Probabilistic Proof of the Girth-Chromatic Number Theorem

on this formalization and review related work in Section 2.6.

2.1. Modeling Graphs

I consider undirected and loop-free graphs G = (V ,E). V and E are sets of vertices and edges,

respectively. Edges are represented as sets of vertices. A loop is an edge from a vertex to itself,

that is a singleton set {u}. I assume that V ⊆ N. Although I do not explicitly require graphs to

be �nite, only �nite graphs are relevant in this formalization.

I use VG and EG to refer to the vertices and edges of a graph G. The order of a graph is the

cardinality of its vertex set. A graph is called wellformed, if every edge connects exactly two

distinct vertices of the graph. This is expressed by the following predicate:

wellformedG B (∀e ∈ EG . |e | = 2 ∧ e ⊆ VG )

A walk is a sequence of vertices such that consecutive vertices are connected by an edge. I

represent walks as non-empty lists of vertices and de�ne the edge list of a walk recursively. The

length of a walk (denoted by | | · | |) is the length (denoted by | · |) of its edge list. A cycle is a

closed walk with at least three edges where each vertex occurs at most once (cycles with length

2 are uninteresting, because the same edge is used twice). It is represented as a walk where �rst

and last vertex are equal, but each other vertex occurs at most once. Note that a cycle of length

k can be represented by 2k di�erent walks.

walk-edges [] B []

walk-edges [x] B []

walk-edges (x :: y :: xs ) B {x ,y} :: walk-edges (y :: xs )

| |p | | B |walk-edges p |

walksG B {p | p , [] ∧ set p ⊆ VG ∧ set (walk-edges p) ⊆ EG }

cyclesG B {p ∈ walksG | 3 ≤ ||p | | ∧ distinct (tl p) ∧ hd p = last p}

The girth д of a graph is the length of its shortest cycle; the girth of a graph without cycles

will be denoted by ∞. The set of natural numbers extended with ∞, denoted N∞, forms a

complete lattice, so the girth of a graph can be de�ned as the in�mum of the length of its cycles:

д G B inf

p∈cyclesG
| |p | |

A vertex coloring is a partition of the vertices of a graph, such that adjacent vertices are in

di�erent subsets. The chromatic number χ is the size of the smallest such partition. The power

set of X is written 2
X

.

coloringsG B {C ⊆ 2
VG |

⋃
C = VG
∧ (∀V1,V2 ∈ C .V1 , V2 =⇒ V1 ∩V2 = ∅)

∧ (∀V ∈ C .V , ∅ ∧ (∀u,v ∈ V . {u,v} < EG ))}

χ G B inf

C ∈coloringsG
|C |

6



2.1. Modeling Graphs

These de�nitions su�ce to state the Girth-Chromatic Number theorem. For an arbitrary ` ∈ N

holds:

∃G . wellformedG ∧ ` < χ G ∧ ` < д G

However, a few auxiliary de�nitions are needed; most notably the notion of an independent set

and the independence numberα . Two verticesu,v ∈ VG are independent ifu , v and {u,v} < EG .

A set V ⊆ VG is an independent set if and only if all the vertices in V are independent. The

independence number α is the size of the largest independent set.

EV B {{u,v} | u,v ∈ V ∧ u , v}

independent-setsG B {V ⊆ VG | EV ∩ EG = ∅}
α G B sup

V∈independent-setsG
|V |

Here, EV is the set of all (non-loop) edges on V . I also write En for E{1, ...,n }. Note that each

coloring is a disjoint union of independent sets. This gives us a lower bound for the chromatic

number:

Lemma 2.1 (Lower Bound for χ G). For all graphs G, |G |/α G ≤ χ G.

Proof. A vertex coloring is a partition of G and a disjoint union of non-empty independent sets.

The size of these sets is bounded by α G and hence a vertex coloring consists of at least |G |/α G
sets. �

Removing Short Cycles Besides the usual graph theoretic de�nitions, we will need an

operation to remove all short cycles from a graph. For a number k , a short cycle is a cycle with

length at most k :

short-cycles (G,k ) B {c ∈ cyclesG | | |c | | ≤ k }

We remove the short cycles by repeatedly removing a vertex from a short cycle until no short

cycle is left. To remove a vertex from a graph, all edges adjacent to this vertex are also removed.

G − {u} B (VG \ {u},EG \ {e ∈ EG | u ∈ e})

choose-v (G,k ) B ε (λu . ∃p ∈ short-cycles (G,k ). u ∈ p)

kill-short (G,k ) B



∅ if short-cycles (G,k ) = ∅
kill-short (G − {choose-v (G,k )},k ) else

(2.1)

To select an arbitrary vertex, I use Hilbert’s choice operator ε . Given a predicate P , the

expression ε P denotes some element satisfying P , if such an element exists, or an arbitrary

element from the domain of P otherwise.

Equation (2.1) describes a recursive function which does not terminate on some in�nite

graphs. However, an (underspeci�ed) function with these equation can easily be de�ned by the

partial_function command of Isabelle. To prove some properties about the graphs computed

by kill-short, a specialized induction rule is useful.

7



2. A Probabilistic Proof of the Girth-Chromatic Number Theorem

Lemma 2.2 (Induction rule for kill-short). Let k be a natural number. If for all graphs H both

short-cycles (H ,k ) = ∅ =⇒ P (H ,k )

and

finite (short-cycles (H ,k )) ∧ short-cycles (H ,k ) , ∅
∧ P (H − {choose-v (H ,k )}) =⇒ P (H ,k )

hold, then P (G,k ) holds for all �nite graphs G.

The canonical induction principle for kill-short has finite H as premise for the second rule.

Replacing this premise with finite (short-cycles (G,k )) strengthens the induction hypothesis

and makes the induction principle more convenient, for example to prove Lemma 2.5 below.

With this induction rule, one can easily prove the following theorems about kill-short for �nite

graphs G:

Lemma 2.3 (Large Girth). The girth of kill-short (G,k ) exceeds k , i.e.,

k < д (kill-short (G,k )).

Lemma 2.4 (Order of Graph). kill-short (G,k ) removes at most as many vertices as there are
short cycles, i.e.,

|VG | − |Vkill-short (G,k ) | ≤ |short-cycles (G,k ) | .

Lemma 2.5 (Independence Number). Removing the short cycles does not increase the indepen-
dence number, i.e., α (kill-short (G,k )) ≤ α G.

Proof. Removing a vertexv does not increase the independence number: two vertices ofG − {v}
are adjacent if and only if they are adjacent in G. �

Lemma 2.6 (Wellformedness). Removing short cycles preserves wellformedness, i.e.,

wellformedG =⇒ wellformed (kill-short (G,k )).

2.2. Probability Space

There are a number of di�erent probability models which are commonly used for the analysis

of random graphs. To prove the Girth-Chromatic number theorem, I consider a series of

probability spaces Gn of graphs of order n, for n going to in�nity. Gn consists of all graphs G
with VG = {1, . . . ,n} and EG ⊆ En . A randomly chosen graph G ∈ Gn contains an edge e ∈ En
with probability pn . AsVG is �xed to {1, . . . ,n}, a graphG ∈ Gn is uniquely de�ned by its edges;

so instead of a space of graphs Gn , I de�ne a space En of edge sets. This turns out to be slightly

more convenient.

To de�ne such a probability space in a canonical way, for each edge in En one de�nes a

probability space on {0, 1}, such that 1 occurs with probability pn and 0 occurs with probability

1 − pn . Then, Gn is identi�ed with the product of these probability spaces.
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2.3. Handling Asymptotics

This construction is supported by Isabelle’s extensive library on probability theory [37].

However, the elements of the product space of probability spaces are functions 2
2
N
→ {0, 1}

which are only speci�ed on En . Identifying these with edge sets triggers some amount of friction

in a theorem prover. To avoid this, I construct a probability space on edge sets without using

the product construction. This is easily possible as En is �nite for all n.

For the de�nition of En , consider the following: in the setting above, the probability that a

randomly chosen edge set contains a �xed edge e is pn , the probability of the negation is 1 − pn .

The probabilities of the edges are independent, so the probability that a randomly chosen edge

set is equal to a �xed set E ⊆ En is p |E |n · (1 −pn )
|En−E |

, i.e., the product of the edge probabilities.

Definition 2.7 (Probability Space on Edges). Let n ∈ N and q ∈ R with 0 ≤ q ≤ 1. Let
f E = q |E | · (1 − q) |En−E | for all E ∈ 2

En . Lift f to sets of edges by Pn,q S =
∑

E∈S f E for all
S ⊆ 2

En . Then En,q = (2En ,Pn,q ) is the probability space with domain En and probability function
Pn,q . When a function p : N → R is given from the context, we also write En and Pn for En,p n
and Pn,p n .

Isabelle’s probability library provides a locale for probability spaces. One option to specify

such a space is by giving a �nite domain X and a probability function µ with the following

properties: For each x ∈ X holds 0 ≤ µ x and

∑
x ∈D µ x = 1. When we can show that those

two properties hold for X = 2
En

and µ = Pn in De�nition 2.7, then Isabelle’s locale mechanism

transfers all lemmas about probability spaces to En . In particular, the following lemma is needed:

Lemma 2.8 (Markov’s Inequality). Let P = (X , µ ) be a probability space, c ∈ R and f : X → R
such that 0 < c and for all x ∈ X holds 0 ≤ f x . Then

µ {x ∈ X | c ≤ f x } ≤ 1/c ·
∑
x ∈X

f x · µ {x }.

Obviously 0 ≤ Pn . Hence, En is a probability space by the following lemma.

Lemma 2.9 (Sum of Probabilities Equals 1). Let S be a �nite set. Then for all 0 ≤ p ≤ 1 holds

*
,

∑
A⊆S

p |A | · (1 − p) |S−A |+
-
= 1.

A similar lemma describes the probability of certain sets of edge sets.

Lemma 2.10 (Probability of Cylinder Sets). Let n and q such that En,q is a probability space
and cyln (A,B) B {E ⊆ En | A ⊆ E ∧ B ∩ E = ∅} the set of all edge sets containing A but not B.
Then Pn,q (cyln (A,B)) = q |A | · (1 − q) |B | for all disjoint A,B ⊆ En .

2.3. Handling Asymptotics

As mentioned in Section 2.2, we consider a series of probability spaces. In many cases, it su�ces

if a property P holds after a �nite number of steps, i.e., ∃k . ∀n > k . P n. Often, one can avoid

dealing with these quanti�ers directly. For example, to prove

(∃k1. ∀n > k1. P n) ∧ (∃k2. ∀n > k2.Q n) =⇒ ∃k3. ∀n > k3. R n

9



2. A Probabilistic Proof of the Girth-Chromatic Number Theorem

it su�ces to show ∃k . ∀n > k . P n ∧ Q n =⇒ R n or even ∀n. P n ∧ Q n =⇒ R n instead.

However, such a rule would be inconvenient to use in practice, as proof automation tends

to destroy the special form of the quanti�ers. This can be prevented by using a specialized

constant instead of the quanti�ers. In Isabelle, such a constant (with suitable lemmas) is already

available in the form of �lters [14] and the eventually predicate. Filters generalize the concept

of a sequence and are used in topology and analysis to de�ne a general notion of convergence;

they can also be used to express quanti�ers [11]. In rough terms, a �lter is a non-empty set of

predicates closed under conjunction and implication and eventually is the membership test. I

use eventually with the �lter

sequentially B {P | ∃k . ∀n > k . P n}

as kind of a universal quanti�er. This �ts nicely Isabelle’s de�nition of a limit:

lim

n→∞
f n = c ⇐⇒ ∀ε > 0. eventually (λn. | f n − c | < ε ) sequentially

The formula ∃k . ∀n > k . P n is equivalent to eventually P sequentially. I will denote this as

∀∞n. P n or write “P n holds for large n”. The following three rules enable us to reason about

eventually as described above:

∀n. k < n =⇒ P n

∀∞n. P n
(eventually-sequentiallyI )

∀∞n. P n ∀∞n. P n =⇒ Q n

∀∞n.Q n
(eventually-rev-mp)

∀∞n. P n ∀∞n.Q n ∀n. (P n ∧Q n) =⇒ R n

∀∞n. R n
(eventually-elim2)

Apart from rule eventually-sequentiallyI , these hold for the eventually predicate in general. The

rule eventually-elim2 is actually just a convenience rule, which can be easily derived from the

other two rules by dropping the condition k < n.

2.4. Proof Outline

I now give a high-level outline of the proof. Let ` be a natural number. Recall the statement of

the Girth-Chromatic Number theorem:

∃G . wellformedG ∧ ` < χ G ∧ ` < д G

Instead of working with the chromatic number, we will use the independence number α . By

Lemma 2.1, it su�ces to show

∃G . wellformedG ∧ α G < |G |/` ∧ ` < д G

to prove the Girth-Chromatic Number theorem. Estimating probabilities for α is easier than for

χ as an independent set is a cylinder set, cf. Lemma 2.10.
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2.5. The Proof

The basic idea of the probabilistic proof is to show that, for large enough n, a randomly graph

G ∈ Gn (respectively set of edges E ∈ En) has the desired properties with a non-zero probability.

A reasonable approach would be to search for a probability function pn , for which one can show

Pn {G | д G ≤ `} + Pn {G | α G ≥ n/`} < 1. This would imply that a graph G satisfying neither

дG ≤ ` nor χ G ≤ ` exists. Such a graphG would satisfy the Girth-Chromatic number property.

It turns out that a probability function with this property does not exist [18].

However, this idea can be salvaged: Instead of searching for a graph which satis�es the

Girth-Chromatic Number property, we search for a graph which almost has this property, i.e.,

we allow a small number of short cycles. By choosing pn correctly, we can show the following

property

Pn {G | n/2 ≤ |short-cycles (G, `) |} + Pn {G | 1/2 · n/` ≤ α G} < 1

and obtain a graph with at most n/2 short cycles and an independence number less than 1/2 ·n/`
(i.e., 2` < χ G by Lemma 2.1). From this graph, we remove a vertex from every short cycle. The

resulting graph then has large girth and the chromatic number is still large.

2.5. The Proof

As a �rst step, we derive an upper bound for the probability that a graph has at least 1/2 · n/k
independent vertices. The syntax Gn,E is a shortcut for the graph ({1, . . . ,n},E)

Lemma 2.11 (Probability for many Independent Edges). Given n,k ∈ N such that 2 ≤ k ≤ n,
we have

Pn {E ⊆ En | k ≤ α Gn,E } ≤

(
n

k

)
(1 − pn ) (

k
2
) .

Proof. Holds by a simple combinatorial argument and Lemma 2.10. �

Lemma 2.12 (Almost never many Independent Edges). Assume that 0 < k and ∀∞n. 0 <
pn ∧ pn < 1. If in addition ∀∞n. 6k · lnn/n ≤ pn holds, then there are almost never more then
1/2 · n/k independent vertices in a graph, i.e.,

lim

n→∞
Pn {E ⊆ En | 1/2 · n/k ≤ α Gn,E } = 0

Proof. With Lemma 2.11. �

Then we compute the expected number of representatives of cycles of length k in a graph.

Together with Markov’s Lemma, this will provide an upper bound of

Pn {E ∈ En | n/2 ≤ |short-cycles (Gn,E , `) |}.

Lemma 2.13 (Mean Number of k-Cycles). If 3 ≤ k < n, then the expected number of paths of
length k describing a cycle is

*.
,

∑
E∈En

���{c ∈ cyclesGn,E | k = | |c | |}
��� · Pn {E}

+/
-
=

n!

(n − k )!
· pk

11



2. A Probabilistic Proof of the Girth-Chromatic Number Theorem

We arrive at our �nal theorem:

Theorem 2.14 (Girth-Chromatic Number). Let ` be a natural number. Then there is a (well-
formed) graph G, such that ` < д G and ` < χ G:

∃G . wellformedG ∧ ` < д G ∧ ` < χ G

To prove this, we �x pn = n
ε−1

where ε = 1/(2`) and assume without loss of generality that

3 ≤ `. These assumptions hold for all of the following propositions. With Lemma 2.13, we can

derive an upper bound for the probability that a random graph of size n has more than n/2
short cycles:

Proposition 2.15.

∀∞n. Pn {E ⊆ En | n/2 ≤ |short-cycles (Gn,E , `) |} ≤ 2(` − 2)nε`−1

As this converges to 0 for n to in�nity, eventually the probability will be less than 1/2:

Proposition 2.16.

∀∞n. Pn {E ⊆ En | n/2 ≤ |short-cycles (Gn,E , `) |} < 1/2

Similarly, with these choices, the conditions of Lemma 2.12 are satis�ed:

Proposition 2.17.
∀∞n. Pn {E ⊆ En | 1/2 · n/` ≤ α Gn,E } < 1/2

Therefore, the sum of these probabilities will eventually be smaller than 1 and hence, with

a non-zero probability, there is a graph with only few short cycles and a small independence

number:

Proposition 2.18. There exists a graph G ∈ Gn with a small independence number and a small
number of short cycles, i.e., 1/2 · n/` > α G and n/2 > |short-cycles (G, `) |.

Removing the short cycles turns this graph into a witness for the Girth-Chromatic Number

theorem. This completes the proof of Theorem 2.14.

Proposition 2.19. Let G be a graph obtained from Proposition 2.18. Then the graph H B

kill-short (G, `) satis�es ` < д H and ` < χ H . Moreover, H is wellformed.

Proof. By Lemmas 2.3–2.6 and 2.1. �

Actually, we almost proved an even stronger property: The probabilities in Proposition 2.16

and Proposition 2.17 converge both to 0, so almost all graphs satisfy the condition of Propo-

sition 2.18. Hence, almost every graph can be turned into a witness for the Girth-Chromatic

Number theorem by removing the short cycles. This is typical for many proofs involving the

probabilistic method.
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2.6. Discussion

2.6. Discussion

In this chapter, I formally proved the Girth-Chromatic Number theorem from graph theory,

closely following the text book proof. The whole proof consists of just 84 theorems (1439 lines

of Isabelle theories), split into three �les and is therefore quite concise. Around 41 of these

lemmas are of general interest, reasoning about reals with in�nity and some combinatorial

results. Partly, these have been added to the Isabelle distribution. Moreover, 18 lemmas are

given about basic graph theory and the core proof of the theorem consists of the remaining

25 lemmas (around 740 lines). For the core proof, I mostly kept the structure of the text book

proof, so auxiliary propositions only needed for one lemma are not counted separately.

The result looks straightforward, but there are some design choices I like to discuss. In an

early version of this formalization, edges were represented by an explicit type of two-element

sets. However, it turned out that this made some proof steps a lot more complicated: Isabelle

does not support subtyping, so de�ning a two-element-set type yields a new type disjoint from

sets with a partial type constructor. When one needs to refer to the vertices connected by an

edge, this partiality makes reasoning harder. This easily o�sets the little gain an explicit edge

type gives in our setting (wellformedness is only explicitly required in two theorems). Indeed,

Erdős and Hajnal [23] have shown that the theorem can be generalized to hypergraphs or set

systems.

One should note that our de�nition of the chromatic number is not as obviously correct as

it appears from the �rst glance: for an in�nite graph G, χ G = 0. This is due to the standard

de�nition of cardinality in Isabelle mapping in�nite sets to 0. I decided not to care about this, as

this formalization is only about �nite graphs (and the �nal theorem assures a positive chromatic

number anyway).

The main reason I decided to useN∞ instead ofNwas to be able to give a natural de�nition of

the girth – without in�nity, an extra predicate to handle the “no cycles” case would be necessary.

A nice side e�ect is that α and χ are easier to handle, as in�mum and supremum are also de�ned

on empty and in�nite sets. However, as a result of this choice, real numbers including in�nity

(R∪ {∞,−∞}) are needed. If these had not been already available as a library, it would probably

have been easier to avoid in�nity altogether and special-case the girth of acyclic graphs.

The use of eventually turned out to be quite rewarding. For the proofs for Lemma 2.12 and

the propositions for Theorem 2.14, I quite often collect a number of facts holding for large n
and eliminate them like in Section 2.3. This allowed for more elegant proofs, as it removed the

need of keeping track of irrelevant lower bounds.

Now, which capabilities are needed to use the probabilistic method in a theorem prover?

Obviously some amount of probability theory. Di�erent fragments of probability theory are now

formalized in many theorem provers, including HOL4, HOL-light, PVS, Mizar and Isabelle [22, 37,

41, 47, 54]. Surprisingly, for the proof presented here, not much more than Markov’s Inequality

is required. For other proofs, more stochastic vocabulary (like variance and independence) is

needed. One example of such a proof was formalized by Hupel [40], which builds upon the

probability spaces de�ned in this formalization.

If one makes the step from �nite to in�nite graphs (for example to prove the Erdős-Rényi

theorem that almost all countably in�nite graphs are isomorphic [24, 68]), in�nite products of

probability spaces are required. To our knowledge, the only formalization of these is found in
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2. A Probabilistic Proof of the Girth-Chromatic Number Theorem

Isabelle [37].

Furthermore, good support for real arithmetic including powers, logarithms and limits is

needed. Isabelle has this, but proving inequalities on complex terms remains tedious as often

only very small proof steps are possible. However, the calculational proof style [10] (inspired

by Mizar) is very helpful here.

In the future, an automated reasoner for inequalities over real-value functions like Meti-

Tarski [1] might be useful. However, the set of a few example inequalities from our proof which

L. Paulson kindly tested for me was outside the reach of MetiTarski.

Related Work Proofs with the probabilistic method often lead to randomized algorithms.

Probably the �rst formalization in this area is Hurd’s formalization of the Miller-Rabin primality

test [42]; other work on this topic is available in Coq [4]. A constructive proof of a theorem

similar to the Girth-Chromatic Number theorem was formalized by Rudnicki and Stewart in

Mizar [70].

There are a few general formalizations of undirected graphs available in various theorem

provers, for example [15, 16, 45]; but often proof developments rather use specialized formal-

izations of certain aspects of graph theory [30, 57] to ease the proof. For the Girth-Chromatic

Number theorem, the common de�nition of graphs as pairs of vertices and edges seems quite

optimal. The Girth-Chromatic Number theorem does not rely on any deep properties about

graphs and the formalization of graphs we give here is rather straightforward. In Chapter 3 I

present a general graph library for directed graphs in Isabelle/HOL. Directed graphs can be used

to model undirected graphs, so I will discuss in Section 3.5 how the Girth-Chromatic Number

theorem can be transferred to the setting of this library.

Conclusion I gave a concise (and, to my knowledge, the �rst) formal proof for the well-known

Girth-Chromatic Number theorem and explored the use of the probabilistic method in a theorem

prover, which worked well for this theorem. It will be interesting to see whether this continues

to hold true for more involved theorems. An interesting example for this could be Lovász Local

Lemma: Many probabilistic proofs show not only that the probability is non-zero, but even that

it tends to 1 for large graphs. The Local Lemma can be used to show that a property holds with

a positive, but very small probability. This enables some combinatorical results, for which no

proof not involving this lemma is known [3].
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In contrast to other areas of mathematics such as calculus, number theory, or probability theory,

there is currently no standard library for graph theory in the Isabelle/HOL proof assistant. I

present a formalization of directed graphs and essential related concepts. The library supports

general in�nite directed graphs (digraphs) with labeled and parallel arcs, but care has been

taken not to complicate reasoning on more restricted classes of digraphs.

I use this library to formalize a characterization of Euler Digraphs. An earlier version of this

chapter has been published in Mathematics in Computer Science [60].

3.1. Introduction

Modern proof assistants usually include a library covering many areas of mathematics. The

formalizations in these libraries serve as a common basis for proof developments, enabling the

user to reuse results proved by others, and also keeping the developments aligned. For graph

theory, despite its many applications, the situation is a di�erent: no standard formalization has

evolved yet.

In the HOL family of proof assistants, there have been a number of formalizations of speci�c

graph-theoretic algorithms and results, but none has evolved into a general library. The

formalization of Dijkstra’ shortest path algorithm in Isabelle/HOL [59] covers only the essentials

needed for this algorithm. Wong’s work on railway networks in HOL [83] covers walks, trails,

paths, degrees, union and operations to insert or delete vertices and arcs. However, I am not

aware of any work building upon it. Chou [16] formalizes undirected graphs in HOL, including

concepts like walks, paths, trails, reachability, connectedness, bridges, and rooted trees, as

well as operations to combine graphs while preserving tree-ness. A similar set of notions

is formalized in Coq by Duprat [21], using an inductive graph de�nition. The NASA PVS

libraries cover both undirected and directed graphs, but do not consider parallel arcs [15]. Mizar

contains a comparatively large amount of graph theory, which is however split on six di�erent

formalizations of graphs. This covers formalizations of the algorithms by Dijkstra, Prim and

Ford-Fulkerson, as well as a characterization of undirected Euler graphs[56]. Planar graphs have

been formalized in the Flyspeck project[57] and in the proof of the Four-Color-Theorem[30],

using specialized graph representations.

In this article, I present a formalization of directed graphs in Isabelle/HOL. This is the �rst

attempt at a general graph library for this proof assistant. In part, my formalization resembles

the one chosen by Wong [83] for his work on railway networks. My formalization works in a

more abstract setting, which enables re-use in di�erent applications. In particular, it allows the

user to choose a graph implementation depending on the needs of the application.

The contribution of my work is a comprehensive set of basic graph theory vocabulary. The

library is general enough to reason about all common classes of directed graphs, including those
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with parallel and labeled arcs. This work has been motivated by the veri�cation e�ort on the

LEDA graph library [52]. The LEDA library contains a number certifying graph algorithms

and my library has been successfully used to verify the certi�cates generated by some of these

algorithms (see [2, 67, 69], Chapter 5, and Chapter 7).

A major goal of this formalization is to enable convenient reasoning about digraphs, including

good proof automation. For this reason, I emphasize the choice of an appropriate representation

of digraphs and walks. For e�cient proving it is important that the proof heuristics can solve

frequently occurring proof obligations automatically. Therefore, I stress where the aim of

better automation leads to a particular formulation. As a particular challenge, graph theory

distinguishes between simple digraphs (without parallel arcs) and multi-digraphs (with parallel

arcs). Textbooks often prefer the former, as they are easier to handle. Many applications, on

the other hand, use or allow the use of parallel arcs. My goal is that the option to work with

multi-digraphs should not increase the proof e�ort needed on digraphs.

Based on a representation of directed multi-graphs, I have formalized the concepts of �nite,

loop-free and simple digraphs, walks, paths, cycles, (symmetric) reachability, isomorphisms,

degree of vertices, (induced) subgraphs, (strong) connectedness and connected components,

and trees and spanning trees. I also provide operations for the union of graphs, adding and

removing arcs and vertices, and many lemmas to combine these concepts. As a case study,

I have formalized a characterization of directed Euler trails. In later chapters, I also use this

library to present some results on planarity. Moreover, this library has been used to formalize

cycle checking algorithms in [27] and in the veri�cation of checkers for certifying algorithms

in the LEDA graph library. The library is available in the Archive of Formal Proofs [63]. The

formalization described here consists of around 6500 lines of Isabelle theories.

The chapter is organized as follows: Section 3.2 describes the representation of digraphs

and discusses possible alternatives. Section 3.3 contains a selection of formalized concepts and

Section 3.4 presents a case study about Euler digraphs. Section 3.5 investigates the interoper-

ability with other formalizations of graph theory. The chapter concludes with a discussion of

the results in Section 3.6.

3.2. Representation

In this section, I present some representations of digraphs and discuss alternatives. For graph

theoretic terms and de�nitions, I mostly follow Bang-Jensen and Gutin [7]. I will note where the

de�nitions deviate. A digraph consists of vertices V and arcs A. An arc connects two vertices,

going from the tail (or source) to the head (or target). Common representations of arcs are

A ⊆ V ×V for simple digraphs or A ⊆ V × L ×V for multi-digraphs, where L is some set of

labels.

I represent a digraph as a 4-tuple (V ,A, t ,h), whereA is a set of abstract values and t ,h : A→ V
map an arc to its tail resp. head. This formulation is also found in some textbooks [77].

Definition 3.1 (Type of directed graphs). A directed graph is a 4-tuple:

record (β ,α ) dg = verts : β set, arcs : α set, tail : α → β, head : α → β
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I abbreviate verts G, arcs G, tail G u with VG , AG , ut,G , and uh,G , respectively. Two graphs are
compatible if the projection functions are extensionally equal.1

compatibleG H B tailG = tail H ∧ headG = head H

I always use α and β for the types of arcs and vertices, respectively.

By choosing appropriate values for α , tail, and head, we can select the representation appro-

priate to a problem domain. This includes the representations with A ⊆ V ×V or A ⊆ V × L ×V
above. Another example are digraphs with β = α = N, which sometimes occur in the veri�-

cation of imperative programs (where the number is an index into some data structure or the

heap). The latter representation has been used in the veri�cation of C programs dealing with

graphs [67].

I use locales to structure the di�erent classes of digraphs. The most basic class are well-formed
digraphs. A digraph is well-formed if the endpoints of all arcs are vertices of the graph. Unless

noted otherwise, the term “digraph” is used to refer to well-formed directed graphs. This is in

contrast to Bang-Jensen and Gutin [7], who use “digraph” to what we will call simple digraphs.

Hence, I state lemmas in the wf-digraph locale. Functions and predicates are de�ned in the

pre-digraph locale. As this locale does not have any assumptions, the de�nitions of these

functions can be used even if well-formedness has not yet been proven.

Definition 3.2 (Well-formed Graph).

locale pre-digraph = fixes G : (β ,α ) dg
locale wf-digraph = pre-digraph +
assumes ∀a ∈ AG . at,G ∈ VG and ∀a ∈ AG . ah,G ∈ VG

In contrast to Bang-Jensen and Gutin [7], I do not exclude the null graph (i.e., an empty set of

vertices is allowed). This is slightly more convenient in the case studies and it makes digraphs

closed under deletion of vertices or intersection. Harary and Read [36] discuss the merits of

allowing this graph.

Often digraphs are required to be �nite (i.e., the sets of arcs and vertices are �nite), loop-free

(i.e., head and tail of each arc are distinct) or free of parallel arcs (i.e., there is at most one arc

for each pair of vertices). I also sometimes model undirected graphs as symmetric graphs (i.e.,

the relation described by the arcs is symmetric) or as bidirected graphs.

Definition 3.3 (Bidirected Graph). (G,π ) is a bidirected digraph if G is a wellformed digraph
and π pairs each arc with an unique reverse arc.

locale bidirected-digraph = wf-digraphG for G +
fixes π : β → β
assumes ∀a ∈ AG . a ∈ AG ⇐⇒ π a , a
assumes ∀a.a ∈ AG . π (π a) = a
assumes ∀a.a ∈ AG . (π a)t,G = ah,G (this implies (π a)h,G = at,G )

G is bidirectable, if there is a permutation π such that (G,π ) is bidirected.

1
If we restricted ourselves to a �xed vertex type β , we could use Isabelle’s type class mechanism to de�ne the

projection functions for each type α once and for all, instead of de�ning them on a per-graph basis.
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pre-digraph

wf-digraph

loopfree-digraph nomulti-digraph fin-digraph sym-digraph bidirected-digraph

simple-digraph simple-graph

Figure 3.1.: Hierarchy of digraph locales. The arrows describe an inheritance relationship.

For each of the graph properties described above, I introduce a separate locale (Figure 3.1).

These locales can be combined. For example simple digraphs are de�ned as the union of �nite,

loop-free digraphs without parallel arcs. Locales for other combinations can be easily de�ned.

As a general rule, lemmas are proven in the most general locale possible, so that the more

specialized locales inherit these.

These graph locales make no assumption about the relation between β and α . As a result,

it is not always possible to add an arc to connect two vertices of a graph: As an pathological

example, consider α = unit, the type with a single element (), and the graph ({a,b}, {()}) where

a , b and the arc () has tail a and head b. This graph cannot be extended with an arc from

b to a as there is no second value in unit. To avoid such cases, one needs to place additional

restrictions on α , tail and head.

3.2.1. Specialized Representations

In this section, I show how one can regain the simple representations discarded in the previous

section. In particular, I explain how locales can be used to eliminate the projection functions of

(β,α )dg. For many representations, these are �xed for all graphs, so it should not be necessary to

give these explicitly for every graph. I demonstrate this approach with the usual representation

of graphs without parallel arcs.

Definition 3.4 (Pair Digraph).

record β pair-dg = pverts : β set, parcs : (β × β ) set
locale pair-wf-digraph =
fixes G : β pair-dg
assumes ∀e ∈ parcsG . fst e ∈ pvertsG and ∀e ∈ parcsG . snd e ∈ pvertsG

A pair digraph G can be embedded into the type (β, β × β ) dg) as follows:

G B (pvertsG, parcsG, fst, snd)

The newly de�ned locale can be embedded into wf-digraph:

sublocale pair-wf-digraph ⊆ wf-digraphG where
tailG = fst and headG = snd and VG = pvertsG and AG = parcsG
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The additional equations are used by the locale mechanism to rewrite the theorems embedded

from wf-digraph and remove every occurrence of the selector functions of the dg in these

theorems. This is important for automation: without it, the embedded lemmas are often

cumbersome to use. For example, consider an introduction rule [[a ∈ AG ]] =⇒ at,G ∈ VG ,

stating that the tail of an arc is a vertex of the digraph. It would have to be rewritten manually

before it can be applied to a goal of the form [[ . . . ]] =⇒ fst a ∈ VG , which is the natural form

for the pair digraphs.

Due to this rewriting, the embedded de�nitions of some functions do not depend on G
anymore. An example is the predicate cas, which tests whether a sequence of arcs is consistent,

i.e., their endpoints �t together:

Definition 3.5 (Consistent Arc Sequence).

casG u []v B (u = v )

casG u (a :: as) v B (at,G = u ∧ casG (ah,G ) asv )

In pair-wf-digraph, the second equation is rewritten to:

casG u (a :: as) v = (fst a = u ∧ casG (snd a) asv )

So, if G and H are of type β pair-dg, then casG and casH are the same function, denoted by two

di�erent terms. I replace such functions by a new constant without the digraph parameter. This

makes proofs involving these functions easier for automated proof tools.

When using pair graphs, I will implicitly use the embedding function wherever necessary. In

Isabelle, this is done using coercive subtyping [75].

If one wanted to introduce a more general notion of graphs later on, one could use a similar

approach to identify concepts on digraphs with the more general concepts. A candidate for

such a step would be mixed graphs [7] as a common basis for directed and undirected graphs or

the vertex/edge/link-representation chosen by Chou [16], which can also express hypergraphs.

This would allow us to share common concepts between these di�erent types of graphs.

3.3. Operations and Properties

In this section, I present a number of basic concepts I formalized.

3.3.1. Walks and Related Concepts

In textbooks, a walk is a �nite alternating sequence u1a1u2a2 . . .uk−1ak−1uk of vertices ui and

arcs ai of the digraph such that ai has tail ui and head ui+1. I omit the vertices and represent

a walk as list of arcs. The expression awalkG u p v denotes that p is a walk form u to v . The

predicate cas (De�nition 3.5) separates the consistency from the membership properties. This is

useful for proofs involving compatible graphs, as consistency of a walk is preserved over such

graphs.
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Definition 3.6 (Walk, Vertices of a Walk).

awalkG u p v B (u ∈ VG ∧ set p ⊆ AG ∧ casG u p v )

This is equivalent to the following recursive de�nition used for the simpli�er:

awalkG u []v B u = v ∧ u ∈ VG
awalkG u (a :: as) v B a ∈ arcsG ∧ u = at,G ∧ awalkG ah,G asv

The function aw-vertsG computes the vertices of a walk. To deal with the empty list, an explicit
start vertex must be given.

aw-vertsG u [] B [u]

aw-vertsG u (a :: as) B at,G :: aw-vertsG ah,G as

I abbreviate last (aw-vertsG u p) by awlG u p.

All walks consisting of a single vertex are represented by the empty list. This caused no

problems in our experiments, as the awalk predicate mentions the start and end vertices of a

walk.

Arc lists have a nice concatenation property: the concatenation of two lists is a walk if and

only if both lists are already walks on their own and there exists a common endpoint. For the

rewrite rule, this common endpoint is denoted by awl, instead of an using existential quanti�er,

as the simpli�er’s ability to deal with quanti�ers is limited.

Lemma 3.7. For the concatenation of two walks, the following equality holds:

awalkG u (p ++ q) v ⇐⇒ awalkG u p (awlG u p) ∧ awalkG (awlG u p) q v

If there is an awalkG predicate for P , the following conditional equation can remove the awl terms:

[[awalkG u p v]] =⇒ awlG u p = v . (3.1)

Automatic rewriting with (3.1) will loop, if v is already of the form awlG u p. As this rule is

very useful otherwise, I implement a general simpli�cation procedure (simproc) which prevents

rewriting in this case. A simproc is a plugin for Isabelle’s simpli�er, which can compute rewrite

rules for a given pattern on demand. For that, I de�ne a new constant NOMATCH : τ → τ →
bool with NOMATCH t p B True and con�gure the simpli�er to not rewrite the arguments of

this constant. If the simproc encounters a NOMATCH term, it tests whether the term t matches

the pattern p. This is done on a purely syntactic level, so the procedure, in contrast to normal

rewrite rules, is able to distinguish between terms which are logically equal. Ifv does not match

p, the simproc returns the equation NOMATCH t p = True, otherwise it fails, preventing the

simpli�er from rewriting the term.

This allows to state (3.1) in a form which is safe for automatic rewriting:

[[awalkG u p v ; NOMATCH (awlG u p) v]] =⇒ awlG u p = v .
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The order of the assumptions is important: When applying this rule, the simpli�er �rst tries to

prove awalkG u p v . This causes v to be instantiated. If now awlG u p matches v , the simpli�er

fails to prove the assumptions of this rule and the rule is not applied. The NOMATCH simproc

is now used in various theories both in the Isabelle distribution and the AFP. The use of a purely

syntactic constant to guide the simpli�er has been motivated by ACL2’s rewriter [39].

There are two reasons to choose arc lists instead of alternating sequences: for alternating

sequences, concatenation either removes the last vertex of the �rst sequence or the �rst vertex

of the second sequence. For example, (u,a,v,b,y) = (u,a,v ) a (x ,b,y) being a walk does

not imply that (u,a,v ) and (x ,b,y) are walks, so Lemma 3.7 does not hold without additional

knowledge about the components. A similar problem occurs with all representations that

include (at least) one explicit start or end vertex. The other reason is that �nite arc sequences

map to Isabelle lists in a natural way, which allows us to use Isabelle’s well-developed theory of

lists, including the various induction schemes.

Like alternating sequences, the representation of walks as a list of vertices lacks the nice

concatenation property of arc lists. For this reason, I usually found it more convenient to reason

with arc lists than with vertex lists. Nevertheless, the formalization also includes some basic

facts about walks as vertex lists and their relation to arc lists.

In his work, Wong [83] also represents walks as list of arcs, but excludes the single-vertex

walk, deviating from most textbooks. This sometimes simpli�es the formalization, since the

vertices of a walk can be denoted without an explicit start vertex, but has the disadvantage that

lemmas about the decomposition of walks become more complex.

Apart from walks, I also formalized trails, paths, and cycles as walks with additional properties:

Definition 3.8 (Trails, Paths, and Cycles).

atrailG u p v B awalkG u p v ∧ distinct p

apathG u p v B awalkG u p v ∧ distinct (aw-vertsG u p)

cycleG p B ∃u . awalkG u p u ∧ p , [] ∧ distinct (tl (aw-vertsG u p))

The function tl removes the �rst element of a list and distinct states that list does not contain
duplicates.

I follow Diestel [18] and Volkmann [77] here and allow cycles consisting of a single arc, i.e.,

loops. Bang-Jensen and Gutin Bang-Jensen and Gutin [7] require at least two arcs.

It is often necessary to relate arcs and vertices of a walk. The following lemma serves as the

basis for lemmas to split a walk based on a vertex property, for example to shorten a walk to a

path by removing parts where the vertices are not distinct.

Lemma 3.9. If awalkG u p v and aw-vertsG u p = xs ++ [y] ++ ys hold, then

∃q, r . awalkG u q y ∧ awalkG y r v ∧ p = q ++ r ∧

aw-vertsG u q = xs ++ [y] ∧ aw-vertsG y r = [y] ++ ys .

For a walk going from one set of vertices to another, one can extract the arc which marks the

transition with the following lemma:
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Lemma 3.10. Let P , Q be predicates on vertices. Then holds:

[[awalkG u p v ; p , []; ∀w ∈ (aw-vertsG u p). P w ∨Q w ; P u; Q v]]

=⇒ ∃a ∈ p. P at,G ∧Q ah,G

If one only wants to know whether a vertexv is reachable from another vertexu, an inductively

de�ned relation is more convenient than the proposition ∃p. awalkG u p v . The basic relation

here is the adjacency relation adjG : (β × β ) set, also written as u →G v (or just u → v , if

G is clear from the context). One can use the usual operations on relations to de�ne various

reachability properties. For re�exive reachability relations, the domain must be restricted to VG .

I use an inductively de�ned predicate rtrancl-on equivalent to adj∗G ∩ VG × VG (on well-formed

digraphs). This is also written as u →∗ v . The library contains the usual transitivity rules as

well as induction rules progressing left-to-right and right-to-left:

[[u →∗ v ; u ∈ VG =⇒ P u; (∀x ,y. u →∗ x ∧ x → y ∧ P x ) =⇒ P y]] =⇒ P v

[[u →∗ v ; v ∈ VG =⇒ P v ; (∀x ,y. x → y ∧ y →∗ v ∧ P y) =⇒ P x]] =⇒ P u

3.3.2. Operations and Properties of Graphs

Digraphs can be modi�ed by adding and removing arcs and vertices. This always yields a

well-formed digraph. I do not provide a generic function to build an arc from two vertices for

the abstract graph type. This operation depends on α and often needs additional assumptions

on the projection functions.

Definition 3.11 (Adding and Removing Arcs and Vertices).

add-arcG a B (VG ∪ {at,G ,ah,G },AG ∪ {a}, tailG, headG )

G − {a} B (VG ,AG \ {a}, tailG, headG )

add-vertG v B (VG ∪ {v},AG , tailG, headG )

G − {v} B (VG \ {v},AG , tailG, headG )

These functions are de�ned within pre-digraph, as they relate to a single graph. Functions

taking more than one graph are de�ned outside of the pre-digraph locale.

The union of two digraphs is the digraph which has the arcs and vertices of both digraphs.

Definition 3.12 (Union).

unionG H B (VG ∪ VH ,AG ∪ AH , tailG, headG )

UnionG G B
( ⋃
G ∈G

VG ,
⋃
G ∈G

AG , tailG, headG

)
Note that for union, I arbitrarily choose the projection functions of G , so the de�nition yields

useful results only if G and H are compatible. The union of a set of digraphs G is de�ned w.r.t.

a graph G, so the result is always compatible to G, even if G is empty.

In [7], connected digraphs are de�ned in two steps, �rst referring to the underlying connected

undirected graph, then referring to the associated strongly connected symmetric digraph. I leave

out the intermediary and use the associated symmetric digraph to de�ne symmetric reachability.
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Definition 3.13 (Underlying Undirected Graph). For G : (β ,α ) dg, the underlying undirected
graph of type β pair-dg is:

mk-symmetricG B (VG ,
⋃
a∈AG

{(at,G ,ah,G ), (ah,G ,at,G )})

For the graph properties expressed as locales (cf. Figure 3.1), mk-symmetric G satis�es at

least the same properties as G and is symmetric. Now, one can de�ne connected digraphs.

Definition 3.14 (Connectivity and Strong Connectivity).

strongly-connectedG B VG , ∅ ∧ ∀u,v ∈ VG . u →∗ v

connectedG B strongly-connected (mk-symmetricG )

Note that I do not consider the null graph to be (strongly) connected. This makes the

decomposition of digraphs into connected components unique.

Definition 3.15 (Subgraph and Strongly Connected Component). A subgraphG ofH is a well-
formed graphG whose vertices and arcs are contained in H. If G contains all arcs of H connecting
vertices of G, then G is an induced subgraph.

subgraphG H B (VG ⊆ VH ∧ AG ⊆ AH ∧

wf-digraphG ∧ wf-digraph H ∧ compatibleG H )

induced-subgraphG H B (subgraphG H ∧ AG = {a ∈ AH . {at,H ,ah,H } ⊆ VH }

A subgraph G of H is maximal for some property P, if it satis�es P and there is no other graph
between G and H satisfying P .

max-subgraph P G H B subgraphG H ∧ P G

∧ (∀G ′. subgraphG ′ H ∧ subgraphG G ′ ∧ P G ′ =⇒ G = G ′)

A strongly connected component (SCC) is a maximal strongly connected subgraph:

sccsG B {H .max-subgraph strongly-connected H G}

Induced subgraphs are also maximal subgraphs:

induced-subgraphG H = max-subgraph (λG ′. VG′ = VG ) G H

A classic result I proved for these properties is the unique decomposition of a symmetric

digraph into strongly connected components:

Lemma 3.16. For a symmetric digraph G, the decomposition into SCCs is unique:

[[S ⊆ sccsG; (
⋃

H ∈S VH ) = VG ]] =⇒ S = sccsG

In many cases, one is only interested in the vertices of an SCC, not its full graph structure.

Such sets of vertices have a nice characterization in terms of the reachability relation. As SCCs

are either disjoint or equal, there is a bijection between SCCs and Vertex-SCCs.
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Definition 3.17 (Vertex-SCCs). The vertex-SCCs of a digraph G are sccsV = verts (sccsG ).

Lemma 3.18. LetG be a wellformed digraph. Then a set of vertices S is a vertex-SCC ofG if and
only if S is a nonempty maximal set such that all elements of S are reachable from each other, that
is:

S ∈ sccsVG ⇐⇒ S , ∅ ∧ (∀u,v ∈ S . u →∗ v ) ∧ (∀u ∈ S . ∀v < S . ¬u →∗ v ∨ ¬v →∗ u)

In informal language, I will refer to both SCCs and vertex-SCCS as SCCs. As vertex-SCCs

can be characterized just by the reachability relation, without the arc or vertex set, they are

often more convenient to use.

3.3.3. Digraph Isomorphisms

An isomorphism for digraphs consists of four functions: a mapping of the vertices, a mapping

of the arcs and the new projection functions. For a given graph, the projection function could

be derived from the vertex and arc mappings. However, as discussed below, providing explicit

projection functions often eases reasoning.

Definition 3.19 (Digraph Isomorphism).

record (β,α , β ′,α ′) iso =
iso-verts : β → β ′, iso-arcs : α → α ′, iso-tail : α ′ → β ′, iso-head : α ′ → β ′

An isomorphism is applied to a digraph with the function

app-iso : (β,α , β ′,α ′) iso→ (β,α ) dg→ (β ′,α ′) dg

app-iso h G B (iso-verts h VG , iso-arcs h AG , iso-tail h, iso-head h)

I write hG B app-isohG, h a B iso-arcsh a, and hv B iso-vertshv . The predicate iso expresses
that h is an isomorphism between G and its image: It must be injective and preserve the graph
structure.

isoG h B inj-on h VG ∧ inj-on h AG ∧(
∀a ∈ AG . h at,G = (h a)t,h G ∧ h ah,G = (h a)h,h G

)
Two digraphs G, H are isomorphic, if there is an isomorphism mapping G to H :

digraph-isoG H B ∃h. isoG h ∧ app-iso h G = H

An isomorphism h only needs to preserve the structure on AG , not on the universe of α . That

is, the behavior of iso-tail h and iso-head h outside of Ah G is arbitrary. This is in accordance

with usual mathematic notation, but has the side-e�ect that projection functions of the image

are de�ned uniquely only on a subset of α ′. However, it is often possible to give sensible

projections for the whole universe (for example fst and snd for pair digraphs) and using those

eases reasoning.

I provide rewrite rules to reduce the basic selectors and many other functions on h G to

functions on G. For many predicates introduction rules are provided.

An inverse of an isomorphism can be determined automatically. Again, the inverse is only

unique modulo the behavior of iso-tail and iso-head outside of AG .
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Definition 3.20 (Inverse Isomorphism).

inv-isoG h B
(
(iso-verts h)−1VG , (iso-arcs h)−1AG , headG, tailG

)
For f injective on S , f −1S denotes the inverse function of f on S (de�ned by the choice operator).

The inverse isomorphism is useful to de�ne a set of automatically usable simpli�cation rules.

As an example, consider the function in-deg returning the number of incoming arcs for a vertex.

For an isomorphism h, the following two (conditional) equations reduce in-degh G to in-degG :

u ∈ VG =⇒ in-degh G (iso-verts h u) = in-degG u (3.2)

[[u ∈ Vh G ; u = iso-verts h v]] =⇒ in-degh G u = in-degG v (3.3)

As usual in rewriting, Isabelle’s simpli�er can apply an equation if the left hand side matches a

subterm of the goal and it is able to discharge the assumptions. Fresh variables on the right

hand side are not allowed. So rule (3.2) can only be applied if the vertex is given in a very special

form. The more general rule (3.3) is not suitable for the simpli�er as the variable v does not

occur on the left hand side. The function inv-iso allows us to get rid of this variable:

[[u ∈ Vh G ]] =⇒ in-degh G u = in-degG (inv-iso h u)

In particular, in combination with the other simpli�cation rules I de�ne for isomorphisms, this

rule can be used whenever the simpli�er can prove u = iso-verts h v for some v . In this case, it

rewrites to the same right hand side as (3.2). Some rewrite rules using this technique are shown

below.

Many properties are preserved under isomorphisms, for example walks, trails and paths, and

the reachability relation, but also the property of being reachable or a (maximal) subgraph.

Lemma 3.21. Let h be a digraph isomorphism and let u,v ∈ Vh G . Let set p ⊆ Ah G and P be a
property on digraphs. I write h−1 for inv-isoG h. Then

awalkh G u p v ⇐⇒ awalkG (h−1 u) (map h−1 p) (h−1 v )

atrailh G u p v ⇐⇒ atrailG (h−1 u) (map h−1 p) (h−1 v )

apathh G u p v ⇐⇒ apathG (h−1 u) (map h−1 p) (h−1 v )

u →∗h G v ⇐⇒ h−1 u →∗ h−1 v .

subgraphG H =⇒ subgraph (h G ) (h H )

max-subgraph P G H =⇒ max-subgraph (P ◦ h) (h G ) (h H )

A graph invariant is a property P of digraphs which is invariant under isomorphism, that

is P G ⇐⇒ P (h G ) for all digraphs G and isomorphisms h. Obvious graph invariants are

the number of arcs and the number of vertices. From the results above follows easily that also

the number of isolated vertices (i.e., the vertices not incident to any arc) and the number of

strongly connected components are invariants. In Section 4.4, I will show that planarity is a

graph invariant.

25



3. A Graph Library for Isabelle

3.4. Euler Graphs

In this section, I present a characterization of directed Euler graphs. The undirected variant of

this theorem is one of the basic results any introductory textbook covers. I demonstrate that my

library allows for a nice proof. An Euler trail is a trail that contains each arc of a graph exactly

once and touches every vertex. Such a trail is closed if the two end vertices are equal and open
otherwise. A digraph that has an Euler trail is called an Euler digraph.

Definition 3.22 (Euler Trail).

euler-trailG u p v B atrailG u p v ∧ set p = AG ∧ set (aw-vertsG u p) = VG

For connected graphs, the condition on the vertices can be dropped:

Lemma 3.23. Let G be a connected digraph. Then the following equation holds:

euler-trailG u p v = (atrailG u p v ∧ set p = AG )

I prove the following well-known characterization of Euler digraphs: a �nite digraph has an

Euler trail if and only if it is connected and either

• for all vertexes the in-degree equals the out-degree or

• there are two vertexes u and v such that the di�erence between in- and out-degree of u
resp. v is −1 resp. 1 and for all other vertexes, the in-degree equals the out-degree.

In the �rst case, we get a closed Euler trail, in the second case an open Euler trail from u
to v . The predicate arc-balanced de�ned below allows us to shorten the degree condition to

∃u,v . arc-balancedG u AG v . The functions in-arcs, out-arcs, in-deg and out-deg denote the set

of incoming/outgoing arcs of a vertex, respectively its cardinality.

Definition 3.24 (Arc Balance).

arc-balanceG w A = |in-arcsG w ∩A| − |out-arcsG w ∩A|

arc-balancedG u Av =
(
if u = v then ∀w ∈ VG . arc-balanceG w A = 0

else (∀w ∈ VG \ {u,v}. arc-balanceG w A = 0) ∧

arc-balanceG u A = −1 ∧ arc-balanceG v A = 1

)
I proved that the conditions given above are necessary and su�cient. Here, I will only discuss

the latter, that is, given the above conditions, an Euler trail exists. Let us �rst consider closed

Euler trails.

Theorem 3.25 (Closed Euler Trail). Let G be a �nite and connected digraph. Then:

[[∀u ∈ VG . in-degG u = out-degG u]] =⇒ ∃u,p. euler-trailG u p u
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Proof. Note that the degree condition of this lemma is equivalent to

∀u ∈ VG . arc-balanceG u AG = 0 (3.4)

The proof given by Bang-Jensen and Gutin [7] is constructive: it starts with an empty trail

and proves that a trail can always be extended until it contains all arcs.
2

Obviously an empty

trail exists (as the empty digraph is not connected, G has at least one vertex). The extensibility

argument is inductive; I model this as an induction on the number of arcs not in the trail. For

the induction step, note that trails are always balanced, i.e.

[[trailG u p v]] =⇒ arc-balancedG u p v (3.5)

We need to consider two cases. If the end vertices of the trail are distinct, (3.4) and (3.5) guarantee

that an arc incident to one of the endpoints exists.

If the trail is closed, we need to �nd an arc that “touches” the trail (i.e., has a common vertex

with the trail, but is not part of it). Then we rotate the trail, such that the common vertex is at

both ends and attach the arc to one of the ends. Such an arc exists as the digraph is connected:

if an arc does not touch the trail, then it is incident to a vertex which is not in the trail. As the

digraph is connected, there is a walk from the start of the trail to this vertex. Then Lemma 3.10

can be used to derive a contradiction.

So far, we have proved that an Euler trail p exists. For p holds set p = AG and by (3.5) follows

arc-balancedд u AG v . By (3.4) and the de�nition of arc-balanced this walk is closed. �

The textbook proof of the characterization of open Euler trails usually proceeds as follows:

Let u, v be the vertices with arc-balanceG u AG = −1 and arc-balanceG u AG = 1. Add an arc

from v to u to G . The resulting graph has a closed Euler trail. Removing the additional arc from

this trail yields an open Euler trail for G.

With the usual set-theoretic formulation, it is always possible to add an additional arc between

two vertices to a digraph. However, in the type system of Isabelle/HOL the universe of the arc

type might already be exhausted by the existing arcs. A pathological example for this case was

given in Section 3.2, but this issue is not restricted to our abstract graph representation; more

concrete representations, like α = β ×γ × β , are a�ected, too, if only because one needs to prove

that γ cannot be exhausted.

This problem can be avoided by requiring γ to be in�nite. As we are only interested in trails

of �nite digraphs, this ensures that γ is not exhausted. From this result for a specialized graph

type, the result for arbitrary arc types α can be proven by isomorphism.

Lemma 3.26. LetG : (β, β ×N× β ) dg be a �nite, connected digraph with tailG = fst, headG =
snd ◦ snd and natural numbers as arc labels. Then

[[{u,v} ⊆ VG ; deg-condG u v]] =⇒ ∃p. euler-trailG u p v

holds, where deg-condG u v abbreviates the following condition:

(∀w ∈ VG \ {u,v}. in-degG w = out-degG w ) ∧

in-degG u + 1 = out-degG u ∧ out-degG v + 1 = in-degG u
2
Bang-Jensen and Gutin [7] restrict their proof to loop-free digraphs. This is not necessary as loops do not need

special handling in this proof.
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Proof. We construct a new graph H B add-arcG (v, `,u) where ` ∈ N is a label not occurring

in G. Such a label exists as N is in�nite. H is again a �nite digraph. For the interpretation of

fin-digraph with H we use rewriting equations similar to those in Section 3.2.1.

H satis�es the degree condition of Theorem 3.25. After a case analysis with the cases u = w ,

u , w , v = w and v , w , we can automatically prove this for all w ∈ VH using the obvious

lemmas relating add-arc and degrees and obtain a closed Euler trail for H . This Euler trail

contains the arc (v, `,u). We rotate the trail so that this arc is the �rst arc of the trail. Removing

this arc then yields an open Euler trail for G. �

From this, one can prove the version for arbitrary arc types. I use the results about isomor-

phisms from Section 3.3.3 to transfer Lemma 3.26.

Theorem 3.27 (Open Euler Trail). Let G : (β,α ) dg be a �nite and connected digraph.

[[{u,v} ⊆ VG ; deg-condG u v]] =⇒ ∃p. euler-trailG u p v

Proof. AsG is �nite, there is function f : α → Nwhich is injective on AG . From f , we construct

an isomorphism h:

h = (λv . v, λa. (tailG a, f a, headG a), fst, snd ◦ snd)

The property isoG h follows by unfolding the de�nitions of iso and h and the injectivity of f .

We then obtain an Euler trail for the graph hG by using Lemma 3.26. Using the rewrite rules

for isomorphism the assumptions of the lemma can be discharged automatically.

We transfer the trail toG = (inv-iso h) (h G ) by applying the inverse isomorphism. The proof

is again a simple application of the isomorphism lemmas. �

3.5. Other Graph Formalizations

In the journal version of this article [60], I wrote I “expect [the graph library] to become the

standard for formalizations about directed graphs in Isabelle”. Indeed, the library is being used

in other projects [2, 27, 69]. On the other hand, there is recent work where the authors chose

to use their own graph formalization, although they were aware of this formalization. In this

section, I try to provide some insights why this is the case. Related to this is the question how

to integrate results proven using di�erent formalizations of graphs.

It takes a certain amount of time to become familiar with a new library, even if one is familiar

with theorem proving and the topic at hand. One not only needs to learn the vocabulary,

but also how to state theorems and intermediate steps so that the provided automation can

work e�ciently. For many areas of mathematics, it is immediately obvious that it is easier to

familiarize oneself with the existing theories than to start from scratch.

As an example, consider the real numbers: a typical user knows how to work with them,

but not how to de�ne them. Also, after de�ning real numbers, one wants to forget about the

de�nition in terms of Dedekind cuts or Cauchy sequences and work with the abstract objects. To

prove any interesting results, one already needs a large body of elementary theorems, abstracting

from the raw de�nition.
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On the other hand, graph theory often seems simple enough to not bother with an existing

library. In many cases, there is no abstraction from the tuple-of-sets representation and basic

algorithms like Dijkstra’s algorithm or the Ford-Fulkerson algorithm can be considered without

deep insights in graph theory. Many results have quite elementary proofs, so formalizing them

is a feasible task, even without an existing formalization of graph theory.

Another motivation is to keep the representation of graphs as simple as possible. While this

is often useful (which was also the motivation for introducing the pair digraphs in Section 3.2.1),

people tend to overestimate the bene�ts and the work necessary for deriving a simpler rep-

resentation from the graph library. More important, it makes it harder to reuse their results,

because each result has its own vocabulary.

I will discuss this on the example of a recent formalization of the max-�ow/min-cut theorem

by a student. After some discussion, he and his supervisor decided to use their own graph

de�nition. One reason for this was that, in their context, a digraph is given simply by a cost

function β → N, so they wanted to keep the de�nition simple. Their initial theory started with

less then a screen full of de�nitions related to basic graph theory. Of the 3900 lines of proof

text of their �nal result, around 15% prove results already available in the graph library, and in

the end they de�ned arc and vertex sets explicitly. If one had used the graph library to de�ne a

digraph from the cost function then most of those lemmas could have been derived by a one-line

proof (and my guess is that this would not even have been necessary in many cases). So while

the cost of a new formalization of graphs was not prohibitive, this project would have pro�ted

from using my graph library.

The weighting of costs and bene�ts may change if the di�erence between graph representa-

tions is larger: for example, in Chapter 2 I presented a formalization of the Girth-Chromatic

Theorem. Being a mostly combinatorial result on undirected graphs, it would have been harder

to prove this result in the context of the graph library.

In both cases, using a separate formalization of graphs hurts the possibility to combine

these results, so they should be phrased in terms of a common graph representation. For the

max-�ow-min-cut theorem, it would probably be possible to just exchange the basic de�nition

and �x the proofs that break. In general, this is not a feasible approach.

Thanks to the work of Hu�man and Kunčar [38], Isabelle has tools to transfer theorems and

lift de�nitions between a type and a subtype. For example, undirected graphs are in bijection to

bidirected graphs and hence can be considered as a subtype of directed graphs. Then, by proving

a transfer theorem for each constant, theorems for undirected graphs can be automatically

transformed into theorems about bidirected digraphs. This allowed me to transfer main result

of Chapter 2 into the graph library with just about 230 lines of proof text:

Lemma 3.28. Let ` be a natural number. Then there is a symmetric and loop-free digraph G :

N pair-dg, such that ` < g′G and ` < χ ′G.

Here, g′ and χ ′ are the girth and the chromatic number, de�ned on digraphs. This result is

restricted to vertices of type N and arcs of type N × N, as this corresponds to the de�nition of

undirected graphs in Chapter 2. It is possible to generalize this result to the type (β,α ) dg for

in�nite types β and α by giving an isomorphism, similar to the approach used in Section 3.4.

The de�nition of graphs given in this chapter is very general. This leads me to conclude that

the graph library presented in this chapter is a good basis to collect results about graph theory,
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even if they have been proven using another de�nition of graphs.

3.6. Conclusion

In this chapter, I presented the �rst implementation of a graph library in Isabelle/HOL covering

a wide range of fundamental properties. Based on that, I formalized a characterization of Euler

digraphs. Some results on planarity I formalized using this library are found in the following

chapters. This library is used in other projects [2, 27, 69], so it useful outside the topics of this

thesis.

To achieve the goal of an universal library, it is important that the chosen graph representation

can be used to express as much of directed graph theory as possible. Therefore I chose an

abstract representation that supports multi-digraphs and can be instantiated to many common

representations, stemming from both mathematics (arcs as pairs of vertices) and implementation

(arcs are pointers into some data structure).

To make proofs convenient, I provided a careful setup of automation mechanisms. The

heuristics are able to discharge a large number of frequently occurring goals. Examples for the

setup are the special simpli�cation procedure from Section 3.3.1 and the use of locales to recover

less general graph representations, but also the introduction of the inverse isomorphism.

The formalization consists of around 6500 lines of Isabelle theories. The Euler case study

builds on this and needs 670 lines of proof. For comparison, the Mizar characterization of

undirected Euler Graphs[56] consists of 3500 lines, based on 5500 lines of graph theory.
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A graph is planar if it can be drawn on a plane (or on a sphere) such that there are no intersecting

edges. This intuitive de�nition is hard to use in proofs. In this chapter, I formalize two well-

known alternative characterizations of planarity: one is a combinatorial characterization, based

on Euler’s polyhedral formula, the other one is based on Kuratowski’s theorem. I implement an

executable Isabelle function deciding combinatorial planarity (for small graphs) and prove it

to be correct. This decision procedure is then used to prove that the two characterizations are

compatible in the sense that each graph which is “combinatorially planar” is also “Kuratowski-

planar”.

All results in this chapter have been proven in Isabelle and build upon the graph library

described in Chapter 3.

A small theory of permutations in Section 4.1 lays the basis for the combinatorial characteri-

zation of planarity. Section 4.2 formally introduces two de�nitions of planarity. In Section 4.3, I

give an executable speci�cation of combinatorial planarity and prove that combinatorial pla-

narity is preserved under subdivisions and subgraphs in Section 4.5 and Section 4.6, respectively.

This leads to the compatibility result. The chapter concludes with a discussion in Section 4.7.

4.1. Permutations

A function f : α → α is a permutation, if f is bijective and there is a �nite set S such that f x = x
for all x < S . In this case, we also say that f permutes S . A permutation f with f ( f x ) = x for

all x is an involution. In the remainder of this section f is always a permutation.

Permutations are closed under composition, i.e., if f permutes S and д permutesT , then f ◦д
permutes S ∪T .

The orbit of x under f is the set of all elements reachable from x by applying f repeatedly.

This is inductively de�ned as the smallest set such that

f x ∈ orbit f x y ∈ orbit f x =⇒ f y ∈ orbit f x

hold. This is equivalent to

orbit f x = { f n x | 0 ≤ n} = { f n x | 0 < n}.

The relation “x is in the orbit of y” is an equivalence relation. In particular are orbit f x and

orbit f y either equal or disjoint. Recall that we lift functions to sets implicitly, so for some set

X , orbit f X = {orbit f x | x ∈ X }.
A segment is a subset of the orbit: segment f x y contains the elements reachable from x

by repeated application of f until y is reached. This is formally de�ned as the smallest set
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Figure 4.1.: Comparison of orbit f x0 versus segment f x0 x4 where f is a permutation

on {x0, . . . ,x5,y0, . . . ,y4, z0, . . . , z2}. The circled nodes are the elements of

orbit f x0, the darker nodes are the elements of segment f x0 x4. Each arrow

represents a single application of f .

satisfying the following two implications:

f x , y =⇒ f x ∈ segment f x y

[[x ∈ segment f x y; f x , y]] =⇒ f x ∈ segment f x y

An equivalent de�nition is segment f x y = { f n x | 0 < n ∧ n < k } where k is the smallest

number greater 0 such that f k x = y. See Figure 4.1 for an example. In particular, the equation

segment f x x = orbit f x \ {x } holds .

A permutation f is cyclic on a set S , if S is an orbit of f , i.e.,

cyclic-on f S B ∃s ∈ S . orbit f s = S

⇐⇒ S , ∅ ∧ (∀s ∈ S . orbit f s = S )

If f permutes S and is cyclic on S , we also say that f is cyclic. Permutations can be represented

as products of cyclic permutations, i.e., for each permutation f there are cyclic permutations

f1, . . . , fn and sets S1, . . . , Sn such that f = fn ◦ · · · ◦ f1, fi permutes Si and Si ∩S j = ∅ for i , j .
Cycles and products of disjoint cycles can naturally be represented by lists and lists of lists,

respectively.

Definition 4.1 (Cycles). We say that xs is a cycle if and only if xs is a list of distinct elements.
This property is expressed by the predicate distinct. We say that xss is a product of disjoint cycles

if and only if xss is a list of non-empty cycles and no two cycles in xss have a common element.
Formally, we de�ne the predicate distincts to express the property “product of disjoint cycles”:

distincts xss B distinct xss ∧ (∀xs ∈ xss. distinct xs ∧ xs , [])

∧ (∀xs, ys ∈ xss. xs , ys =⇒ set xs ∩ set ys = ∅)

The function sset xss B set (map set xss) gives the orbits described by a product of disjoint cycles.
Let xs = [x0, . . . ,xn−1] be a cycle. Then, the permutation represented by this list is de�ned as

cycle xs x B



x (i+1) mod n if x = xi for some 0 ≤ i < n

x else.

The permutation represented by a product of disjoint cycles is de�ned by the following equations:

cycles [] x B x cycles (xs :: xss) B cycle xs (cycles xss x )
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Lemma 4.2. Let xs be a non-empty cycle and xss a product of disjoint cycles. Then, cycle xs is
cyclic on and permutes set xs. Similarly, cycles xss is cyclic on each of the elements of sset xss and
permutes

⋃
sset xss.

Rotation of cycles does not change the represented permutation. That is, for a cycle xs with

xs = ys ++ zs, the cycle zs ++ ys yields the same permutation. Note that cycle xs x ∈ xs ⇐⇒
x ∈ xs. A similar property holds for cycles. For the work in this chapter, (products of disjoint)

cycles have a useful property: the explicit representation as lists makes them easy to enumerate

and manipulate in executable code. In particular, the two operations perm-swap and perm-rem
de�ned below have a straightforward equivalent in terms of common list operations.

Permutations can be restricted to a speci�c domain by

perm-restrict f S x B



f x if x ∈ S

x else.

This is again a permutation, if and only if S is a union of orbits of f , that is S =
⋃

orbit f S . In

particular, the following properties hold:

Lemma 4.3. perm-restrict f (orbit f x ) is a cyclic permutation.

Lemma 4.4. If f permutes S and f is cyclic on A, then perm-restrict f (S \A) permutes S \A.

Lemma 4.5. If perm-restrict f A and perm-restrict f B are permutations and A ∩ B = ∅, then

perm-restrict f A ◦ perm-restrict f B = perm-restrict f (A ∪ B).

I conclude this section by introducing two further operations on permutations.

Definition 4.6 (Modifying Permutations). Let f : S → S be a permutation and x ,y ∈ S . Then:

perm-swap x y f B (x 
 y) ◦ f ◦ (x 
 y) perm-rem x f B



(x 
 f x ) ◦ f if f x , x

f else

where x 
 y is the permutation swapping x and y. For cycles, this corresponds to:

perm-rem x (cycle xs) = cycle (xs − x )

perm-swap x y (cycle xs) = cycle (map (cycle [x ,y]) xs)

Example 4.7. Let f = cycles [[1, 2, 3], [4, 5]] be a permutation. Then the following equations
hold:

perm-rem 1 f = cycles [[2, 3], [4, 5]] perm-rem 4 f = cycles [[1, 2, 3], [5]]

perm-swap 1 3 f = cycles [[3, 2, 1], [4, 5]] perm-swap 2 4 f = cycles [[1, 4, 3], [2, 5]]

If f permutes S , then perm-rem x f permutes the set S \ {x } and perm-swap x y f permutes

cycle [x ,y] S .
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4.2. Two Definitions of Planarity

In this section, I formalize two well-known characterizations of planarity.

Combinatorial Planarity I start with a brief excursion to topology to motivate the de�nition

of combinatorial planarity given below. For a detailed discussion, see for example Lando and

Zvonkin [44]. An undirected graph G with vertices V and edges E is planar, if it can be drawn

on a plane (or sphere) without intersecting edges. More general, a topological map is a drawing

of a connected graph on a surface without intersecting edges, satisfying the following property:

if the surface is cut at the drawn edges, then each of the remaining faces is homeomorphic to

an open disc. For a map, the equation

|V | − |E | + |F | = 2 − 2д

holds, where F is the set of faces and д the genus of the surface. Intuitively, the genus of a

surface is the number of holes in it: a surface with genus 0 is homeomorphic to a sphere, a

surface with genus 1 is homeomorphic to a torus and so on. The genus of a map is the genus of

the underlying surface. Hence, a graph is planar if there is a plane map, i.e., a map with genus 0.

Then the formula above is Euler’s polyhedral formula.

A graph with multiple components is planar, if each of the components is planar, or equiva-

lently, if each component has a planar map. If д refers to the sum of the genera of the maps,

this leads to the generalized equation

|V | − |E | + |F | = 2k − 2д,

where k is the number of components of the graph.

In a map, an edge is always the border between two faces. For combinatorial maps, one splits

the (undirected) edges into two (directed) arcs per edge
1

and assigns an arc to the face on its left

hand side. Each face can now be represented by a cyclic permutation enumerating the arcs of a

face counter-clockwise. The product of all cyclic permutations is the face cycle successor function

σ . There are also two other permutations which can be de�ned on the arcs: the involution π ,

mapping an arc to the other arc belonging to the same edge, and the permutation ρ, enumerating

the outgoing arcs of a vertex clockwise. I also call the former arc reversal permutation and the

latter arc rotation permutation. Note that two of these permutations uniquely determine the

third, in particular the equation σ = ρ ◦ π holds.
2

The face cycle successor function σ partitions the arcs of the graph G according to the

faces they belong to. A map for an isolated vertex (i.e., a vertex without outgoing arcs) always

has exactly one face without any arcs, so we get F = |orbit σ A| + |isolated-verts G |, where

isolated-vertsG is the set of isolated vertices and A the set of arcs. This leads to the following

characterization of planarity for arbitrary �nite graphs [52]:

V − E + |orbit σ A| + |isolated-vertsG | = 2k − 2д

1
often called half-edges or darts in the literature

2
Lando and Zvonkin [44] consider a di�erent direction for the face cycles, leading to the equation ρ ◦ π ◦ σ = id.

Inverting the direction makes the equations slightly simpler for the purposes of this chapter. The symmetric

de�nition by Lando and Zvonkin [44] leads to a more general concept of hypermaps (by dropping the restriction

π 2 = id).
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This motivates the following de�nition of a combinatorial map for graph. The de�nition is

based on bidirected digraphs, not on undirected graphs. This is preferable as all operations are

de�ned on arcs, not on edges.

Definition 4.8 (Combinatorial Map, Face Cycles). A combinatorial map (or just map) is a tuple
M = (G,π , ρ) such that (G,π ) is a bidirected graph and ρ permutes AG such that all arcs with
the same tail are in one orbit. Formally, the latter property is de�ned by

rotatesG ρ B (∀v ∈ VG . out-arcsG v , ∅ =⇒ cyclic-on ρ (out-arcsG v ))

and the predicate digraph-map M expresses thatM is a map.
For such a combinatorial map, σM is de�ned as σM = ρ ◦ π . Then, the face cycles of this map

are the orbits of σM :
F M B orbit σM AG

For a biconnected graph (G,π ), we use the term edge to refer to both a and π a for some arc

a ∈ AG . If the map M = (G,π , ρ) is clear from the context, we write G respectively σG instead

of M and σM .

Definition 4.9 (Genus of a Map, Combinatorial Planarity). LetM = (G,π , ρ) be a combinatorial
map. Then the genus of this map is de�ned as

genus M B b(2 · |sccsG | − |VG | + |AG |/2 − |F M | − |isolated-vertsG |)/2c

A mapM is called plane, if genus M = 0. A graphG is combinatorially planar if there is a plane
map for this graph, i.e.,

comb-planarG B ∃π , ρ. digraph-map (G,π , ρ) ∧ genus (G,π , ρ) = 0

The rounding in the de�nition of genus is justi�ed as the dividend is even [52].

Kuratowski planarity Another characterization of planarity is due to Kuratowski. A graph

H is a subdivision of a graph G, i� H can be derived from G by repeatedly inserting vertices

into edges. Let K5 be the complete graph on �ve vertices and K3,3 the complete bipartite graph

on three and three vertices. We call K3,3 and K5 Kuratowski graphs. Kuratowski’s theorem

characterizes planarity.

Theorem 4.10 (Kuratowski [43]). A graphK is a Kuratowski subgraph ofG ifK is a subgraph of
G and the subdivision of a Kuratowski graph. A graphG is planar if and onlyG has no Kuratowski
subgraph.

Formally, complete (bipartite) digraphs are de�ned as follows:

Definition 4.11 (Complete (Bipartite) Digraphs). A digraph G is complete onm vertices, Km ,
if it has exactlym vertices and all vertices are pairwise connected (without loops). G is a complete

bipartite digraph on m and n vertices, Km,n , if it consists of two sets of m and n vertices, and
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Figure 4.2.: Graphs G and H satisfying subdiv-step (G,πG ) (H ,πH ) (u,v,w ) (uv, uw, vw).

two vertices are connected if they are not in the same set. Formally, the predicates are de�ned as
follows:

Kn G B graphG ∧ |VG | = n ∧ adjG = {(u,v ) | (u,v ) ∈ VG × VG ∧ u , v}

Km,n G B graphG ∧ (∃U ,V . VG = U ∪V ∧U ∩V = ∅ ∧ |U | =m ∧ |V | = n
∧ adjG = U ×V ∪V ×U )

A graph G satis�es the predicate graph, if G is loop-free, symmetric and has no parallel arcs.

As with combinatorial planarity, the de�nition is based on bidirected graphs, which allows

us to reuse our existing development. A single step of “splitting an edge” is de�ned below.

Figure 4.2 illustrates this de�nition.

Definition 4.12 (Subdivision Step). A bidirected graph (H ,πH ) is derived by a subdivision step

from a bidirected graph (G,πG ) if H is derived from G by inserting a new vertex w into an edge
{uv,πG uv}, replacing that edge with the fragment {uw,πG (uw)} w {vw,πG vw}. Formally, this
is de�ned as follows:

subdiv-step (G,πG ) (H ,πH ) (u,v,w ) (uv, uw, vw) B

bidirected-digraph (G,πG ) ∧ bidirected-digraph (H ,πH )

∧ perm-restrict πH AG = perm-restrict πG AH ∧ compatibleG H

∧ VH = VG ∪ {w } ∧w < VG
∧ AH = {uw,πH uw, vw,πH vw} ∪ AG − {uv,πG uv}

∧ uv ∈ AG ∧ distinct [uw,πH uw, vw,πH vw]

∧ uvt,G = u ∧ uvh,G = v ∧ uwt,G = u ∧ uwh,G = w ∧ vwt,G = v ∧ vwh,G = w

Definition 4.13 (Subdivision). A bidirected graph (H ,πH ) is a subdivision of a bidirected graph
(G,πG ), if it can be derived from G by repeated subdivision steps. Formally, the subdivision
predicate is de�ned inductively as the smallest set satisfying the following conditions:

bidirected-digraph (G,πG )

=⇒ subdivision (G,πG ) (G,πG )

[[subdivision (G,πG ) (I ,πI ); subdiv-step (I ,πI ) (H ,πH ) (u,v,w ) (uv, uw, vw)]]

=⇒ subdivision (G,πG ) (H ,πH )
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Following Kuratowski’s theorem, we arrive at the following de�nition of planarity:

Definition 4.14 (Kuratowski Planarity).

kuratowski-planarG B ¬(∃(H ,πH ), (K ,πK ). subgraph H G

∧ subdivision (K ,πK ) (H ,πH ) ∧ (K3,3 K ∨ K5 K ))

Note that these two characterizations of planarity – the combinatorial one and the one based

on Kuratowski’s theorem – are in some sense dual: a plane map proves planarity of a graph,

while a Kuratowski subgraph proves non-planarity of a graph. The planarity test implemented

in the LEDA library [52] uses both to provide a certi�cate for the result. A separate checker

algorithm then uses these certi�cates to ensure that the result is correct. In Chapter 5 and

Chapter 7, I will verify checkers for both the negative and the positive certi�cate. A successful

run of the former guarantees that the graph is not Kuratowski-planar, a successful run of

the latter guarantees combinatorial planarity. In the remainder of this chapter, I prove that

combinatorial planarity implies Kuratowski planarity. This allows me to prove that a successful

check of the negative certi�cate guarantees that the graph is not combinatorially planar, i.e.,

the correctness theorems for both checkers talk about the same de�nition of planarity.

4.3. An Executable Specification of Combinatorial Planarity

Consider the de�nition of combinatorial planarity. As there are �nitely many maps, enumerating

all possible maps and computing the genus leads to a simple decision procedure for this property.

This decision procedure is ine�cient (with a runtime far worse than exponential), but it su�ces

for deciding planarity of small graphs, for example of a K3,3 or K5. In this section, I describe

an implementation of this decision procedure in Isabelle, together with a formal proof of its

correctness. This allows a user to decide planarity of small graphs with the use of the Isabelle’s

eval proof method. I then use this implementation to prove that the Kuratowski graphs are not

combinatorially planar.

Isabelle’s code generator can evaluate an expression if for all constants occurring in this

expression a purely equational speci�cation is given. In particular, the usual set operations

can be evaluated, provided that the sets have the form set xs for some list xs. This includes

quanti�cation over some �nite set. Hence, in this section I represent graphs by a pair of lists: a

list of vertices vs and list of arcs as, where each arc is a pair of vertices. I write LG(vs, as) for

the pair digraph (cf. Section 3.2.1) represented by (vs, as).
In Section 4.3.1, I present an executable enumeration of all maps. Similarly, Section 4.3.2

contains an executable characterization of the genus. In Section 4.3.2, I use these to prove the

non-planarity of a concrete K5 and K3,3.

4.3.1. Enumerating All Maps

How can we enumerate all maps for a graph? Recall that a map is a tuple (G,π , ρ), where π
is an arc reversal and ρ an arc rotation. For the pair graphs used in this section, π is uniquely

determined, so the problem can be reduced to enumerating all possible values for ρ.
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Lemma 4.15. Let G be a graph and to-map G ρ B (G, perm-restrict swap AG , ρ), where
swap (x ,y) B (y,x ). Then the set of maps for G is given by

to-mapG { f | f permutes AG ∧ rotatesG f }.

If (G,π , ρ) is a map, then ρ is a product of disjoint cycles, where each cycle consists of the

outgoing arcs of one vertex of G. So, the arc rotation permutations can be enumerated by

�rst enumerating all possible cycles for each vertex separately and then building all possible

products of disjoint cycles which can be constructed from these cycles. The following lemmas

tell us which products of disjoint cycles we need to consider.

Lemma 4.16. Let f be a permutation of S . Let xss be a product of disjoint cycles, such that
S =

⋃
sset xss and for each s ∈ S there is a xs ∈ xss where

perm-restrict f (orbit f s ) = cycle xs.

Then f = cycles xss.

Proof. Proof by induction on xss for all f , S satisfying the above conditions. For xss = [], f is

the identity function and so is cycles []. For xss = xs :: xss′, we have

perm-restrict f (orbit f s ) = cycle xs

for any s ∈ xs and hence

perm-restrict f (set xs) = cycle xs.

In particular is perm-restrict f (set xs) cyclic on xs. By Lemma 4.4 we know that

perm-restrict f (
⋃

sset xss′)

is a permutation on

⋃
sset xss′ and hence we can use the induction hypothesis to derive

perm-restrict f (
⋃

sset xss′) = cycles xss′.

With Lemma 4.5, the following sequence of equations

f = perm-restrict f (xs ∪ xss′) = cycle xs ◦ cycles xss′ = cycles xss

holds. This concludes the proof. �

By the above lemma, a suitable product of disjoint cycles represents a permutation f . Assume

that we the orbits of f are given as a list of lists css. The following lemma now tells us that a

suitable product of disjoint cycles can be obtained by permuting each list in css appropriately.

Rotating a cycle does not change the associated cyclic permutation, so the �rst element of each

list can stay the same.

Corollary 4.17. Let f be a permutation of S and let css be a product of disjoint cycles such that
S =

⋃
css. Moreover, assume that for each cycle cs ∈ css, set cs is an orbit of f.

Then there is a product of disjoint cycles xss with f = cycles xss such that map set xss =
map set css and map hd xss = map hd css.
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Proof. Here css is a list of orbits. Let cs ∈ css. Then perm-restrict f (ssetcs) is a cyclic permutation

and there is a cycle xs such that cycle xs = perm-restrict f (sset cs). We have set xs = set cs. As

rotating a cycle yields the same permutation, xs can be chosen to start with the same element

as cs. The theorem then follows from Lemma 4.16. �

Recall that we want to enumerate all possible arc rotation permutations ρ and that the orbits of

ρ are �xed. We have now reduced the problem of enumerating all maps to an enumeration of list

permutations: By Lemma 4.2, each product of disjoint cycles xss corresponds to a permutation

whose orbits are given by sset xss. So each product of disjoint cycles with the right sset yields

a map. On the other hand, given the orbits css of f, Corollary 4.17 allows us to describe each

permutation f by a product of disjoint cycles xss with sset xss = sset css.
The functions de�ned below compute all such list permutations. As rotations of a list induce

the same permutation, we restrict ourselves to lists starting with the same element (this is

justi�ed by the map hd xss = map hd css result of Corollary 4.17):

Definition 4.18 (Permutations of Lists). Let product-lists be the function computing for a list
of lists all lists which can be obtained by choosing the n-th element from the n-th list.

permutations [] B [[]]

permutations xs B [y :: ys | y ∈ xs ∧ ys ∈ permutations (xs \ y)]

cyc-permutations [] B [[]]

cyc-permutations (x :: xs) B map (λys. x :: ys ) (permutations xs)

cyc-permutationss B product-lists ◦map cyc-permutations

For a cycle xs, cycle (cyc-permutations xs) is the set of all permutations with orbit set xs.
Similarly, for a product of disjoint cycles xss is cycles (cyc-permutationss xss) the set of all

permutations with orbits sset xss .

Theorem 4.19. Let xss be a list of disjoint cycles. Then

cycles (cyc-permutationss xss) = { f | f permutes (
⋃

sset xss) ∧ (∀xs ∈ xss. cyclic-on f xs)}

Proof. Follows from Corollary 4.17 and the fact that cyc-permutationss computes all combina-

tions of permutations of the lists in xss. �

We now have everything we need to enumerate the possible arc rotations ρ.

Lemma 4.20. Let vs be a list of vertices and as a list of arcs such thatG = LG(vs, as) is a graph.
Then the set of all maps of G is

to-mapG (cycles (all-maps (vs, as)))

where

grouped-out-arcs (vs, as) B map (λu . filter (λ(x ,y). x = u) as) (remdups (map fst as))

is the list of arcs grouped by their tail and

all-maps (vs, as) B cyc-permutationss (grouped-out-arcs (vs, as)).
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Proof. By Lemma 4.15, it su�ces to show that

cycles (all-maps (vs, as)) = { f | f permutes (set as ) ∧ rotatesG f }.

Let xss = grouped-out-arcs (vs, as). Using Theorem 4.19, we still need to show that ssetxss = AG
and (∀xs ∈ xss. cyclic-on f xs) ⇐⇒ rotatesG f . Both follow easily from the de�nition of

grouped-out-arcs. �

This characterization is in the executable fragment of Isabelle/HOL, provided that vs and as
are executable.

4.3.2. Computing the Genus

Let M = (G,π , ρ) be a map. Recall the de�nition of the genus of a bidirected graph:

genus M = 2 · |sccsG | − |isolated-vertsG | − |VG | + |AG |/2 − |F M |

To compute the genus, we need to be able to compute these �ve values. Computing the

number of vertices, arcs and isolated vertices is trivial.

As G is a bidirected digraph, the reachability relation is symmetric and the SCCs can be com-

puted by computing the re�exive-transitive closure of the reachability relation (cf. Lemma 3.18).

Definition 4.21 (Executable SCCs). Let scc u = {v | u →∗G v} and de�ne

sccsimpl B {scc u | u ∈ VG }

Lemma 4.22. Let G be a symmetric digraph, then sccsimpl G = sccsV G = verts (sccs G ) and
hence |sccsG | = |{scc u | u ∈ VG }|.

The expression {v | u →∗G v} and hence the number of SCCs can easily be computed using

the Executable Transitive Closures by Sternagel and Thiemann [72]. It remains now to give an

executable speci�cation for the number of face cycles. As before, I give a speci�cation which

uses lists to represent sets.

Definition 4.23 (Executable List of Orbits). For a permutation f the list orbit is de�ned as

orbitimpl f s acc x B (let x ′ = f x

in if x ′ = s then rev (x :: acc) else orbitimpl f s (x :: acc) x ′)

and the list of list orbits for a list of values as

orbitsimpl f [] B []

orbitsimpl f (x :: xs) B let fc = orbitimpl f x [] x in fc :: orbitsimpl f (xs \ fc).

Note that orbitimpl is only de�ned if s is in the orbit of x . Otherwise, it does not terminate.

As it is a tail-recursive function, it can still be de�ned by the partial_function command of

Isabelle/HOL. These functions can be used to compute FG.
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definition c_K5 B ([0..4], [(x ,y). x ← [0..4], y ← [0..4], x , y])
lemma ¬comb_planar (G c_K5)

by (subst comb_planar_impl_correct) eval+

definition c_K33 B ([0..5], [(x ,y). x ← [0..5], y ← [0..5], even x = odd y])
lemma ¬comb_planar (G c_K33)

by (subst comb_planar_impl_correct) eval+

Figure 4.3.: Isabelle proof that two concrete instances of K5 and K3,3 are planar: Lemma 4.26

is applied and the resulting proof obligations can then be solved by simple

evaluation. This includes the precondition that the graphs are symmetric and

loop-free.

Lemma 4.24. Let f be a permutation. Then orbitimpl implements orbit and orbitsimpl implements
orbit applied to a list of values. Formally, the equations set (orbitimpl f x [] x ) = orbit f x and
sset (orbitsimpl f xs) = orbit (set xs) hold. Moreover, if xs is distinct, orbitimpl f xs is also distinct.

Proof. By induction, using the equation orbit f x = {(n x . n ∈ N}. �

With these functions, I can now give an executable speci�cation for combinatorial planarity.

Definition 4.25 (Executable Combinatorial Planarity). I implement comb-planar by

comb-planarimpl (vs,as ) B letG = LG(vs, as)

let n = 2 · |sccsimpl (vs,as ) | − |isolated-vertsG | − |VG | + |AG |/2

in ∃xss ∈ all-mapsG . n − |orbitsimpl (σto-mapG xss) as | = 0.

Lemma 4.26. Let LG(vs, as) be a symmetric and loop-free digraph. Then

comb-planar (LG(vs, as)) = comb-planarimpl (vs, as)

holds.

Proof. By Lemma 4.24, |F (to-mapG xss) | = |orbitsimpl (σto-mapG xss) as |. The lemma then follows

by unfolding the lets, Lemma 4.22, and Lemma 4.20. �

With this executable speci�cation, combinatorial planarity for a concrete K5 and K3,3 can be

proven by evaluation. Figure 4.3 shows the Isabelle proof text.

4.4. Kuratowski Graphs are not Combinatorially Planar

In the previous section, we saw for concrete instances of the K3,3 and K5 that these graphs are

not combinatorially planar. We still need to generalize this result to arbitrary instances of K3,3
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and K5. The proof idea is simple: All K3,3 respectively K5 are isomorphic and the property of

being combinatorially planar is a graph invariant.

If G and H are digraphs without parallel arcs, any isomorphism between G and H is uniquely

determined by the vertex morphism. To determine the arc morphism, one �rst maps the

endpoints with the vertex morphism and then obtains the unique arc with these endpoints. This

construction is performed by the function de�ned below.

Definition 4.27. Let G, H be digraphs without parallel arcs and f : VG → VH injective. Then
the isomorphism induced by f is de�ned as

isonomulti G H f B ( f , (ends H )−1 ◦ pairself f ◦ endsG, tail H , head H )

where for any graphG, endsG : AG → VG ×VG is de�ned by endsG a = (at,G ,ah,G ) and pairself
lifts a function to a pair by pairself f (u,v ) = ( f u, f v ).

Lemma 4.28. Let G, H be digraphs without parallel arcs. If f : AG → AG is injective and
adjH = pairself f adjG , then isonomulti G H f is an isomorphism between G and H .

Using isonomulti, it is easy to show that arbitrary instances of Km and Km,n are isomorphic:

Lemma 4.29. Let G, H be graphs with Km G and Km H . Then G and H are isomorphic.

Proof. BothG and H have the same, �nite cardinality, so we obtain a bijection f : VG → VH . As

both G and H are complete, the image of adjG under pairself f is adjH . By Lemma 4.28, G and

H are isomorphic. �

Lemma 4.30. Let G, H be graphs with Km,n G and Km,n H . Then G and H are isomorphic.

Proof. We choose functions f1 resp. f2 for the partitions with cardinalitym resp. n separately.

Combining these yields a vertex morphism obeying the bipartition and hence the adjacency

relation. �

It is left to show that combinatorial planarity is a graph invariant. Recall that the genus

is computed from the following properties: the number of vertices, the number of arcs, the

number of face cycles, the number of SCCs and the number of isolated vertices. Except for face

cycles, all of these properties are graph invariants according to Section 3.3.3.

The number of face cycles is de�ned with regard to a combinatorial map, not just a graph. A

digraph isomorphism can be extended to maps.

Definition 4.31. LetM = (G,πG , ρH ) be map, h a digraph isomorphism forG, and de�ne h−1 B
inv-isoG h. A function f : AG → AG can be lifted to a function Ah G → Ah G by the following
function:

wrap h f = perm-restrict (h ◦ f ◦ h−1) Ah G

The application of h toM is then de�ned as

map-iso h M B (h G,wrap h πH ,wrap h ρH ).
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Lemma 4.32. Let M = (G,πG , ρH ) be a map and h an graph isomorphism for G. Then M ′ =
map-iso h M is a map with σM ′ = wrap h σM .

Proof. Easy. The equation σM ′ = wraphσM follows directly from the de�nition of wrap and the

injectivity of iso-arcs h. �

Corollary 4.33. Combinatorial planarity is a graph invariant.

Proof. Let G, H be isomorphic digraphs and MG = (G,πG , ρG ) a map. Then there is an isomor-

phism h between G and H , i.e., H = h G. Let MH = map-iso h M = (H ,πH , ρH ). Then for all

a ∈ AH ,

orbit σMH a = iso-arcs h (orbit σM (iso-arcs (inv-isoG h) a))

and hence

F MH = iso-arcs h (F MG ).

As h is an isomorphism, iso-arcs h is injective on F MG and thus |F MG | = |F MH | holds.

As noted above, all other components of the genus of a map are graph invariants, hence

genus MG = genus MH .

So plane maps ofG are mapped to plane maps of H and therefore,G is combinatorially planar

if and only if H is. �

Corollary 4.34. Kuratowski graphs are not combinatorially planar.

Proof. Follows directly by applying Corollary 4.33, Lemma 4.29, and Lemma 4.30 to the graphs

from Figure 4.3. �

4.5. Planarity under Subdivision

In this section, I show that the subdivision of a Kuratowski graph is not combinatorially planar.

Generalizing this statement, I prove the following proposition:

Proposition 4.35. Let H be a subdivision of G and G combinatorially planar. Then H is combi-
natorially planar.

That is, a subdivision of a non-planar graph is non-planar. The idea of the proof is that

a subdivision step preserves planarity and hence, by induction, subdivision does. For the

intuitive de�nition of planarity, the induction step seems obvious. Still, the formal proof that

combinatorial planarity is preserved by subdivision is far from being trivial.

A subdivision step is described by the predicate subdiv-step which establishes a complex

relationship between two graphs – unfolding this predicate is not a feasible approach. We are

only ever interested in a single instance of the subdivision step, so we introduce a locale to

collect all the facts about a map derived by a subdivision step.
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locale subdiv_map =
fixes G πG H πH ρH u v w uv uw vw
assumes subdiv_step (G, πG ) (H , πH ) (u, v, w) (uv, uw, vw)
assumes digraph_map (H , πH , ρH )

For the rest of this chapter, we will work in this locale and write vu = πG uv, wu = πH uw,

and wv = πH vw.

Using a locale allows us to derive unconditional facts and equations. This makes automatic

reasoning tools much more e�ective. In particular, such facts can guide these tools to perform

necessary case analysis automatically. For example, given the fact that {uw,wu, vw,wv} ⊆ AH
and the premise that x ∈ AH , many of Isabelle’s automated reasoning tools will analyze the

cases x = uw, x = wu, x = vw, x = wv, and x < {uw,wu, vw,wv}.
In order to prove Proposition 4.35, I construct a plane map for G from a plane map for H . As

w was inserted into H by a subdivision, there is necessarily a face cycle involving the sequence

uw,wv and one involving the sequence vw,wu:

Lemma 4.36. For H holds σH uw = wv and σH vw = wu.

Proof. As w has only two outgoing arcs in H , we have ρH wu = wv and ρH wv = wu. The

lemma follows then by unfolding the de�nition of σH . �

By replacing the sequence uw,wv by uv and vw,wu by vu in σH , we get a map for G.

Lemma 4.37. Let

ρG B perm-swap uw uv (perm-swap vw vu (perm-rem wv (perm-rem wu ρH ))).

Then (G,πG , ρG ) is a map for G and σG is de�ned as σG B ρG ◦ πG .

The arcs wu and wv are removed as there is no vertex w in G anymore (those two arcs are

the only outgoing arcs of w in H ). Then, the arc uw is replaced by uv and vw by vu.

The face cycles of G can be easily expressed in terms of the face cycles of H .

Definition 4.38 (Projection of Arcs). We de�ne projection functions projH : AH → AG and
projG : AG → AH as follows:

projH x B




uv if x ∈ {uw,wv}
vu if x ∈ {vw,wu}
x else

projG x B




uw if x = uv
vw if x = vu
x else

Lemma 4.39. The function projH relates the face cycles of G and H : FG = projH FH .

Proof. The following three equations hold (for a ∈ AG \ {uv, vu}):

σG a = projH (σH a) σG uv = projH (σH wv) σG vu = projH (σH wu)

With Lemma 4.36, one can now easily show that

orbit σG a = projH (orbit σH (projG a)) for all a ∈ AG

projH (orbit σH a) = orbit σG (projH a) for all a ∈ AH

and the lemma follows directly from these two properties. �
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Lemma 4.40. G and H have the same number of face cycles, i.e., |FG | = FH |.

Proof. By Lemma 4.39 it su�ces to show that projH is injective on FH . Let A,B ⊆ FH and

projH A = projH B. Then proj−1H (projH X ) − {uv,vu} = X holds for X ∈ A,B: the inverse image

of uv under projH is {uv, uw,wv} and uv < X (as uv < AH ) and either both or neither of uw and

wv are in X (as σH uw = wv). The same holds for vu and {vu, vw,wu}.
Hence A = B and f is injective. �

So (G,πG , ρG ) is an appropriate choice for the map for G: the number of face cycles is the

same as for H , which is what one would expect for inserting a vertex on an arc.

To compute the genus we need to know the number of vertices, arcs, isolated vertices, face

cycles, and (strongly connected) components. The �rst three values are easy to compute, and we

have just shown that the fourth stays the same, so we now consider the SCCs of G. Intuitively,

those are the same as the SCCs of H , except for the removed vertex w (which, by construction

of the subdivision is in the same SCC as u and v).

To relate sccsVG and sccsVH , we need to consider the relationship between→∗G and→∗H . It

is relatively easy to see that these relations are same, except when w is concerned. As above,

this can be hidden by a projection function.

Lemma 4.41. Let projVH : AG → AH be de�ned as

projVH x =



u if x = w
x else.

Then, for all x ,y holds x →∗H y if and only if projVH x →∗G projVH y holds.

Proof. Both directions can be proven by an easy induction on the de�nition of reachability. �

Using this characterization, it is easy to to show that the number of components in G and H
is the same:

Lemma 4.42. G and H have the same number of components, i.e., |sccsVG | = |sccsV H |.

Proof. Recall that the SCCs of a graph are fully characterized by the reachability relation (cf.

Lemma 3.18). Hence, from Lemma 4.41 the equation sccsVG = projVH (sccsVH ) follows directly.

As the SCCs of a graph are disjoint and w is always in the same SCC as u, projVH is injective

on the SCCs of H . Hence, |projVH (sccsV H ) | = |sccsV H | and the lemma is proven. �

The function projVH allows a concise proof of Lemma 4.42: It hides any considerations about

w , except for the injectivity proof.

Corollary 4.43. The maps (G,πG , ρG ) and (H ,πH , ρH ) have the same genus.

Proof. G has one vertex and two arcs less then G. The number of isolated vertices, face cycles

and SCCs stays the same. Therefore this lemma holds. �

From this we can derive our �nal theorem, without the preconditions of the subdiv_step
locale:
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Theorem 4.44 (Planarity of Subdivisions). Let (H ,πH ) be a subdivision of (G,πH ). If H is
combinatorially planar, then G is also combinatorially planar.

Proof. As H is combinatorially planar, we obtain a plane map (H ,π ′H , ρH ). Then there is also a

π ′G such that subdivision (G,π ′G ) (H ,π
′
H ). By induction over this predicate and Corollary 4.43,

we obtain a plane map for G. Hence, G is combinatorially planar. �

4.6. Planarity under Subgraphs

In this section, I show that every bidirectable subgraph H (i.e., a subgraph for which there is a

bidirection) of a combinatorially planar graph G is combinatorially planar. If H is a bidirectable

subgraph of G, it can be constructed by repeatedly applying one of the following steps:

• removing an isolated vertex or

• removing an edge (i.e., an arc and its reversal w.r.t. some bidirection).

If we can show that both steps preserve planarity, we know that H must be planar. It is easy

to show that removing an isolated vertex preserves planarity:

Lemma 4.45. Let G be a digraph with a mapM and let u be an isolated vertex of G. Then,M is
also a map of the digraph H = G − {u} and the genus of H is the same as the genus of G.

Proof. As u is an isolated vertex, G and H have the same arcs and hence M is also a map of

H . Therefore, G and H have the same number of arcs and face cycles. H has one vertex, one

isolated vertex and one SCC less then G, hence G and H have the same genus. �

For the remainder of this section letG be an arbitrary, but �xed combinatorially planar graph

with map (πG , ρG ) and a ∈ AG . We now consider the graph G − {a,πG a} and �x some notation.

Definition 4.46. We write a′ = πG a and H B G − {a,a′}. Moreover, we de�ne

πH = perm-restrict πG (AG − {a,a
′})

ρH = perm-rem a (perm-rem a′ ρG ).

Lemma 4.47. (H ,πH , ρH ) is a map.

Proof. Easy. �

To compute the genus of H , we will have to do a case analysis on four properties:

• B: a and a′ may be a bridge in their SCC (i.e., removing these splits the component into

two). By abuse of notation, we call G biconnected if a is reachable from a′ and vice versa

in H .

• T: at,H may be isolated in H .

• H: ah,H may be isolated in H .
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(a) BT (b) BtS (c) Bts (d) bTH (e) bTh (f) btH (g) bth

Figure 4.4.: All possible situations for removing an edge from a bidirected graph. A

represents a single vertex, a a SCC, and the arrows represent the arcs to be

deleted. The color indicates whether the arrows lay on the same face cycle. The

letters indicate which of the four properties are assumed to hold (uppercase) or

not to hold (lowercase).

• S: a and a′ may be on the same face cycle.

Not all combinations of the four points above are possible, so we end up with the seven

di�erent situations depicted in Figure 4.4.

In Isabelle, I use locales to structure the proof: A basic locale contains all necessary properties

about G and H which are independent from the four properties above. Then there are two

locales for each of the four properties, inheriting from the basic locale. Finally, there is one

locale for each of the seven possible situations, inheriting from the locales for the properties

(sometimes using intermediate locales). Each of these seven locales ends with a lemma stating

genus H (πH , ρH ) ≤ genusG (πG , ρG ). The �nal theorem then follows from the case analysis

depicted in Figure 4.4.

Lemma 4.48. Let G be biconnected. Then |sccs H | = |sccs G |. If G is not biconnected, then
|sccs H | = |sccsG | + 1.

Proof. If G is biconnected, then u is reachable from v in G if and only if it is reachable in H and

hence the SCCs of G and H are the same.

Let us now assume that G is not biconnected. We write sccG u for the vertex SCC of G
containing u. Then obviously at,G , ah,G and sccH at,G , sccH ah,G . Moreover, sccG at,G =

sccH at,G ∪ sccH ah,G and for all vertices u outside of this SCC, we have have sccG u = sccH u.

Hence,

sccs H = (sccsG \ {sccG at,G }) ∪ {sccH at,G , sccH ah,G }

and therefore |sccs H | = |sccsG | + 1. �

We now consider the face cycles of H . It can be easily shown that σG x = σH x except when

x ∈ {a,a′} or σG x ∈ {a,a′}. Hence, the face cycles of G can be characterized as follows:

Lemma 4.49. All face cycles of G which contain neither a nor a′ are also face cycles of H . To be
exact, the following equation characterizes the face cycles of H :

F H = FG \ {orbit σG a, orbit σG a′} ∪ {orbit σH ((orbit σG a ∪ orbit σG a′) \ {a,a′})}
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Proof. As σG x = σH x except when x ∈ {a,a′} or σG x ∈ {a,a′}, the face cycles of G containing

neither a nor a′ are also face cycles of H . Hence, the left side of the union is a subset of F H . As

AG = AH \ {a,a
′}, the right side of the union is trivially a subset of F H .

Any element of F H is also contained in the right hand side, as there is an H -face cycle for

each arc of H . �

We will now have a closer look at the face cycles of a and a′. Even for those face cycles, the

parts “between a and a′” are not a�ected by deleting these edges. This notion of “between two

vertices” is expressed by segments. If S is the face cycle containing a and a′, it can be split into

four parts:

S = segment σG a a′ ∪ {a′} ∪ segment σG a′ a ∪ {a}

As a, a′ are not arcs of H , the remaining face cycle(s) of H must of the other two parts. The

drawings in Figure 4.4 suggest that each of these segments is already a face cycle of H . This is

shown in the following lemma.

Lemma 4.50. Let orbit σG a = orbit σG a′. If segment σG a′ a , ∅, then it is a face cycle of H .
The same holds for segment σG a a′.

Proof. Consider segment σG a′ a. As the segment is not empty, we have σG a′ < {a,a′} and

hence σG a′ ∈ AH .

Moreover, for all elements x of this segment (except for the “last”, i.e., the one with σG x = a)

holds σH x = σG x .

We show now that in H the last element of the segment loops around to the �rst, i.e., that

σG x = a implies σH x = σG a′. From x < {a,a′} follows πH (x ) = πG (x ). Then holds:

σG a′ = σG (πG a) = ρG a as σG = ρG ◦ πG

= ρG (σG x )

= ρG (ρG (πG x ))

= ρH (πG x ) from ρG (πG x ) = a and def. of perm-rem

= ρH (πH x ) = σH x

Then both directions of the equation segmentσG a′ a = orbit σH (σG a′) can be easily proven

by induction on the de�nition of segments respectively orbits. As σG a′ ∈ AH , the segment is a

face cycle of H .

For segment σG a a′, the same holds due to symmetry. �

Hence, if a and a′ lie on the same face cycle, we now know the number of face cycles and it

depends only on whether these segments are empty or not:

Lemma 4.51. Let orbit σG a = orbit σG a′. Then

|F H | = |FG | − 1 + |{segment σG a′ a, segment σG a′ a} − {∅}|

Proof. Follows from Lemmas 4.49 and 4.50. �
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(a) in G (b) in H , after arcs a and a′

were removed

Figure 4.5.: Situation Bts: a and a′ are on di�erent, non-trivial face cycles in G. These are

merged in H .

Now consider the case where a and a′ are on di�erent face cycles. In this case, removing a
and a′ combines their two face cycles into a single one (see Figure 4.5).

Lemma 4.52. Let orbit σG a , orbit σG a′. Let b ∈ AH such that b ∈ orbit σG a ∪ orbit σG a′.
Then

orbit σH b = segment σG a a ∪ segment σG a′ a′

Proof. In this proof we assume that b ∈ orbit σG a. The proof for b ∈ orbit σ G a′ is analogous.

Case ⊆: Let x ∈ orbit σH b. Assume that x < orbit σG a ∪ orbit σG a′. Then holds

orbit σG x ∩ (orbit σG a ∪ orbit σG a′) = ∅

and hence by Lemma 4.49 orbit σG x = orbit σH x = orbit σH b.

As a result, b < orbit σG a ∪ orbit σG a′, which is a contradiction to the assumption of the

Lemma. Hence x ∈ orbit σG a ∪ orbit σG a′. For arbitrary f and x holds segment f x x =
orbit f x \ {x } and with x < {a,a′} follows x ∈ segment σG a a ∪ segment σG a′ a′.
Case ⊇: As b ∈ orbit σG a, we have orbit σG a = segmentσG a b ∪ {b} ∪ segmentσG b a. This

case is split in four parts:

• b ∈ orbit σH b: Trivial.

• segmentσG b a ⊆ orbit σH b: We have a < segmentσG b a and, as orbit σG a , orbit σG a′,
a′ < segment σG b a. Hence, σG x = σH x for all x ∈ orbit σG until σG x = a and the case

follows by induction on the de�nition of segments.

• segment σG a′ a′ ⊆ orbit σH b: Let c = σ−1G a. Then c ∈ {b} ∪ segment σG b a and, by the

previous cases, c ∈ orbit σH b. Now σG a′ = σH c can be shown. Hence, σG x = σH x
for all x ∈ orbit σG a′ until σG x = a′ and by induction on the de�nition of segments we

have segment σG a′ a′ ⊆ orbit σH c . With c ∈ orbit σH b follows orbit σH c = orbit σH b
and thus the case.

• segment σG a b ⊆ orbit σH b: Let x ∈ segment σG a b.
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There is a d such that d ∈ orbit σH b and σH d = σG a. If segment σG a′ a′ = ∅, d = c .

Otherwise, d = σ−1G a′.

As x ∈ segment a b we have x , a and with b , a follows σG x , a. Moreover

segment σG a b ∩ orbit σG a′ = ∅ and therefore {x ,σG x } ∩ {a,a′} = ∅. As a result,

σG x = σH x for all elements of segment σG a b up to and including x . Moreover, we have

σH d = σG a, so x ∈ orbit σH d follows by induction.

We know that d ∈ orbit σH b and hence by transitivity x ∈ orbit σH b. This proves the

case.

�

As a result, the number of face cycles is then given by the following lemma.

Lemma 4.53. Let orbit σG a , orbit σG a′. Then

|F H | = |FG | −



1 if segment σG a a ∪ segment σG a′ a′ , ∅
2 else

Proof. By Lemma 4.49 and Lemma 4.52. �

We are now able to show that removing a pair of arcs decreases the genus:

Lemma 4.54. The genus of H is bounded by the genus of G:

genus (H ,πH , ρH ) ≤ genus (G,πG , ρG )

Proof. We write

δsccs B |sccsG | − |sccs H |

δisolated-verts B |isolated-vertsG | − |isolated-verts H |

δF B |FG | − |F H |

δA B |AG | − |AH | = 2

δgenus = 2 · δsccs − δisolated-verts − δF + δA/2

By the de�nition of the genus holds genus (H ,πH , ρH ) ≤ genus (G,πG , ρG ) if 0 ≤ δgenus.

If G is not biconnected, then a and a′ are on the same face cycle: both a and the arcs in

segment σG a′ a′ describe an non-empty path from at,G to ah,G in G. However, at,G and ah,G
are not connected in H , hence a ∈ segment σG a′ a′ and therefore orbit σG a = orbit σG a′.

We distinguish the seven cases depicted in Figure 4.4. For any of the cases, the number of

SCCs follows directly from Lemma 4.48.

• G is biconnected and at,G is isolated in H (Figure 4.4a): As at,G is isolated and connected

to ah,G , these two vertices are equal, hence δisolated-verts = −1. The face cycles of a and a′

are {a} and {a′}, therefore

segment σG a a = segment σG a′ a′ = ∅

and by Lemma 4.53 we have δF = 2. Moreover, δsccs = 0 and hence δgenus = 0.
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• G is biconnected, at,G is not isolated in H and a and a′ are on the same face cycle (Fig-
ure 4.4b): Then ah,G is not isolated either (because ah,G and at,G are connected), so

δisolated-verts = 0. From Lemma 4.51 follows directly δF ≤ 1. As δsccs = 0, we have

0 ≤ δgenus.

• G is biconnected, at,G is not isolated in H and a and a′ are not on the same face cycle
(Figure 4.4c): As above, δisolated-verts = 0 and δsccs = 0.

We show that segmentσG a a ∪ segmentσG a′ a′ , ∅. Then, δF = 1 holds by Lemma 4.53

and hence 0 = δgenus follows.

We assume that the two segments are empty. Then we have σG a = a and σG a′ = a′ and

hence ρG a = a′ and ρG a′ = a. As ρ permutes the arcs around a vertex, it follows that

a,a′ are the only outgoing arcs of at,G in G. Hence, in H , at,G must be isolated. This is a

contradiction.

• G is not biconnected and at,G and a′h,G are isolated in H (Figure 4.4d): Then δisolated-verts =

−2, δsccs = −1 and δF = 1 by Lemma 4.51. Hence δgenus = 0.

• G is not biconnected, at,G is isolated in H and a′h,G is not isolated in H (Figure 4.4e): Then

δisolated-verts = −1, δsccs = −1 and by Lemma 4.51 δF = 0. Hence δgenus = 0.

• G is not biconnected, at,G is not isolated in H and a′h,G is isolated in H (Figure 4.4f): From

the previous case by symmetry.

• G is not biconnected and neither at,G nor a′h,G are isolated in H (Figure 4.4g): In this case,

δisolated-verts = 0, δsccs = −1 and δF = −1 by Lemma 4.51. Hence δgenus = 0.

�

Now, we can use induction to show that every bidirectable subgraph H of a combinatorially

planar graph G is combinatorially planar. Note: As H is bidirectable and G is combinatorially

planar, there are arc reversal functions πH and πG for H and G respectively. In general, these

are not compatible in the sense that πH a = πG a for all a ∈ AH . Lemma 4.54, however, is only

applicable if these are compatible. To solve this, one could prove that if G is combinatorially

planar there is a plane map for every arc reversal π ′G function of G and then choose π ′G such

that it is compatible of πH . This would involve induction over some notion of distance between

πG and π ′G .

Instead, I embed the modi�cation of the arc reversal function in the inductive step of the

planarity proof; modifying πG only one arc at a time.

Lemma 4.55. Let G be a graph with map (πG , ρG ). Let {a,b} ⊆ AG with at,G = bt,G and
ah,G = bh,G . Let π ′G = perm-swap πG a b and ρ ′G = perm-swap ρG a b. Then (π ′G , ρ

′
G ) is a map

for G with genus (G,π ′G , ρ
′
G ) = genus (G,πG , ρG )

Lemma 4.56. Let (G,πG , ρG ) be a map and H be a bidirectable subgraph of G. Then there is a
map (πH , ρH ) of H such that genus H (πH , ρH ) ≤ genusG (πG , ρG ).

51



4. Planarity of Graphs

Proof. Let δG = |AG | − |AH | + |VG | − |VH |. Then show that for all G the rule

subgraph H G (G,πG , ρG ) is map

∃(πH , ρH ). (H ,πH , ρH ) is map ∧ genus H (πH , ρH ) ≤ genusG (πG , ρG )

holds by induction on δG .

Case δG = 0: Then G = H and the property holds trivially.

Case |AG | > |AH |: Then AH ( AG and there are {a,a′} ⊆ AH \ AG , such that a , a′,
a′t,G = ah,G , and a′h,G = at,G (as both G and H are bidirectable). By Lemma 4.55,

π ′G B perm-swap πG a′ (πG a) ρ ′G B perm-swap ρG a′ (πG a)

are a map for G with genus (G,π ′G , ρ
′
G ) = genus (G,πG , ρG ). Then, by Lemma 4.54, there is a

map such that

genus (G − {a,a′},πG−{a,a′ }, ρG−{a,a′ } ) ≤ genus (G,πG , ρG )

Moreover, H is a subgraph of G − {a,a′} and hence from the induction hypothesis there are

ρH ,πH such that (H , ρH ,πH ) is a map and

genus (H , ρH ,πH ) ≤ genus (G − {a,a′},πG−{a,a′ }, ρG−{a,a′ } ) ≤ genus (G,πG , ρG ).

Case δG , 0 and |AH | = |AG |: Then there is a v ∈ VG \ VH and v is isolated in G. By

Lemma 4.45 and the induction hypothesis, the property holds. �

Corollary 4.57. Let (G,πG , ρG ) be a map. Then 0 < genus (G,πG , ρG ).

Proof. The empty graph has genus 0 and is a subgraph of G. The corollary then follows by

Lemma 4.56. �

Corollary 4.58. Let G be a combinatorially planar graph and H a bidirectable subgraph of G.
Then H is combinatorially planar.

Proof. Follows from Lemma 4.56 and Corollary 4.57. �

With this, we can �nally prove that combinatorial and Kuratowski planarity are compatible:

Theorem 4.59. Let G be a combinatorially planar graph. Then G is also Kuratowski-planar.

Proof. By contradiction: assume that G is not Kuratowski-planar. Then G has a subgraph H
which is a subdivision of some Kuratowski subgraph K . By Corollary 4.58 is H combinatorially

planar and hence by Theorem 4.44 also K .

On the other hand, K is not combinatorially planar by Corollary 4.34. This is a contradiction

and hence the assumption that G is not Kuratowski-planar is false. �
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4.7. Discussion

In this chapter, I formalized two characterizations of planarity: a combinatorial one using

planar maps and one based on Kuratowski’s theorem. These two characterizations were chosen

as planar maps respectively Kuratowski subgraphs can be used to easily check that a graph

is planar (w.r.t. combinatorial planarity) respectively not planar (w.r.t. Kuratowski planarity).

Imperative implementations of these checks are veri�ed in Chapter 5 and Chapter 7.

Furthermore, I proved that combinatorial planarity implies Kuratowski-planarity, so that both

planarity and non-planarity can be certi�ed with regard to the same de�nition. As a side e�ect

of this proof, I presented a decision procedure for combinatorial planarity. This procedure is

terribly ine�cient: for a star graph with n vertices
3
, the algorithm enumerates (n − 2)! di�erent

maps. An e�cient algorithm can decide the problem in linear time (cf. Mohar and Thomassen

[55, §2.7]). Nevertheless, the algorithm is e�cient enough to decide planarity for small graphs

like the K5 or K3,3.

Usually, planarity is considered for undirected graphs. Nevertheless, I decided to base the

de�nitions on directed graphs, which allows me to use the theory of digraphs formalized in

Chapter 3. This choice is easily justi�ed for combinatorial planarity, which is described in terms

of half-edges in the literature (e.g. Lando and Zvonkin [44]). For the characterization based

on Kuratowski’s theorem, the used vocabulary is the standard one for digraphs, except for the

de�nition of subdivision (for digraphs, one usually considers subdividing a single arc, not a pair

of arcs). For the results formalized in this chapter, the de�nition based on digraphs works well:

these are concerned with the relation to combinatorial planarity, which is based on bidirected

digraphs anyway. In Chapter 5, I prove further properties about Kuratowski planarity, which

gives further insights whether the use of digraphs is suitable here.

Planarity has been the topic of a number of formalizations. In their proof of the Five Color

Theorem, Bauer and Nipkow [9] de�ne planar graphs in Isabelle/HOL inductively in terms of

near triangulations. Their inductive de�nition has been motivated by Yamamoto et al. [84], who

used a similar de�nition to prove the Euler equation.

Gonthier [31] formalized a proof of the Four Color Theorem. Most of the proof is done on

planar hypermaps, a generalization of the concept of planar maps. As part of this work, he also

proves a version of the Jordan Curve Theorem for hypermaps, which gives a new combinatorial

characterization of planarity. Hypermaps have also been the basis of other formal de�nitions of

planarity. Dufourd [20] used hypermaps to formalize a discrete version of the Jordan Curve

Theorem. The proof of the Kepler conjecture by [34] uses the concept of tame plane graphs. The

formalization of this proof in the Flyspeck project [35] de�nes these twice, both inductively [57]

and based on hypermaps.

The formalizations mentioned above only consider planar graphs in a specialized setting.

My contribution is the formalization of planarity in the context of a wider graph library, using

the standard structures of said library, and a partial proof of equivalence between the two

formalized characterizations of planarity.

This proof development takes around 8000 lines of Isabelle proof text. More than a third

of this relates to Section 4.3 and Section 4.4. A fourth of this is speci�c to Section 4.6 and the

3
I.e., G = ({1, . . . ,n}, {(u,v ) | 1 ≤ u,v ≤ n ∧ (u = 1 ∨v = 1)})
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remainder is roughly evenly split between Section 4.5 and lemmas used in all three parts. If

one trusts the basic vocabulary of Isabelle/HOL, the vocabulary necessary for combinatorial

planarity consists of around 50 lines of de�nitions.
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In this chapter, I verify a checker for non-planarity of graphs. Such a checker is a program

which takes a graph and a certi�cate (in this case, a Kuratowski subgraph) and decides whether

the certi�cate proves that the graph is non-planar. I verify two imperative implementations of

the same algorithm and discuss the di�erences in e�ort needed. One version is implemented in

an abstract language using standard Isabelle expressions and the other one in C.

For many applications, it is important that a program only computes correct results. One

way to achieve this is the formal veri�cation of the program. Unfortunately, this is not always

feasible. Generally, verifying a program is an order of magnitude harder then implementing it.

Experience shows that for the veri�cation of complex programs, it is crucial to keep veri�cation

in mind during the implementation. In particular, this means avoiding constructs which are

hard to verify.

Moreover, “ease of veri�cation” and “e�ciency of implementation” are often on opposite

ends of the scale. This holds both for optimizations in the implementation and in the algorithm.

If we can tolerate a wrong result, as long as the error is immediately noticed, another approach

becomes viable. A certifying algorithm is an algorithm which takes an input x and returns both

a result y and a witness w . An accompanying checker then uses w to ascertain that y is the

correct result for input x . A small example helps understanding this concept: the input of a

planarity test is a graph, the output is “planar” or “not planar”. A certifying planarity test might

witness the result “planar” by a plane map and the result “not planar” by a Kuratowski subgraph.

The checker would then check that the map is plane respectively that the graph is a Kuratowski

subgraph of the input. If the check passes, the result is correct. Otherwise it might be wrong

and should therefore be rejected.

The idea of a checker for the output of a program was described by Blum and Kannan [12] and

Sullivan and Masson [73] developed the idea of certi�cation trails. Certifying algorithms [50]

generate easily checkable certi�cates and are a key design principle of the algorithms library

LEDA [52]. Checkers are an integral part of the library and are optionally invoked after every

execution of a LEDA program. Adoption of this principle greatly improved the reliability of the

library [51].

Usually, a checker is a much simpler program than the algorithm it belongs to. This makes

checkers amenable to formal veri�cation. Note that one checker can be used for a whole class

of algorithms, as long as all of these produce the same certi�cates: this allows optimizing

the implementation or even replacing it by a completely di�erent algorithm without redoing

the veri�cation. Recently, Alkassar et al. [2] developed a framework for verifying certifying

computations. Their approach combines the automatic code veri�er VCC [17] and the interactive

theorem prover Isabelle to prove correctness of checkers: VCC is used to prove low-level

properties of the C-code. These low-level properties are then used in Isabelle to derive the

desired mathematical properties, which are then translated back to VCC. In this approach, each
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of the two proof tools is used according to its strengths.

Another approach is to perform the whole veri�cation in Isabelle. This greatly reduces the

amount of trusted code and allows for a richer language for the speci�cation and eliminates

the need for transferring theorems between two di�erent logics. This Isabelle approach has

been discussed by Noschinski, Rizkallah, and Mehlhorn [67]. In this chapter, I follow the

Isabelle approach to verify a checker for the non-planarity of graphs. To compare the work

needed for an imperative formulation of the checker algorithm and an actual implementation, I

implemented the checker twice, in Simpl and in C. Simpl [71] is a generic imperative language

embedded into Isabelle/HOL, designed as an intermediate language for veri�cation. It allows

using arbitrary Isabelle datatypes and expressions in programs. To translate from C to Isabelle,

I used the AutoCorres tool by Greenaway, Andronick, and Klein [33]. This builds on a C-to-

Isabelle parser [76] and simpli�es the output by automatic abstraction. The hope was that after

completing the Simpl veri�cation, the veri�cation of the C program would mainly consist of

dealing with intricacies of C.

This chapter is based on a paper published in the proceedings of the NASA formal methods

workshop 2014 [67]. Introduction, the following section and the comparison of di�erent

veri�cation approaches are joint work with Christine Rizkallah and Kurt Mehlhorn. The

formalization of the checker algorithm, its implementation in C and Simpl, and the veri�cation

of the implementations are my own work.

5.1. Certifying Algorithms

Following the framework de�ned by Alkassar et al. [2], a certifying algorithm takes an input

x from a set X and produces an output y from a set Y and a witness w from a setW . Input x
is supposed to satisfy a precondition φ x , and x and y are supposed to satisfy a postcondition

ψ (x ,y). A witness predicate for a speci�cation with precondition φ and postcondition ψ is a

predicateW ⊆ X × Y ×W with the following witness property:

∀x ,y,w . φ x ∧W (x ,y,w ) =⇒ ψ (x ,y) (5.1)

In contrast to algorithms, which work on abstract sets X , Y , andW , programs as their imple-

mentations operate on concrete representations of abstract objects. I use X , Y , andW for the

set of representations of objects in X , Y , andW , respectively and assume mappings iX : X → X ,

iY : Y → Y , and iW :W →W . The checker programC receives a triple (x ,y,w ) and is supposed

to check whether this triple ful�lls the witness property. More precisely, let x = iX x , y = iY y,

and w = iW w . If ¬φ x , C may do anything (run forever or halt with an arbitrary output). If

φ x , C must halt and either accept or reject. It is supposed to accept ifW (x ,y,w ) holds and to

reject otherwise. The following proof obligations arise:

Witness Property: A proof for the implication (5.1).

Checker Correctness: A proof that C checks the witness predicate if the precondition φ is

satis�ed. I.e., for an input (x ,y,w ) with x = iX x , y = iY y, w = iW w :

1. If φ x , C halts.
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2. If φ x andW (x ,y,w ), C accepts, and if φ x and ¬W (x ,y,w ), C rejects.

Consider the planarity test from the LEDA library [52]. This algorithm takes as input a graph

x and returns y = True and a plane map w of x if x is planar or y = False and a Kuratowski

subgraph w of x otherwise. Therefore, the framework is instantiated as follows.

input x = undirected graph, represented as bidirectable digraph G1

output y = either True or False
witness w = plane map or Kuratowski subgraph

φ x = G is wellformed and VG and AG are �nite.

ψ (x ,y) = If y is True, x is combinatorially planar, else x is not com-

binatorially planar.

A checker for this algorithm needs to check two kinds of di�erent certi�cates, so I splitW

into two separate predicatesW = WTrue ∪WFalse whereWTrue andWFalse are the witness

predicates for y = True respectively y = False. The description above suggests the following

de�nitions of the witness predicate:

WTrue B {(x ,y,w ) | y = True ∧w is a planar map for x }

WFalse B {(x ,y,w ) | y = False ∧w is a Kuratowski subgraph of x }

The LEDA library contains checkers for both the planarity and the non-planarity case. In

this thesis, I will present veri�ed implementations for both cases, based on the implementations

in LEDA.

For the case y = False, the implementation in LEDA accepts also graphs which are only

“almost” Kuratowski subgraphs. In Section 5.2 I consider the algorithm used in this implemen-

tation, prove its correctness and give an updated de�nition ofWFalse. The veri�cation of an

implementation in Simpl is covered in Section 5.3, the veri�cation of an implementation in C in

Section 5.4. After introducing a tool for easier veri�cation in Chapter 6, the case for y = True is

discussed in Chapter 7.

5.2. A Checker Algorithm for Non-Planarity

Given the description of the certifying algorithm in the previous section, the checker for the

non-planarity predicateWFalse must decide whether the witness is a subgraph of the input

and a subdivision of a Kuratowski graph. To decide the latter property, the implementation of

this checker in the LEDA library contracts the graph and accepts the witness if the result is

a Kuratowski graph. In this section, I analyze the contraction algorithm and prove that it is

suitable for checking non-planarity. I also give an exact characterization of the class of accepted

witnesses.

In this section undirected graphs are modeled as �nite and bidirectable digraphs, using the

pair graph representation from Section 3.2.1. Unless otherwise speci�ed, the term graph refers

to such digraphs in this section. The term edge refers to an arc and its reverse arc.

1
The implementation of the planarity test in LEDA accepts any digraph as input and interprets it as an undirected

graph. However, a planarity certi�cate is only computed for bidirected digraphs.
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Subdivision was de�ned in Chapter 4. For pair graphs, the following simpler de�nition is

equivalent.

Lemma 5.1 (Subdivision on pair graphs). A subdivision splits an edge (u,v ) by inserting a new
nodew . For a pair graph G, the graph subdivideG (u,v ) w is de�ned as

(VG ∪ {w },AG \ {(u,v ), (v,u)} ∪ {(u,w ), (w,u), (v,w ), (w,v )}).

Then, for two pair graphs, subdivision is characterized by the following inductive de�nition:

[[bidirected-digraphG]] =⇒ subdivisionG G

[[a ∈ AG ; w < VG ; subdivisionG H ]] =⇒ subdivisionG (subdivide H a w )

Vertices added by subdivision always have degree 2. A K3,3 or K5 has no vertices of degree 2.

So, to check whether a graph G is a subdivision of a Kuratowski graph, one can undo the

subdivision step-by-step by contracting those vertices of G which have degree 2.

To avoid having to construct the intermediate graphs, the LEDA checker procedure approxi-

mates this process by contracting all these vertices at once.

Definition 5.2 (Restricted Walk). The inner vertices of a walk are the vertices of the walk,
excluding the endpoints. A walk is progressing, if it does not contain the sequence [(u,v ), (v,u)]
for any verticesu,v . Moreover, a restricted walk w.r.t.V, is a non-empty walk which is progressing
and has no inner vertices inV. Finally, a restricted path w.r.t.V is a path which is a restricted walk
w.r.t. V and has endpoints in V (note that any path is progressing).

inner-vertsG p B tl (hd (aw-vertsG p))

progressing p B ∀xs,x ,y, ys. p , xs ++ [(x ,y), (y,x )] ++ ys

rawalkG V u p v B awalkG u p v ∧ p , [] ∧ set (inner-vertsG p) ∩V = ∅ ∧ progressing p

rapathG V u p v B apathG u p v ∧ p , [] ∧ {u,v} ⊆ V ∧ set (inner-vertsG p) ∩V = ∅

A progressing walk cannot alternate back and forth between to vertices, so such a walk

does not contain any cycles (but it might be a cycle, if the end vertices are equal). If G is a

subdivision of H , a walk for H can be transformed into a walk for G by subdividing is edges

and a walk for G can be transformed into a walk for H by contracting its edges (as long as

the end vertices exist in both graphs). The formalization contains functions for single-step

subdivision and contraction of walks. Many properties, in particular the property of being a

restricted path, a preserved under these transformations. The proofs for that are technical and

not very illuminating. Nevertheless, a considerable fraction of the work which went into the

formalization of this section was spent on these.

In my formalization, V always satis�es VG ⊆ V ⊆ V3,G ⊆ V, where V3,G B {v ∈ VG . 3 ≤
in-degG v} denotes the set of vertices of G of degree 3 or more. Then the inner vertices of a

restricted walk have degree 2, i.e., the walk could have been constructed by repeated subdivision

of a single arc. In a way, restricted paths w.r.t. V describe the edges of a graph with verts V.

Therefore, the arcs of the contracted graph contr-graphG V are de�ned by the existence of an

restricted path.
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(a) G (b) all restricted paths (c) contracted graph

Figure 5.1.: A graph G and its restricted paths and contracted graph w.r.t. V3,G (in black).

Neither the separate cycle nor the node of degree 1 are on any restricted path

(or in V3,G ), so they do not contribute to the contracted graph.

(a) (b) (c)

Figure 5.2.: Some slim and non-slim subgraphs of G from Figure 5.1a. (a) shows some slim

subgraphs w.r.t. V3,G (in black). The two graphs depicted in (b) are not slim: the

�rst one has parallel restricted paths, the second one contains vertices not on a

restricted path. One of the two graphs in (c) is arbitrarily chosen as the slim

graph of G.

Definition 5.3 (Checker Procedure).

contr-graphG V B
(
V, {(u,v ) | ∃p. rapathG V u p v}

)
certifyG C B subgraphC G ∧ (let H = contr-graphC V3,C in (K3,3 H ∨ K5 H ))

Here, V is the set of vertices to be preserved by the contraction.

Figure 5.1 illustrates these de�nitions. It is easy to see that this contraction is not an exact

inverse to subdivision: vertices of degree 1 or 0, separate cycles or parallel restricted paths are

removed, even though they cannot be constructed by subdivision.

On the other hand, if G is a subdivision of H and all vertices of H have degree 3 or more then

the contraction reverses the subdivision and hence certify accepts all Kuratowski subgraphs as

certi�cate.

Lemma 5.4. LetG,H be graphs such thatH is loop-free andG is a subdivision ofH . If all vertices
of H have degree 3 or more, then contr-graphG V3,G = H .

Proof. Straightforward induction over the subdivision. �

Theorem 5.5 (Completeness). LetG, H be graphs. If H is a Kuratowski subgraph ofG, then the
predicate certifyG H holds.

[[subgraph H G; ∃H ′. (K3,3 H
′ ∨ K5 H

′) ∧ subdivision H ′ H ]] =⇒ certifyG H
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Proof. Follows directly from Lemma 5.4, as both K3,3 and K5 have only vertices of degree 3 or

higher. �

Even though the contraction does more then reversing the e�ects of a subdivision, the

procedure is still suitable to guarantee that a graph is non-planar: if a graph does not contain

any of the features mentioned above, it is a subdivision of its contracted graph by Lemma 5.4.

Even for an arbitrary graph H , there is always a subgraph H ′ without these features, such that

H ′ is a subdivision of contracted graph of H . Such graphs are called slim.

Definition 5.6 (Slim Graph). Intuitively, a digraph is slim if it is minimal in the sense that
removing a vertex or an arc would lead to a smaller contracted graph. This means that all vertices
and arcs lie on restricted paths and there is at most one restricted path connecting each pair of
vertices.

is-slimG V B
(
V ⊆ VG ∧ (∀v ∈ VG . v ∈ V ∨ (in-degG v < 3

∧ (∃x ,p,y. rapathG V x p y ∧v ∈ (aw-vertsG x p))))

∧ (∀a ∈ AG . ∃x ,p,y. rapathG V x p y ∧ a ∈ p)

∧ (∀x ,y,p,q. (rapathG V x p y ∧ rapathG V x q y) =⇒ p = q)
)

Moreover, for a bidirectable digraph the slim graph of G is de�ned as follows. Let

R B {(u,v ) | ∃p. rapathG V3,G u p v}

be the set of all pairs of vertices connected by a restricted path. Let ch-p be a function mapping
(u,v ) to a restricted path from u to v , such that the edges of ch-p (u,v ) are the reversed edges of
ch-p (v,u) in reverse order. Then slimG is de�ned as the graph consisting of all the vertices and
arcs in ch-p‘R.

These de�nitions are illustrated in Figure 5.2. The idea of slimG is to remove just the parts of G
which makeG non-slim. Proving that slimG is a slim subgraph ofG w.r.t V3,G is straightforward,

except for the proof that there are no parallel restricted paths in slimG.
2

For this, we need to

know that a restricted path is uniquely determined by any of its arcs. This follows from the

following lemma.

Lemma 5.7 (Unique Restricted Walks). LetV be a set of vertices with V3,G ⊆ V ⊆ VG . Moreover,
let rawalkG V u p v and rawalkG V w q x with {u,v,w,x } ⊆ V, a ∈ p and a ∈ q. Then p = q.

Proof. Intuitively this is clear, as a restricted walk ending in a vertex of degree 2 can only be

extended by a uniquely de�ned arc.

For a formal proof, note that p is of the form p0 ++ [a] ++p1 and q of the form q0 ++ [a] ++ q1.
We now prove that p0 ++ [a] = q0 ++ [a] and [a] ++ p1 = [a] ++ q1. Then the p = q follows.

The two cases are symmetric (by reversing the walks), so proving the second case su�ces.

2
If one is only interested in the correctness of the checker, there is no need to introduce the concept of slim graphs.

However, slim graphs allow us to give a more explicit characterization than “the contracted graph is a kuratowski

graph”.
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We prove the following proposition for arbitrary u, v , x , p, and q by parallel induction on p
and q: Let rawalkG V u p v and rawalkG V u q x such that p,q , [] and hd p = hd q. If v,x ∈ V,

then p = q holds . This can obviously be used to discharge the second case above.

Due to p,q , [] and hd p = hd q, it su�ces to consider the case with p = (u,u ′) :: as and

q = (u,u ′) :: bs. We have as = [] ⇐⇒ bs = [] (because otherwise we have u ′ ∈ V and

u ′ ∈ inner-vertsG p ∪ inner-vertsG q). For as = bs = [] we are done.

Otherwise, we can assume that

p = (u,u ′) :: as = (u,u ′) :: (u ′,ua ) :: as′ p = (u,u ′) :: as = (u,u ′) :: (u ′,ub ) :: bs′

for some vertices ua , ub and lists as′ and bs′. As p,q are progressing, we have u , ua and u , ub .

As u ′ is an inner vertex, u ′ < V and hence u ′ has a degree of at most 2. Therefore, ua = ub . As

as and bs are again restricted walks, we can now apply the induction hypothesis to prove that

as = bs and with a = b follows p = q. �

With the uniqueness of restricted paths, it is easy to show that slimG contains no parallel

restricted paths.

Lemma 5.8. The graph slimG is slim w.r.t V3,G .

Proof. All properties except that there are no parallel restricted paths are easy to show.

Assume that there are two di�erent restricted paths rapath x p y and rapath x q y in slimG.

These are also restricted paths in G.

Let R be de�ned as in De�nition 5.6. As a restricted path, p is not empty and shares an edge

with a restricted path p ′ ∈ ch-p R. By the uniqueness of paths (Lemma 5.7), p = p ′ and hence

p = ch-p (x ,y). Similarly, q = ch-p (x ,y) and therefore p = q. �

A slim graph is indeed always a subdivision of its contracted graph:

Lemma 5.9.

[[is-slimG V ]] =⇒ subdivision (contr-graphG V ) G

Proof. We prove this by induction on |VG \V |. The proof of the base case follows directly from

contr-graphG VG = G for slim graphs G.

For the induction step, from G being slim we obtain a w ∈ VG \V, which is an inner vertex of

some restricted path p. Hence p contains the arc sequence (u,w ), (w,v ) where u,v are the only

two neighbors of w in G. As G is slim, (u,v ) < AG : otherwise we could replace (u,w ), (w,v )
by (u,v ) in p and get a restricted path parallel to p. From this, we can construct a graph H
such that G = subdivide H (u,v ) w . Note that the subdivide operation does not change the

contracted graph.

As w does not occur in H , the inequality |VH \ V | < |VG \ V | holds. As G is slim and a

subdivision of H , H is also slim. Then subdivision (contr-graphHV )H holds from the induction

hypothesis and by the transitivity of subdivision follows subdivision (contr-graphG V ) G. �

In particular, this already implies that the checker procedure is sound for slim certi�cates.

For a non-slim certi�cateC , we make use of the fact thatC and slimC have the same contracted

graph w.r.t. V3,C .
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Lemma 5.10.

contr-graph (slimG ) V3,G = contr-graphG V3,G

Proof. Follows as both G and slimG have the same nodes connected by restricted paths. �

As the slim graph of C is a subgraph of C , the checker is sound.

Theorem 5.11 (Soundness). Let G, C be graphs. If certifyG C holds, then G is not Kuratowski-
planar.

Proof. From the assumption, contr-graphCV3,C is a Kuratowski graph. By Lemma 5.10, we have

contr-graphC V3,C = contr-graph (slimC ) V3,C and, with Lemma 5.9, slimC is a subdivision

of contr-graph C V3,C . In addition slim C is a subgraph of C and from the assumption C is a

subgraph of G . Hence, G has a subgraph, namely slimC , which is a subdivision of a Kuratowski

graph and hence G is not Kuratowski-planar. �

From Theorem 5.5 and Theorem 5.11 follows that certify is a sound and complete checker. As

demonstrated by Figure 5.1, not only Kuratowski subgraphs are accepted as certi�cates. Based

on this, I rede�ne the witness predicateWFalse as follows:

WFalse B {(x ,y,w ) | y = False ∧w is wellformed and loop-free

∧ contr-graphw V3,w is Kuratowski graph}

In theory, there is no need to exclude certi�cates with loops. However, the implementations of

certify presented in the following sections use this to simplify the computation of the contracted

graph.

I conclude this section with a more concrete characterization of the accepted certi�cates.

Looking at the proof of Theorem 5.11, we see that a certi�cate is accepted only if its slim graph

is a subdivision of a Kuratowski graph. As illustrated in Figure 5.3, this is not a su�cient

condition: in addition, the slim graph must have the same vertices of degree 3 or more as the

original graph.

Theorem 5.12 (Characterization of the Accepted Certificates). For a graph G, the function
certify accepts exactly those graphs C as a certi�cate, which are subgraphs of G and have a slim
graph which is a subdivision of a Kuratowski graph. Moreover, the slim graph must have the same
vertices of degree 3 or more as C itself.

certifyG C ⇐⇒ subgraphC G ∧ V3,C = V3,slimC

∧ (∃H . (K3,3 H ∨ K5 H ) ∧ subdivision H (slimC ))

Proof. Assume that certifyG C holds. ThenC is a subgraph of G by the de�nition of certify and

D B contr-graphC V3,C is a Kuratowski graph.

We �rst note that V3,slimC = V3,C holds: By Lemma 5.10, the contracted graph of slimC w.r.t.

V3,C is the same as D. The vertices of D are V3,C and, as D is a Kuratowski graph, all of them

have degree 3 or more in D. As the degree of a vertex in the contracted graph is less or equal to
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(a) G (b) slimG (c) contr-graphG V3,G (d) contr-graphG V3,slimG

Figure 5.3.: The black nodes are vertices of degree 3. The slim graph of G is obviously a

subdivision of a K3,3. Still, the contracted graph ofG w.r.t. V3,G is not a K3,3 (but

the contracted graph w.r.t. V3,slimG is).

the degree of the same vertex in the original graph, this implies V3,C ⊆ V3,slimC . As slimC is a

subgraph of C , we have V3,slimC ⊆ V3,C and therefore V3,slimC = V3,C .

Hence, D is the contracted graph of slimC w.r.t. V3,slimC . Then, by Lemma 5.9, slimC is a

subdivision of D and thus the right hand side of the characterization follows.

For the other direction, it su�ces to show that the contracted graph of C w.r.t. V3,C is a

Kuratowski graph. As the contraction of a subdivision of a Kuratowski graph is again said

Kuratowski graph (cf. Lemma 5.4), the contracted graph of slimC w.r.t. V3,slimC is a Kuratowski

graph. As V3,C = V3,slimC , this is the same as the contracted graph of C w.r.t. V3,C and we are

�nished. �

5.3. Implementation in Simpl

In the previous section, I de�ned the witness predicateWFalse and showed that it ful�lls the

witness property. As discussed before, I will present two implementations for computing

WFalse. I start with the implementation in Simpl, discussing the algorithm and the key steps of

veri�cation.

Simpl is an imperative language designed for program veri�cation. It has the usual control

structures: conditional statements (IF . . . THEN . . . FI), loops (WHILE . . . DO . . . OD) and

exceptions (RAISE and TRY . . . CATCH . . . END). Expressions are arbitrary Isabelle expres-

sions. These can refer to program variables, which can be imperatively updated by assignment

(. . . := . . .). Like constants, program variables are typeset in sans-serif.
The implementation of the checker is roughly divided in four steps. Given a graph G and a

witness graph C , the implementation

1. tests whether C is a subgraph of G,

2. tests whether C is loop free,

3. computes the contracted graph of C ,

4. and tests whether the contracted graph is a Kuratowski graph.
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type_synonym IVert = N
type_synonym IEdge = IVert × IVert
record IGraph = ig-vs : IVert list, ig-es : IEdge list

definition ig-wf : IGraph→ bool where
ig-wf G B distinct (ig-vsG ) ∧ (∀(u,v ) ∈ ig-esG . u ∈ ig-vsG ∧v ∈ ig-vsG )

definition ig-adj : IVert→ IVert→ bool where
ig-adjG u v B (u,v ) ∈ ig-esG ∨ (v,u) ∈ ig-esG

definition ig-in-out-edges : IGraph→ IVert→ IEdge list where
ig-in-out-edgesG u B filter (λe . fst e = u ∨ snd e = u) (ig-esG )

definition ig-opposite : IGraph→ IEdge→ IVert→ IVert where
ig-oppositeG e u B (if fst e = u then snd e else fst e )

Figure 5.4.: Excerpt from the speci�cation of the graph type in the Simpl program. ig-wf
is the wellformedness condition. The predicate ig-adj describes the adjacency

relation, ig-in-out-edges gives a list of incident edges, and ig-opposite returns

the other vertex of an edge.

The input is accepted if and only if all these tests succeed. The most instructive part is the

veri�cation of the contraction, so I focus on step 3. Nevertheless, I veri�ed the full algorithm in

Isabelle.

The graphs in this section are again undirected graphs. I use two di�erent representations:

On the abstract side, graphs are bidirected pair graphs, as in the previous section. In the Simpl

program, we need a way of iterating over arcs and vertices. A convenient way to achieve this is

to use lists instead of sets. Therefore graphs are represented as a list of vertices and a list of

(undirected) edges. An edge is represented as a pair of vertices, i.e., (u,v ) and (v,u) describe

the same edge.

For the implementation, I assume that I already have a correct implementation of basic graph

operations. This is achieved by using Isabelle de�nitions instead of Simpl procedures for these

operations. The graph type and its operations are given in Figure 5.4.

The code to compute the contracted graph is split in three parts: First, a graphH with no edges

is computed by taking all vertices of degree three or more of C . The core of the computation

is then performed by the function find-endpoint (Figure 5.5): For a given edge (vstart, vnext) it

computes the restricted path of G starting with this edge end returns its last vertex (if it exists).

The edge corresponding to this restricted path is then added to H . This step is repeated for all

edges of G incident to some vertex in H .

5.3.1. Verification

The speci�cation of find-endpoint is given in Figure 5.6. I now outline the proof of this speci�-

cation. The function contains two nested loops: the outer loop constructs an restricted walk
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procedures find-endpoint (G : IGraph,
H : IGraph, vstart : IVert, vnext : IVert
| R : IVert option)

where
found : bool, i : N, len : N, v0 : IVert,
v1 : IVert, vt : IVert, io-edges : IEdge list,

TRY
IF vstart = vnext THEN
RAISE R := None

FI ;;
v0 := vstart ;; v1 := vnext ;; len := 1 ;;
WHILE v1 < ig-vs H DO
io-edges := ig-in-out-edges G v1 ;;
i := 0 ;; found := False ;;
WHILE ¬found ∧ i < |io-edges| DO

vt := ig-opposite G (io-edges ! i) v1 ;;
IF vt , v0 THEN
found := True ;; v0 := v1 ;; v1 := vt

FI ;;
i := i + 1

OD ;;
len := len + 1 ;;
IF ¬ found THEN RAISE R := None FI

OD ;;
IF v1 = vstart THEN
RAISE R := None

FI ;;
R := Some v1

CATCH SKIP END

unsigned find_endpoint(
struct graph_t ∗g,
struct contr_t ∗h,
unsigned v_start, unsigned v_next)

{
unsigned v0 = v_start;
unsigned v1 = v_next;

while (tmp_get_index(h, v1) == −1) {
unsigned i;
for (i=0; i < edge_cnt(g); i++) {

unsigned vt;
vt = opposite(v1, edge(g,i));
if (vt != v0 && vt != −1) {

v0 = v1;
v1 = vt;
break;

}
}
if (i == edge_cnt(g)) return −1;

}
if (v1 == v_start) return −1;
return v1;

}

Figure 5.5.: The function find-endpoint in Simpl and C. H (resp. h) contains the vertices

of degree 3 or more. The function (implicitly) constructs an restricted path

starting with the edge (vstart, vnext) by adding edges until a vertex in H is reached.

The conditional statement in the inner loop ensures that the computed walk

is progressing. If the outer loop aborts abnormally, then no vertex in H is

reachable from vstart via (vstart, vnext).
The Simpl implementation uses relatively high-level datastructures, like sets

and lists, the C implementation uses arrays.
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∀σ . Γ `t {|σ . ig-vs H = ig-vs3 G ∧ loop-free (mk-graph G) ∧ vstart ∈ ig-vs H
∧ iadj G vstart vnext ∧ ig-wf G|}

R := PROC find-endpoint(G, H, vstart, vnext)
{|case R of None⇒ ¬(∃p w . rapathmk-graph Gσ vσstart ((vσstart, v

σ
next) :: p) w)

| Some w ⇒ (∃p. rapathmk-graph Gσ vσstart ((vσstart, v
σ
next) :: p) w)

Figure 5.6.: Speci�cation of find-endpoint: If H has all degree-3 nodes of G and G has no

loops, then the procedure decides the existence of a restricted path starting

with the nodes vstart and vnext. The function mk-graph abstracts a graph and

xσ refers to the value of x before the execution.

by adding an edge per iteration; the inner loop selects the next edge which with the path is

extended (if such an edge exists).

The key part of the invariant of the outer loop is the following formula (the variables

correspond to those in Figure 5.5):

∃p. rawalkG vstart p v1 ∧ |p | = len ∧ hd p = (vstart, vnext) ∧ last p = (v0, v1)

This expresses that the loop constructs a restricted walk with certain �rst and last edges.

During construction, this is not yet a restricted path, as the last vertex is not an element of V
Proving that this invariant holds is straightforward. More interesting are the cases arising after

the loop terminates. The computation of the restricted path can terminate in three di�erent

ways:

• exceptionally, if no extending edge is found (due to the RAISE in the loop),

• exceptionally, if the constructed walk leads to the start vertex (due to the RAISE outside

of the loop),

• or normally.

In all three cases, the function has constructed some restricted walk starting with the edge

(vstart, vnext). In the �rst two cases, one needs to prove that this restricted walk excludes the

existence of a restricted path starting with said edge. In the third case, the computed walk must

be shown to be a restricted path. Moreover, we need to prove that the function will terminate.

In the �rst case, the constructed walk ends with a vertex of degree 1. Let V be the set of

vertices of degree other than 2. Then this walk satis�es the preconditions of Lemma 5.7. The

same holds for any restricted path w.r.t. to V3,G (which obviously cannot end in a vertex of

degree 1. Hence this lemma can be applied and there is no restricted path (w.r.t. V3,G ) starting

with (vstart, vnext). In a similar manner, for the second case, the restricted walk constructed by

the function is the only candidate for a restricted path starting with (vstart, vnext). However, a

restricted path cannot be a cycle, so again, no suitable restricted path exists.
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For the third case and for termination, consider the following lemma. This gives an upper

limit to the length of a restricted walk and guarantees that a restricted walk is a restricted path

if some simple conditions on the end vertices hold.

Lemma 5.13. LetG be a loop-free graph andV be a set of vertices with V3,G ⊆ V ⊆ VG . Moreover,
let apathG V a p b with a ∈ V. Then p and inner-vertsG p are both distinct lists.

Proof. As a �rst step, we prove that p is not repeating. A walk p is repeating, if there are u,v ,

such that either (u,v ) occurs twice in p or both (u,v ) and (v,u) occur in p (in particular (u,u)
may not occur in p). We prove this by induction on p.

The case p = [] is trivial. The same holds for p = [(u,v )], as G is loop-free. Consider the case

p = as ++ [(v,w ), (w,x )]. From the induction hypothesis we know that p ′ = as ++ [(v,w )] is

not repeating. As p is a restricted walk and hence progressing, v , x holds.

If p is repeating, then one of the following four cases applies:

1. p ′ = p0 ++ [(x
′,w ), (w,x )] ++ p1 for some x ′,p0,p1. As p ′ is progressing, we have x , x ′.

Then x ′ = v holds, as w has degree 2 (w is an inner vertex of p). But then (v,w ) occurs

twice in p ′, so p ′ is not repeating. This contradicts the induction hypothesis.

2. p ′ = (w,x ) :: p0 for some p0. Then w = a and hence w ∈ V . This is a contradiction to w
being an inner vertex of p (and hence w < V ).

3. p ′ = p0 ++ [(x ,w ), (w,x ′)] ++ p1 for some x ′,p0,p1. Similar to case 1, x , x ′ and hence

x ′ = v . Thenp ′ contains both (w,v ) and (v,w ) and is therefore repeating. This contradicts

the induction hypothesis.

4. p ′ = p0 ++ [(x ,w )] for some p0. Then x = v and therefore p is not progressing. This is a

contradiction to p being a restricted walk.

As all these cases can be excluded, p is not repeating and hence a distinct list.

From that one can easily derive that the inner vertices of p are distinct by contradiction:

assume that the inner vertices of p are not distinct. Then there exist a vertex w and walks q0, q1,
q2 such that

p = q0 ++ q1 ++ q2 awalkG u q0 w awalkG w q1 w awalkG w q2 v

and q0,q1,q2 , []. Then q0 ends with (x0,w ), q1 with (x1,w ), and q2 starts with (w,x2) for some

vertices x0,x1,x2. As w is an inner vertex of p, it has degree 2 and therefore x0,x1,x2 are not

distinct. Hence, p is repeating, which is a contradiction to the assumptions. �

This leads to two important corollaries: asp is a distinct list of arcs, |p | is bounded by |AG |. The

length of p increases in every iteration of the outer loop, so the function terminates. Moreover,

if, in addition to the assumptions of Lemma 5.13, the properties v ∈ V and u , v hold, then

aw-vertsG u p = [u] ++ inner-vertsG p ++ [v] is distinct and hence p is a restricted path.

From these arguments we can conclude that find-endpoint satis�es its speci�cation. Overall,

the checker satis�es the following speci�cation:
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∀σ . Γ `t {|σ . wf-digraph (mk-graph G)|}
R := PROC simpl_certify(G, H)

{|R←→ certify (mk-graph Gσ ) (mk-graph Hσ ) ∧ loop-free (mk-graph Cσ )|}

As the checker terminates, this guarantees checker correctness.

5.4. Implementation in C

The C implementation follows the same structure as the Simpl implementation. The main

di�erence are the datatypes used: In Simpl, the abstract concepts of natural numbers, pairs and

lists were used. The C implementation uses �nite machine words, records and arrays instead,

often stored on the heap. Finally, in Simpl, basic graph operations like “v is a vertex of G” were

stated as Isabelle expressions. In C, they need to be implemented and veri�ed.

AutoCorres translates C code into a monadic expression in Isabelle and abstracts some of the

technicalities of C. The hope was that for the veri�cation of the C program, one could start with

the Simpl proof and �ll in the gaps, i.e., abstract memory accesses and datatypes to the ones

used in the Simpl proof and verify the functions not implemented before. The latter was indeed

straightforward. Similarly, abstracting the heap to the graph datatypes of Isabelle was a bit

tedious, but followed established schemes (see for example Mehta and Nipkow [53]). Most of

the additional e�ort was needed to deal with machine words instead of natural numbers. This

was somewhat surprising, because the only arithmetic operations occurring in the program are

equality and increment against a �xed upper bound.

There are mainly two reasons for the problems we encountered with words: �rst, Isabelle

has only weak support for proving properties involving words automatically. Second, such

properties often occur not on their own, but as side-conditions in a larger proof. While Isabelle’s

automatic proof tools can often discharge such properties for natural numbers, they cannot do

so for words and therefore fail, leaving the user to solve the goal mostly manually.

5.4.1. Abstraction

The issues with reasoning about words motivated me to implement an abstraction framework

for AutoCorres programs. The idea is to take the original program f and transform it into a

modi�ed program f ′ that uses natural numbers instead of words, but otherwise has the same

semantics. With the help of the abstraction framework, the two programs are proven to be

equivalent. Veri�cation of the abstracted program then implies correctness of the original

program.

Abstraction or re�nement is a well-known idea going back to Dijkstra [19] and Wirth [82]

and put into a formal calculus by Back [5]. In particular, AutoCorres uses this technique to

transform the Simpl program generated by the C parser into the simpli�ed version presented to

the user.

The framework presented here aims at two things: the abstraction of machine words to

natural numbers and boolean values and the introduction of ghost code. Code which is added

to the program purely for purposes of veri�cation, without changing the observable behavior if

the program, is traditionally called ghost code. Such ghost code is often useful for eliminating
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existential quanti�ers in loop invariants. For example, the function find-endpoint in Section 5.3

implicitly computes a walk in the graph. By adding ghost code, this walk can be computed

explicitly in a ghost variable. This relieves the user from explicitly giving witnesses for existential

quanti�ers.

The abstraction framework used by AutoCorres [81] is unsuited for the addition of ghost

code: it expects that each state in the concrete program corresponds to at most one state in the

abstract program.

Depending on the constructs used in a C program, AutoCorres transforms it to one of several

monadic languages. I de�ned the abstraction framework for all these languages. As these

languages are very similar, I present only one variant, for a non-deterministic language with

state and failure. A program in this monad has the type (σ ,α ) prog = σ → (α × σ ) set × bool.
The �rst component, (α ,σ ) set, denotes the non-deterministic program states and the boolean

�ag indicates failure. Here σ is the type of the program heap and α the result type.

Definition 5.14 (Sequential Composition and Embedding). Pure values can be embedded into
this language using the operation

return : α → (σ ,α ) prog

return x s = ((x , s ), True)

The sequential composition of programs is given by the operation

bind : (σ ,α ) prog→ (α → (σ , β ) prog) → (σ , β ) prog

which applies the second argument to all outcomes of the �rst program and fails if any of these
computations fails.

For the values of this language, I de�ne the de�ne the following re�nement relation.

Definition 5.15 (Refinement Relation). Let a : (α ,σ ) set × bool and c : (β ,σ ) set × bool. Then
a re�nes c w.r.t. a relation R ⊆ (α × σ ) × (β × σ ) if

refines R a c B ¬fail a =⇒ (¬fail c ∧ (∀xc ∈ res c . ∃xa ∈ res a. (xa ,xc ) ∈ R)).

Here, res refers to the set of program states and fail to the failure �ag. We call a the abstract and
the c the concrete value.

In other words, each computation in the concrete program corresponds to a computation of

the abstract program. That is, a property of the concrete program can be proved by proving

this property for the abstract program, as shown in the following Lemma.

Lemma 5.16. Let a : (σ ,α ) prog and c : (σ , β ) prog and R : ((α × σ ) × (β × σ )) set. The Hoare
triple

{|P |} c {|Q |}!

states that if the precondition P : σ → bool holds before c is executed, then the postcondition
P : β → σ → bool holds after the execution and c did not fail. Assume that

∀h. P h =⇒ refines R (a h) (c h)
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i.e., for all heaps satisfying the precondition P, the results of the abstract and concrete programs
are related. In addition, assume that a satis�es the speci�cation

{|P |} a {| λra ,ha . ∀rc ,hc . ((ra ,ha ), (rc ,hc )) ∈ R =⇒ Q rc hc |}!

i.e., for a heap h satisfying P , the result of a h is related to a concrete program state satisfying Q .
Then the concrete program c satis�es speci�cation above.

To prove that one program re�nes another, I proved a set of syntax directed rules, which

deconstructs two programs instruction by instruction. The rules for bind and return demonstrate

the general structure of such rules.

Lemma 5.17 (Refinement of Sequential Composition). Let a1,a2 : (σ ,α ) prog and c1, c2 :

(σ , β ) prog. Then the following rule holds:

refines R (a1 ha ) (c1 hc ) ∀((ra ,ha ), (rc ,hc )) ∈ R. refines R′ (a2 ra ha ) (c2 rc hc )
refines R′ (bind a1 a2 ha ) (bind c1 c2 hc )

Lemma 5.18 (Refinement of Return). Let a : (σ ,α ) prog and c : (σ , β ) prog. Then the following
rule holds:

((xa ,ha ), (xc ,hc )) ∈ R

refines R (return xa ha ) (return xc hc )

Note that the relation R′ in Lemma 5.17 is not �xed a priori. I use a simple type-directed

solver to synthesize the relation. The basic building blocks for the relation are

• a re�nement relation for natural numbers: {(n,w ) | n = unat w } (here, unat is the

conversion from words to natural numbers),

• a re�nement relation for booleans: {b,w ) | b ⇐⇒ w , 0},

• a relation for adding ghost code to a value: ghost R B {(д,a)G, c ) | (a, c ) ∈ R},

• and, as a fallback, the identity relation.

For the ghost relation, (·, ·)G is a constructor of a copy of the pair type. These building blocks

are combined with a combinator for pairing relations:

pair R1 R2 B {((xa ,yA), (xc ,yc )) | (xa ,xc ) ∈ R1 ∧ (ya ,yc ) ∈ R2}

Having a separate pair type for ghost state avoids the ambiguity whether to apply the ghost or

the pairing rule.

In the set of syntax directed rules, there is usually one rule per command of the language,

matching this command in both languages. There are a few exceptions, where the two programs

do not have exactly the same commands: adding additional commands to the abstract program,

adding ghost code, and replacing procedure calls by speci�cations.

In many cases, a concrete operation can only be abstracted if certain preconditions are

satis�ed. For example, an addition on words can be replaced by an addition on natural numbers

only if no over�ow occurs. This requirement can be expressed by additional guard commands

in the abstract program.
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Definition 5.19 (Guards). The command guard : (σ → bool) → (σ , unit) prog fails if the heap
does not satisfy the predicate and returns a unit values otherwise.

The guard command can also occur in the concrete program, so for adding an additional

guard to the abstract program the syntactic copy guardadd is used. A special rule combines

such a guard with the following command and allows the user to use the predicate to discharge

eventual side conditions.

Lemma 5.20 (Additional Guards in Refinement). Let a : (σ ,α ) prog and c : (σ , β ) prog. Then
the following rule holds:

P ha =⇒ refines R (a ha ) (c hc )

refines R (bind (guardadd P ) (λ_. a) ha ) (c hc )

See Figure 5.7 for an example. A similar situation occurs for ghost code. As ghost code may

not modify the heap, it usually su�ces to insert return commands. Again, those commands are

marked with add.

Lemma 5.21 (Adding Ghost Code). Let a : (σ ,α ) prog and c : (σ , β ) prog. Then the following
rules hold:

refines R (a x ha ) (c hc )

refines R (bind (returnadd x ) a ha ) (c hc )

refines R (bind a (λ_. return x ) ha ) (bind c return hc )

refines R (bind a (λ_. returnadd x ) ha ) (c hc )

The �rst rule allows inserting ghost code in the middle of the program, the second rule

appending it to the end.

As a last point, AutoCorres programs can contain user-de�ned procedures. During re�nement,

one can replace a procedure call by a speci�cation of the procedure. If this procedure corresponds

to a pure function, it can even be replaced by a return.

Lemma 5.22.
∀P .{|λhc . P ( f hc ) ∧Q hc |} c {|P |}! Q hc ((v,ha ), ( f hc ,hc )) ∈ R

refines R (returnv ha ) (c hc )

Here, the �rst premise is a speci�cation for a procedure computing a pure function f in the

format typically used in AutoCorres.

Pu�ing abstraction to use For the Kuratowski checker, the proof process is as follows: for

each function f containing word arithmetic, I make a copy f ′ of this function, in which words

are replaced by natural numbers and booleans. For each arithmetic operation, a guard is inserted,

stating that this operation would not over�ow on words (see Figure 5.7). Where necessary,

I also add ghost code and annotate loops with invariants. One example of this is function

find-endpoint (see Figure 5.5), where I add a variable holding the computed restricted path and

use this in the invariant. Note that the ghost code can use arbitrary Isabelle expressions. Then I

prove that f ′ is an abstraction of f , using the veri�cation condition generator sketched in the

previous section. The proof is mostly automatic; only simple properties about words and their

relation to natural numbers and booleans need to proven.
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return ((i : word32) + 1)

(a) concrete program

guard (λ_. (i : N) < word-max32);
return (i + 1)

(b) abstract program

Figure 5.7.: Abstraction of word arithmetic.

5.5. Conclusion

In this chapter, I formalized a class of certi�cates for the non-planarity of graphs and veri�ed two

checkers of such certi�cates. Following the implementation in the LEDA library, the certi�cates

are not necessarily Kuratowski subgraphs, but certain additional features are allowed. This

allows for a simpler implementation of the checkers, as these do not need to check whether a

graph is connected or free of parallel paths.

I implemented the checker both in an abstract language, Simpl, and in C and discussed

the di�erences in the veri�cation. Interestingly, the bulk of additional e�ort needed for the

veri�cation of the C program was not due to memory handling, but due to the use of word

arithmetic instead of natural numbers. The reason was that words permeated the whole proof,

which made automatic proof tools much less e�ective. This was solved by a developing an

abstraction mechanism, which also added the ability to use ghost code.

After abstraction, veri�cation of the C implementation followed closely the proof of the Simpl

program. Therefore, AutoCorres provides a viable option for the veri�cation of C programs and

the veri�cation can pro�t from a previous veri�cation of pseudo code, for example the Simpl

program. However, the C program must be lifted to a similar level of abstraction �rst.

Since I did this formalization, AutoCorres gained the ability to automatically abstract word

arithmetic to natural numbers. This works well on the C program presented here. Had this been

available earlier, there would have been no incentive to develop a new abstraction framework.

However, my abstraction framework provides the additional option of inserting ghost code and

can be used on top of the automatic abstraction used by AutoCorres.

The characterization of the certi�cates accepted by the certify procedure consists of around

2000 lines of proof. Around a quarter of explicitly deals with contracting and subdividing walks

and would have been more convenient to prove in a formalization supporting undirected graphs

natively. Both the Simpl and the C implementation of the Kuratowski checker consist of around

300 lines of code (the Simpl syntax is more verbose than C). The veri�cation of the Simpl checker

was done in 1300 lines. The veri�cation of the C checker required 3200 lines and 1400 lines for

the re�nement framework. Of the 3200 lines, 900 deal with heap abstraction, heap access, and

the veri�cation of basic graph operations not implemented in the Simpl code.

The veri�ed Simpl implementation is available in the Archive of Formal Proofs [64]. The

results for the C implementation including the full set of rules for the abstraction framework

can be found on the homepage of the author
3
.

3h�p://www21.in.tum.de/~noschinl/Non_Planarity_Certificate/.
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6. Structured Proofs in Program Verification

Veri�cation of (imperative) programs usually follows a certain scheme: the program and its

speci�cation are transformed into a set of logic formulas, called veri�cation conditions (VC).

These formulas are proven valid, which implies that the program obeys its speci�cation. An algo-

rithm performing the transformation into veri�cation conditions is called veri�cation condition
generator or short VCG. Even though the veri�cation conditions are generated by a structural

decomposition of the program, it is often not trivial to relate a formula to the part of the program

it describes. In this chapter, I present case labeling, a technique to generate labeled veri�cation

conditions. Together with Isabelle’s facilities for writing structured proofs, this allows the user

to write proofs where it is immediately clear which part of the proof relates to which part of

the program.

An early version of this work was presented by me at the Isabelle Workshop at ITP 2015 [66].

6.1. A Simple Imperative Language

To demonstrate the labeling technique, I present a simple language and a corresponding veri�-

cation condition generator. The language L de�ned in this section is a simpli�ed version of the

languages used in the AutoCorres tool for the veri�cation of C programs [33]. This language is

a shallow embedding of computations with failures, i.e., L programs are represented as values

of type α option. The value None represents failure (including non-termination), while Some x
represents the successful computation of a value x . Local variables are emulated by lambda

abstractions.

The language is built from four combinators: bind for sequential composition, return for

embedding pure expressions, while for loops and cond for conditional statements. The def-

initions of these combinators are given in Figure 6.1. For longer L-programs, I use a nicer

syntax: x ←c1; c2 x for bindc1 (λx .c2x ) and WHILE b INV I BODY c START x for whileb I c x .

The whole program is then wrapped by DO ... OD. This notation is inspired by Haskell’s

do-notation for monads.

A speci�cation of a program c is expressed as a Hoare triple {|P |} c {|Q |}, where P is the

precondition, i.e., a formula which holds before c is executed and Q the postcondition, i.e., a

predicate on the result of c .

Definition 6.1 (Hoare triples for L). The Hoare triple {|P |} c {|Q |} is valid if for all r holds:

P ∧ c = Some r =⇒ Q r

This is a predicate for partial correctness; it holds trivially if the program does not terminate.

For the veri�cation condition generator, I use a weakest precondition calculus. The rules

of this calculus are given in Figure 6.2. Starting with a Hoare triple, the veri�cation condition
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definition bind : α option→ (α → β option) → β option where
bind c1 c2 B (case c1 of None→ None | Some x → c2 x)

definition return : α → α option where
return x B Some x

partial_function (option) while : (α → bool) → (α → bool)
→ (α → α option) → (α → α option) where

while b I c s B if b s then bind (c s) (while b I c) else s

definition cond : bool→ α option→ α option→ α option where
cond b c1 c2 B if b then c1 else c2

Figure 6.1.: Commands of L. The second parameter of while is an annotation: the VCG

uses it as the loop invariant. A nonterminating loop fails, i.e., returns None.

{|P x |} return x {|P |}
Return

∀x . {|R x |} c2 x {|Q |} {|P |} c1 {|R |}

{|P |} bind c1 c2 {|Q |}
Bind

∀x . {|I x ∧ b x |} c x {|I |} ∀x . I x ∧ ¬b x =⇒ P x

{|I x |} while b I c x {|P |} While

{|P1 |} c1 {|Q |} {|P2 |} c2 {|Q |}

{|if b then P1 else P2 |} cond b c1 c2 {|Q |}
Cond

{|P ′ |} c {|Q |} P ′ =⇒ P

{|P |} c {|Q |}
Conseq

Figure 6.2.: Weakest precondition calculus for L for partial correctness.

generator applies the rules Return, Bind, While, and Cond whenever possible, solving the

premises from left to right. If this fails because the precondition does not match, it tries applying

Rule Conseq �rst. If this process introduces fresh variables, these start out being “schematic”

and are then instantiated as necessary when applying further rules. Rule WhileT from Figure 6.3

is an alternative to Rule While, which could be used in a setup for total correctness (that is, if a

valid Hoare triple requires a non-failing program).

6.2. Problem Statement

When we reason (informally) about a program, we usually have the operational semantics of

the language in mind, focusing our thoughts to certain parts of the program. The goal of case

labeling is to support the user by supplying the necessary information.
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∀x . {|I x ∧ b x |} c x {|λx ′. I x ′ ∧ (x ′,x ) ∈ R |} ∀x . I x ∧ ¬b x =⇒ P x

{|I x |} while b I c x {|P |} WhileT

Figure 6.3.: Variant of Rule While for total correctness. If R is well-founded, this rule

guarantees termination.

Example 6.2 (Largest Odd Divisor). Consider the following L-program which computes the
largest odd divisor of a positive integer a.

{|0 < a |}
DO
n←return a;
WHILE (λn. evenn)
INV (λn. 0 < n ∧ n dvd a ∧ (∀m. oddm ∧m dvd a =⇒ m dvd n))
BODY (λn. return (n/2))
START n

OD
{|λr . odd r ∧ r dvd a ∧ (∀m. oddm ∧m dvd a =⇒ m ≤ r ) |}

We convince ourselves that, before and after each iteration of the loop, n is a divisor of a and
each odd divisor of a divides n. This is the loop invariant. If the loop ends, n is an odd divisor of a
and any other odd divisorm of a divides n (and hencem ≤ n). This proves the correctness of the
program.

Using the rules of Figure 6.2, the veri�cation condition generator decomposes this Hoare

triple into veri�cation conditions, i.e. pure logical formulas, not involving any statements of the

language:

∀x ,y. 0 < y ∧ y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y) ∧ even y

=⇒ 0 < y/2 ∧ y/2 dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y/2)
(6.1)

∀x ,y. 0 < y ∧ y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y) ∧ ¬ even y

=⇒ odd y ∧ y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m < y)
(6.2)

0 < a =⇒ 0 < ∧a dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd a) (6.3)

Note that there is no explicit reference to the program structure left in these veri�cation

conditions. On the other hand, the rules used by the veri�cation condition generator are

structural: the program is decomposed step by step into statements and each of these steps

might generate a veri�cation condition. So each of the veri�cation conditions belongs to some

part of the program.

By closely inspecting the formulas we can recover this information manually: the veri�cation

condition (6.1) has an instance of the invariant as assumption and as conclusion, so this condition

describes that the invariant is preserved by the loop. Then, (6.2) describes that after the loop
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�nishes, the postcondition must hold. Finally, 0 < a is the precondition of the program and

n = a before the while loop. So (6.3) is the obligation to show that the precondition of the

speci�cation implies the weakest precondition computed by the VCG.

There are bound variables x and y in (6.1) and (6.2). These names never occurred in the

program text. The y is the variable of the loop state (which was consistently called n in the

program). The x was introduced by Rule Bind for the result of the initial return. As this value is

not explicitly mentioned in the annotated invariant, it does not occur in the formulas otherwise.

This information is important: We want to use our intuition about the program to guide the

proof. For this small example it was relatively easy to correlate veri�cation conditions and parts

of the program: we combined our knowledge of the used Hoare calculus with our informal

understanding of the program and matched that against the generated veri�cation conditions.

For larger programs, this process can become very tedious. In particular, this is the case when

the veri�cation conditions are di�erent then expected; because the program is not correct, the

invariants are too weak, or our intuitive understanding is simply wrong.

This manual inference should not be necessary: the veri�cation condition generator can

keep track of its position in the program and somehow attach this information to the generated

veri�cation conditions. This idea is not new: ESC/Java shows column and line number when

displaying a counter-example for a veri�cation condition it could not prove, as well as the

branching points taken to arrive at this position [46]. Similarly, JACK provides this information

by displaying a highlighted version of the source code[8] and VCC and Spec# integrate into

Visual Studio, providing the information directly in the editor [17].

6.2.1. Structured Proofs in Isabelle/Isar

Unlike the specialized software veri�cation tools mentioned in the last section, Isabelle is a

general purpose proof assistant. Hence its proof language is not speci�cally tailored to program

veri�cation. Instead it provides sophisticated generic constructs for structuring proofs; in

particular the cases mechanism.

Example 6.3. With an appropriate VCG – the components of which will be introduced in this
chapter – the proof for the example in Section 6.2 can be structured as follows:

proof vcg
{ case conseq ... } specification precondition implies weakest precondition: (6.3)

{ case (bind _) variable not used in the following cases, so no name necessary
{ case (while n)
{ case inv ... } loop preserves invariant: (6.1)

{ case post ... } invariant a�er loop implies postcondition: (6.2)

}
}

qed

The commands proof and qed indicate a proof block. The initial proof method vcg generates the
veri�cation conditions and associated cases. A case selects one of these obligations, providing the
user with names for the assumptions and shortcuts for the conclusion and other important terms.
The syntax case (while n) gives a name to a universally quanti�ed variable, in our example the y
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in (6.1) and (6.2). Such cases can be arbitrarily named and nested. The ... are placeholders for the
actual proofs.

Even to a casual reader, the structure of the proof is immediately obvious. This is in stark

contrast to so-called unstructured proofs: a list of tactics, which are applied in sequence to the

proof obligations and modify these until they vanish. Such proofs are hard to read (essentially,

one needs to step through the proof, investigating the results of each tactic) and one is restricted

to a small fragment of the proof language. It is possible to write structured proofs without the

cases mechanism. For this, all premises and the conclusion must be explicitly mentioned in

the proof text. But for program veri�cation, these are large: a program which can be veri�ed

by a few lines of unstructured proofs easily needs more than a page just to write down the

components of the proof obligations.

In the remainder of this section, I introduce the basics of Isabelle’s handling of structured

proofs. Isabelle manages the proof obligations for a theorem in a goal state. For our purposes, a

goal state is a list of proof obligations, called subgoals.

Definition 6.4 (Subgoal). A subgoal is a logical formula φ of the form

∀x1. . . .∀xm . P1 =⇒ . . . =⇒ Pm =⇒ Q . (6.4)

Here, the Pi are the assumptions of the subgoal and conclφ = Q is the conclusion. We also write
∀x1, . . . ,xm instead of ∀x1. . . .∀xm and call the xi are top-level quanti�ed.

Structured proofs in Isabelle/Isar [79] build on the concept of proof contexts. A proof context

consists of a list of �xed variables (�xes), a list of named local assumptions, and a list of term

bindings, i.e., syntactic abbreviations for terms. Inside a proof context, the assumptions can be

used as any other theorem. The order of the �xes in the proof context does not need to coincide

with the order of top-level quanti�ed variables in the subgoal.

Proof contexts can be nested. Such a nested proof context inherits the contents of the outer

proof context. When leaving a nested proof context, the additional contents vanish. A nested

context is indicated with { ... } in a proof text.

The cases mechanism is a way to setup proof contexts such that the user does not need to

write down the assumptions etc. explicitly. Each case has a name and consists of a list of �xes, a

named lists of assumptions, a list of term bindings, and a list of nested cases. The case name
command enriches the current proof context with the �xes, assumptions, and bindings of the

case name and makes its nested cases available. The user can override the default names of the

�xes by using the case (name x1 x2 . . .) syntax.

6.3. Labeled Subgoals

In this section, I present a labeling of subgoals from which a meaningful cases structure can be

generated, without looking at the semantics of a subgoal. For this annotation, I use labeling
constants, that is, functions which can be inserted into the subgoal without changing the

semantics.

An important design criterion is that the labeling must encode the cases structure in a way

that proof methods following the usual conventions of the prover can easily generate. Ideally,
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the labeling is just an add-on: Adding support for labeling to a proof tool should not require

functional changes.

Ignoring the nested nature of cases for now, we describe name and �xes of a case using

blocks.

Definition 6.5 (Block). A block b = 〈x ,n, ts〉B is a triple of a name x , a statement number n, and
a list of terms ts representing (top-level quanti�ed) variables. We write numb = n and varsb = ts
to refer to the components of a block. Moreover, idenb = (n,x ) is the block identi�er.

The statement number of a block will be used to determine the order relative to other blocks.

By using a list of blocks we can also describe the nesting of blocks. This is called a context. A

su�x of the context xs is a context zs satisfying ∃ys. xs = ys ++ zs . If ys is non-empty, zs is a

proper su�x.

Definition 6.6 (Subgoal Labeling). The labeling constant vc takes a non-empty list of blocks ct
and wraps some term t , that is, vc ct t B t .

This constant describes which case should be associated to a subgoal and is applied to the

conclusion of the subgoal (and not the whole subgoal). This way, it does not interfere with

Isabelle’s standard methods of applying rules.

The idea is that activating this case should setup a proof context which is suitable to prove

this subgoal. I.e., if a subgoal φ has the form

∀x1. . . .∀xm . P1 =⇒ . . . =⇒ Pm =⇒ Q .

and the user activates the case associated with this subgoal, the proof context should �x variables

x1, . . . ,xn , assume P1, . . . , Pm , and contain a term binding for Q . The associated case and its

ancestors are described by ct, where the �rst element is the innermost case.

For reasons of readability, I sometimes place the labeling constants above or below the term

they wrap, indicating the scope by a brace.

Example 6.7. Recall Example 6.2. The veri�cation conditions can be labeled as follows:

∀x ,y. 0 < y ∧ y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y) ∧ even y

=⇒

vc [〈4,«conseq»,[]〉B,〈3,«inv»,[]〉B,〈3,«while»,[y]〉B,〈2,«bind»,[x ]〉B ]︷                                                                                 ︸︸                                                                                 ︷
0 < y/2 ∧ y/2 dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y/2)

(6.5)

∀x ,y. 0 < y ∧ y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y) ∧ ¬ even y

=⇒

vc [〈6,«post»,[]〉B,〈3,«while»,[y]〉B,〈2,«bind»,[x ]〉B ]︷                                                                      ︸︸                                                                      ︷
odd y ∧ y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m < y)

(6.6)

0 < a =⇒

vc [〈0,«conseq»,[]〉B ]︷                                                                        ︸︸                                                                        ︷
0 < a ∧ a dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd a)

(6.7)

Both (6.5) and (6.6) arise from Rule Conseq. The former arises from the beginning of the loop body
of the while loop, the latter at the beginning of the program. The veri�cation condition (6.6) arises
from the same while loop as (6.5). In both, y refers to the loop variable.
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The contexts of these three proof obligations are

(6.5): [〈4, «conseq», []〉B , 〈3, «inv», []〉B , 〈3, «while», [y]〉B , 〈2, «bind», [x]〉B]

(6.6): [〈6, «post», []〉B , 〈3, «while», [y]〉B , 〈2, «bind», [x]〉B]

(6.7): [〈0, «conseq», []〉B )]

The absolute values of the statement numbers do not matter at the moment. The context of the
�rst two have the common su�x [〈3, «while», [y]〉B , 〈2, «bind», [x]〉B], so both proof obligations
can be grouped together. Comparing the statement numbes with a lexicographic ordering yields
[0] < [2, 3, 3, 4] < [2, 3, 6] and hence the order (6.7), (6.5), (6.6). Overall, we get the structure seen
in Example 6.3.

With the labeling presented so far, we can attach names to proof obligations and order them.

This already turns a list of subgoals into a tree re�ecting the program structure. The next

labeling constant allows to add more structure to a single proof obligation.

As already mentioned, the conclusion will be implicitly used as a term binding. Additional

term bindings can also be declared explicitly.

Definition 6.8 (Term Binding Labeling). The labeling constant tbind takes a name x , a statement
number n, and wraps a term t , that is, tbind x n t B t .

Again, the number will be used for sorting purposes. The tbind label has two functions.

First, it gives a name to the wrapped term, that is, if a proof obligation contains the subterm

tbind x n t , a term binding x with term t is added. Second, if tbind is applied to the conclusion

of an assumption, it gives a name to the assumption.

Example 6.9. Recall Example 6.2, but using Rule WhileT with the relation < for R instead of
RuleWhile. Then, instead of (6.1), we get

∀x ,y. 0 < y ∧ y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y) ∧ even y

=⇒ 0 < y/2 ∧ y/2 dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y/2) ∧ y/2 < y
(6.8)

which can be labeled as

∀x ,y. 0 < y ∧ y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y) ∧ even y

=⇒

vc [〈4,«conseq»,[]〉B,〈3,«inv»,[]〉B,〈3,«while»,[y]〉B,〈2,«bind»,[x ]〉B ]︷                                                                                                  ︸︸                                                                                                  ︷
0 < y/2 ∧ y/2 dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y/2)︸                                                                                 ︷︷                                                                                 ︸

tbind «inv» 3

∧ y/2 < y︸  ︷︷  ︸
tbind «var» 3

(6.9)

Due to the two tbind labels, the following term bindings

«inv» B 0 < y/2 ∧ y/2 dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y/2

«var» B y/2 < y

will be added to the case «conseq». The �rst corresponds to the invariant, the second to the variant,
that is, the termination condition.
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Naming of assumptions will be demonstrated in the next example. By default, all assumptions

will be associated with the case of the innermost context block. For example, in Example 6.9, the

single assumption is associated to the case «conseq», that is this assumption is only available

after this case (and all the cases above) are activated. Sometimes, it is useful to associate an

assumption with one of the cases above instead. This can be done with the following labeling

constant.

Definition 6.10 (Hierarchy Labeling). The labeling constant hier takes a context ct and wraps
a term t , that is, hier ct t B t

This constant can be applied to the conclusion of an assumption. The context argument ct
describes to which case of the context of the subgoal this assumption is associated.

Example 6.11. Consider the following two proof obligations.

hier [(«then», 0, [])] (tbind «cond» 0 b) =⇒ vc [(«cond1», 1, []), («then», 0, [])] c1 (6.10)

hier [(«then», 0, [])] (tbind «cond» 0 b) =⇒ vc [(«cond1», 1, []), («then», 0, [])] c1 (6.11)

Here, the hier labeling identi�es the assumption b in both obligations and associates it with the
case «then», which is in the common su�x of the contexts of these two obligations. The tbind
labeling gives the name cond to this assumption. This allows for the following proof structure:

{ case then from here on cond refers to the theorem b
{ case cond1 ... }
{ case cond2 ... }

}

That is, after the case «then» has been activated, the theorem b is available under the name
«cond». Without the hier and tbind labels, the theorem b would only be available in the cases
«cond1» and «cond2», under some default name.

The last constant I introduce is not part of the labeling per se, but is used to compute the

labeling. It will be discussed in detail later in this section.

Definition 6.12 (Context Helper). The labeling constant ctxt takes a statement number, a con-
text, another statement number, and wraps a term t , that is, ctxt i ct o t B t .

To express the parameters of the labeling constants in the logic, we need a way of embedding

tuples, natural numbers, strings, and a list of terms into the logic. This is not a restriction in

practice. For the remainder of this chapter, we assume such an embedding and silently convert

from and to it where necessary.

For a single subgoal it is always possible to generate an appropriate cases structure from

such a labeling. For a set of subgoals however, we need to make sure that the descriptions of

the cases are not contradictory: i.e., the same case described in di�erent subgoals must have the

same �xes and assumptions and the term bindings should be either the same or have di�erent

names.

We have to be careful about what “the same �xes” means: top-level quanti�ed variables are

local to a single subgoal, so what does it mean if two top-level quanti�ed variables are “the same”

in two subgoals? I de�ne this notion by referring to the variables recorded in the contexts.

80



6.3. Labeled Subgoals

Definition 6.13 (Wellformed Variable Recording). We say a subgoal φ is labeled, if conclφ has
the form vc ct P or ctxt i ct o P for some i,o, ct, and P . For such a veri�cation condition, we write
ctφ for ct. For a context ct, let varss ct = flat (map vars ct) be the concatenation of the term lists
of a context.
Then, ctφ is a wellformed variable recording of φ, if varss ct is distinct, i.e., does not contain

any term twice, and contains only top-level quanti�ed variables of φ.

Definition 6.14 (Equality of Top-level �antified Variables). Let φ1,φ2 be two subgoals with
a wellformed variable recording and let ct1 resp. ct2 be the longest su�xes of ctφ1

resp. ctφ2
such

that
map iden ct1 = map iden ct2.

We say ctφ1
and ctφ2

are compatible contexts, if the variables in ct1 and ct2 have the same type,
i.e.

map type (varss ct1) = map type (varss ct2)

Then, top-level quanti�ed variables of φ1 resp. φ2 are equal if they occur at the same position in
varss ct1 resp. varss ct2.

This means that two variables can be compared only if they occur in the common su�x of

the context. Note that this de�nition can easily be lifted to compare arbitrary subterms of a

subgoal.

Example 6.15. Consider the following two subgoals.

∀x1 : α ,x2 : γ ,x3 : γ ,x4 : γ . vc [(«c», 2, [x1]), («b», 1, [x3]), («a», 0, [x2,x4])] P (6.12)

∀y1 : α ,y2 : β,y3 : γ ,y4 : γ . vc [(«d», 3, [y1]), («b», 1, [y2]), («a», 0, [y3,x4])]Q (6.13)

The longest “common” context su�xes are

ct1 = [(«b», 1, [x3]), («a», 0, [x2,x4])]

ct2 = [(«b», 1, [y2]), («a», 0, [y3,y4])]

which yields varss ct1 = [x3,x2,x4] and varss ct2 = [y2,y3,y4]. Then x2 and y3 as well as x4
and y4 are equal, but x2 and y4 respectively x4 and y3 are not equal (because the occur at di�erent
positions). The variables x3 and y2 cannot be compared because they have di�erent types (hence,
the contexts ct1 and ct2 are not compatible) and the variablesx1 andy1 cannot be compared because
they do not occur in the common su�x.

Definition 6.16 (Wellformed Labeling). The hierarchy context of a term t in a subgoal φ is

hctφ t =



ct if t = hier ct t ′

ctφ else

Then, a set S of subgoals has a wellformed labeling if the following conditions are ful�lled:

1. Each veri�cation condition φ ∈ S is labeled and has a wellformed variable recording,
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2. the hierarchy contexts are valid, i.e., hctφ t is a su�x of ctφ for all subterms t of φ,

3. if a variable is free in a term binding in φ, then it is either top-level quanti�ed or free in φ,

4. if φ is labeled with vc, then the �rst block of ctφ does not occur in ctφ2
for any other φ2 ∈ S ,

5. the assumptions are consistent, i.e., an assumption P ofφ is also an assumption of anyφ2 ∈ S
where hctφ P is a su�x of ctφ2

, and

6. all contexts are compatible, i.e., for all φ1,φ2 ∈ S holds ctφ1
and ctφ2

are compatible.

Such a labeling is called �nal, if each veri�cation condition is labeled with vc.

Condition 2 stems directly from De�nition 6.10. Term bindings must make sense outside

of the subterm they are de�ned in, hence condition 3. Due to condition 4, each subgoal is

associated to a unique leaf case. The conditions 5 and 6 arise as we want to group veri�cation

conditions with the same context-su�x (as in Example 6.7): this is only possible if these blocks

�x the same variables and introduce the same assumptions
1
.

In the remainder of this section, I describe how to systematically label introduction rules

to produce a wellformed labeling. Porting this technique to other methods of computing

veri�cation conditions (e.g., equation-based as in [32]) should be straightforward.

We have already seen the labeling constant ctxt. Similar to the subgoal labeling vc, it attaches

to the conclusion of a subgoal. This constant is used to compute statement numbers and contexts

and will not end up in the �nal veri�cation conditions. The statement number is used to obtain

an ordering of the cases and to distinguish unrelated blocks with the same name. For program

veri�cation, the statement number would very roughly correspond to a line number in the

program. In ctxt i ct o P , i is the statement number of the program fragment in P, ct the context,

and o is the �rst statement number after the program fragment in P. Initially, we �x i = 0, ct = []

and use Isabelle’s schematic variables to compute o. This is expressed by the following rule:

ctxt 0 [] o P
P

LabelC

In De�nition 6.16, we have seen a wellformedness condition for a set of subgoals. For

computing a labeled set of subgoals, we need to know which kind of transformations preserve

the wellformedness. Below, I describe a set of local conditions for introduction rules, which

are su�cient to guarantee that the application of such a rule obeys the global requirements of

De�nition 6.16.

A basic requirement is that a rule can introduce fresh blocks without colliding with other

blocks in one of the subgoals. To achieve this, the labeling ctxt i ct o P reserves the statement

numbers in the interval {n | i ≤ n < o} for subgoals derived from P , i.e., those numbers may

not occur anywhere else in the goal state. A set of subgoals satisfying this condition has a

position-wellformed labeling.

1
Due to α-equivalence of lambda terms, the names of variables do not matter.
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Definition 6.17 (Position-Wellformed Labeling). The sets of reserved numbers, blocks, and
new numbers are de�ned as follows:

res-numφ =



{n | i ≤ n ≤ o} if conclφ = ctxt i ct o t ′

∅ else

blocksφ = set ctφ

A set of subgoals S has a position-wellformed labeling if it has a wellformed labeling and for all
φ1,φ2 ∈ S holds

res-numφ1 ∩ num (blocksφ2) = ∅
φ1 , φ2 =⇒ res-numφ1 ∩ res-numφ2 = ∅.

Definition 6.18 (Wellformed Labeled Rule). Let new-num Pi = res-num Pi ∪ num (blocks Pi \
blocksQ ) and consider an inference rule

P1 . . . Pn
Q . (6.14)

This is a wellformed labeled rule if all of the following conditions hold for any 1 ≤ i, j ≤ n:

1. Pi is labeled,

2. ctQ is a su�x of ctPi ,

3. new numbers are reserved by Q , i.e., new-num Pi ⊆ res-numQ ,

4. all newly recorded variables are recorded at most once and are top-level quanti�ed in Pi ,
i.e., vars (blocks Pi \ blocksQ ) are top-level quanti�ed variables in Pi ,

5. for any premise P in Pi , hctPi P is a su�x of ctPi and has ctQ as a proper su�x,

6. any premise P of Pi is also an premise of Pj , if ctPj is a su�x of hctPi P ,

7. reserved numbers occur at most once, i.e., res-num Pi ∩ num (blocks Pj \ blocksQ ) = ∅
and if i , j then also res-num Pi ∩ res-num Pj = ∅,

8. if Pi is labeled with vc, then the �rst block of ctPi does not occur in ctPj for i , j,

9. if a variable is free in a term binding in Pi , then it is either top-level quanti�ed or free in Pi ,
and

10. ctPi and ctPj are compatible contexts.

If a set of subgoals has a position-wellformed labeling, a rule can create fresh blocks by using

numbers from the reserved numbers (condition 3). Condition 7 ensures that the new set of

subgoals has also a position-wellformed labeling. Intuitively, this de�nition boils down to the

following: a rule should always extend or keep the context of the conclusion and never modify

it otherwise (condition 2). Everything new in labeling must be newly introduced by this rule.

Assumptions must only be introduced if a new block is added. To avoid confusion of the user, it

is also usually a good idea to use di�erent block names in di�erent rules.
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Lemma 6.19. Let S be a set of subgoals with a position-wellformed labeling and let R be a well-
formed labeled rule. Then applying the ruleR to an element of S yields again a position-wellformed
labeling.

Corollary 6.20. Let S = {ctxt 0 []o P } and R be a set of wellformed labeled rules. Then every set
S ′ derived from S by applications of rules from R has a wellformed-labeling.

Proof. By induction, using Lemma 6.19. �

For a wellformed labeling, one can generate an appropriate cases structure. To represent the

cases structure, I use ML syntax. A case is represented by the type string case,

datatype ’a case = Case of {
name: ’a,
fixes: (string ∗ typ) list,
asms: (string ∗ term) list,
binds: (string ∗ term) list,
cases: ’a case list

}

All terms in a case have the form t = λx1 . . . xm . t
′
, where the m is the number of �xed

variables in this and (initially) the surrounding cases. When a case is activated, the �xed

variables are applied to t for all terms t in a case and its nested cases.

Definition 6.21 (Precase). Let ∀x1 . . . xm . P1 =⇒ . . . =⇒ Pm =⇒ vc [blk , . . . , bl1] Q be a
subgoal with a �nal wellformed labeling. Let xs = [x1, . . . ,xm] \ varss [blk , . . . , bl1]. Given a
list of variables and a term t , the function abss de�ned by the following two equations abstracts t
over these variables:

abss[] t = t abss(v :: vs) t = λv . abss vs t

Then the precase (of type (N × string) case) of this subgoal is de�ned as follows:

precase bli =




C {name = iden bli , fixes = vars bli ,

asms = asms, binds = [], cases = bli+1)}
if 1 ≤ i < k

C {name = (iden bli , fixes = vars bli ++ xs,

asms = asms,

binds = («concl», absQ ) :: binds, cases = []}

if i = k

where

abs =



abss (vars bl1 ++ . . . ++ vars bli) ◦ ut ◦ uh if 1 ≤ i < k

abss (vars bl1 ++ . . . ++ vars blk ++ xs) ◦ ut ◦ uh if i = k

asm P =



(x , abs P ′) if uh P = tbind n x ct P ′

(«asm», abs P ) else

asms = map asm [Pj | 1 ≤ j ≤ m ∧ hctPj = [bli , . . . , bl1]]

binds = [(x , abs t ) | tbind n x ct t is subterm of P1, . . . , Pm ,Q].

Moreover, ut resp. uh are the functions removing tbind resp. hier labelings from the term.
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C {name = (2, «bind»), fixes = [(«x», nat)], asms = [], binds = [],

cases = [C {name = (3, «while»), fixes = [(«y», nat)], asms = [], binds = [],

cases = [C {name = (3, «inv»), fixes = [], asms = [], binds = [],

cases = [C {name = (4, «conseq»), fixes = [],

asms = A, binds = B, cases = []}]}]}

where

A = [(«asm», λx y. y dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd y) ∧ even y)]

B = [(«concl», λx y. (y/2) dvd a ∧ (∀m. odd m ∧m dvd a =⇒ m dvd (y/2))]

Figure 6.4.: Precase for (6.5) from Example 6.7

A precase is the interpretation of a single labeled veri�cation condition as a cases structure,

see Figure 6.4 for an example.

The de�nition of a precase distinguishes between the innermost block, i.e., blk , and the

other blocks: The precase for the innermost block contains all those assumptions and top-level

quanti�ed variables which are not explicitly labeled to belong to any of the earlier blocks.

To get from precases to a single cases structure for a well-formed goal structure, the precases

must be ordered and grouped.

Definition 6.22 (Case). Let S be a set of subgoals with a �nal wellformed labeling. We de�ne
an equivalence relation l on precases by x l y ↔ name x = name y, where name refers to the
name �eld of a precase. Let Ŝ be a set of representatives of this equivalence relation and [s]S be
the equivalence class of some s ∈ S w.r.t. l in S . Let

sort : (int × string) precase set→ (int × string) precase list

be the function sorting a set of precases by its name. Then the cases of the subgoals S are cases S ,
where cases is de�ned recursively by

casesT = disambig (map (λt .merge t [t]T ) (sort T̂ ))

merge t T = C {name = snd (name t ), fixes = fixes t , asms = asms t ,

binds = binds t , cases = cases (maps casesT )}.

Here, the disambig function takes care of the disambiguation the case names: if a list contains n
cases with the same name x , they are renamed x ,x2, . . . ,xn . following the order of the list.

The merge operation replaces the �xes, assumes and binds by those of a representative and

calls cases for the union of the subcases of the equivalence class of this representative. For a

wellformed goal state, all cases in the same equivalence class have the same �xes (except for

the names) and assumptions, so replacing the �xes is sound. Binds occur only in leaf cases
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and the equivalence class of a leaf case only consists of a single case (due to condition 4 of

De�nition 6.16).

In Isabelle, a proof method is a function st → st × string case list where st is a goal state.

Now we can build a proof method for L which supports structured proofs as described in

Section 6.2.1: Use the VCG with the labeled rules to generate veri�cation conditions with a

wellformed labeling. Then, use cases to generate the cases structure and �nally remove the

labeling from the veri�cation conditions by unfolding the labeling constants.

The cases are then setup so that each subgoal can be discharged by activating one of the

cases, selecting the appropriate term binding and prove the resulting proof obligation.

6.4. A Labeling VCG for L

To capture the program structure, we attach labels as de�ned in Section 6.3 to the veri�cation

conditions and modify the rules of the calculus to compute these labels. That way, the modi�ca-

tions to the VCG can be kept to a minimum: it is not necessary to add manual book-keeping. In

many cases it su�ces to use the modi�ed rule set. In this section, I describe a labeled hoare

calculus for the language L.

When solving a veri�cation condition, there are usually three things we need to consider for

the proof:

1. Where in the program are we? (e.g., “the while loop in line 4”)

2. What kind of obligation is this? (e.g., preservation of the loop invariant)

3. How did we get there? (e.g., which branches of conditional statements did we take before

arriving here?)

In this section, I consider labels which describe the whole veri�cation condition. For the VCG

of L, this corresponds to the Where and What. In Section 6.6, I will give an outlook how the

How could also be exposed to the user.

How should we express the Where? My goal is that the cases in a structured proof re�ect

the structure of the program (see Example 6.3): when looking at the cases I want to see all

statements of the program which give rise to a veri�cation condition, in the same order and the

same nesting as in the original program. L has a block structure: Control structures like while
or cond are commands containing other commands. This structure is mapped directly to the

blocks from Section 6.3.

The rule for sequential composition just passes the position after the �rst command to the

position before the second command. The �rst premise introduces a new top-level quanti�ed

variable, which is recorded in a block.

∀x .

ctxt (o′+1) (〈o′,«bind»,[x ]〉B ::ct) o︷           ︸︸           ︷
{|R x |} c2 x {|Q |}

ctxt i ct o′︷      ︸︸      ︷
{|P |} c1 {|R |}

{|P |} bind c1 c2 {|Q |}︸                 ︷︷                 ︸
ctxt i ct o

BindC
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My readers may object to adding a block in Rule BindC: Intuitively, one does not consider

sequential composition to imply any nesting. One the other hand, the lambda abstraction in

bind c1 (λx .c2 x ) de�nitely implies a nesting to the right and we can only refer to bound variable

if it has a name. In Section 7.2, we will see that the blocks arising from sequential composition

can be nicely integrated into an Isar proof.

Rule Return does not have any premises, so it only needs to compute the output number

from the input number.

{|P x |} return x {|P |}︸                 ︷︷                 ︸
ctxt i ct (i+1)

ReturnC

Rule Cond is more interesting: First, the output number is computed by counting the lines

for the cond itself and the commands in the two branches. The two branches are nested side-

by-side in cond, so both are put in separate blocks inside a context ct ′ = 〈i, «cond», []〉B :: ct.
The computation of the line numbers follows the same scheme as in Rule BindC.

ctxt (i+1) (〈i,«then»,[]〉B ::ct′) o′︷       ︸︸       ︷
{|P1 |} c1 {|Q |}

ctxt (o′+1) (〈o′,«else»,[]〉B ::ct′) o︷       ︸︸       ︷
{|P2 |} c2 {|Q |}

{|if b then P1 else P2 |} cond b c1 c2 {|Q |}︸                                             ︷︷                                             ︸
ctxt i ct o

CondC

The consequence rule is not attached to a concrete command, but it is used if the (computed)

precondition of the proof obligation does not match the precondition of the current command.

Hence, we order the veri�cation condition arising from the consequence rule before the current

command.

ctxt (i+1) ct o︷      ︸︸      ︷
{|P ′ |} c {|Q |} P ′ =⇒

vc (〈i,«conseq»,[]〉B ::ct)︸︸
P

{|P |} c {|Q |}︸     ︷︷     ︸
ctxt i ct o

ConseqC

As for Rule CondC, the statement numbers computed by Rule ConseqC only roughly resemble

line numbers: the counter is increased to satisfy the local wellformedness conditions and

preserve the ordering.

In Rule While, the labeling is used to record the loop variable, which occurs in both premises

as a top-level quanti�ed variable.

∀x .

ctxt (i+1) ((i,«inv»,[])::ct′ x ) o︷                ︸︸                ︷
{|I x ∧ b x |} c x {|I |} ∀x . I x ∧ ¬b x =⇒

vc (〈o,«post»,[]〉B ::ct′ x )︸︸
P x

{|I x |} while b I c x {|P |}︸                      ︷︷                      ︸
ctxt i ct (o+1)

WhileC

where ct ′ = λx . 〈i, «while», [x]〉B . Note that premises have been put into the same block

«while». Recall the case (while n) syntax from the introductory example: this labeling allows

us to treat the loop state variable consistently for both the side condition and all veri�cation

conditions arising from the Hoare triple.

For Rule WhileT, the premise

∀x . {|I x ∧ b x |} c x {|λx ′. I x ′ ∧ (x ′,x ) ∈ R |}
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{|True|}
x ←WHILE (λx . snd x < a)

INV (λx . i ≤ a ∧ fst x = snd x · b)
BODY (λx .
y ←WHILE (λx . snd y < b)

INV (λx . snd x < a ∧ snd y ≤ b
∧ fst y = snd x · a + j )

BODY (λx . return (fst y + 1, snd y + 1))
START (fst x , 0);

return (fst y, snd x + 1)
START (0,0);

return (fst x )
{|λr . r = a · b |}

(a) Selectors

{|True|}
(r , _) ←WHILE (λ(r , i ). i < a)

INV (λ(r , i ). i ≤ a ∧ r = i · b)
BODY (λ(r , i ).
(r , _) ←WHILE (λ(r , j ). j < b)

INV (λ(r , j ). i < a ∧ j ≤ b
∧ r = i · a + j )

BODY (λ(r , j ). return (r + 1, j + 1))
START (r , 0);

return (r , i + 1)
START (0,0);

return r
{|λr . r = a · b |}

(b) Pattern Matching

Figure 6.5.: L program for multiplication by repeated increment

basically contains two proof obligations: invariant preservation and termination. As these will

�nally end up in a veri�cation condition, it is useful to present them to the user separately.

Labeling this premise as

∀x .

ctxt i+1 (i,«inv»,[])::ct′ x o︷                                                 ︸︸                                                 ︷
{|I x ∧ b x |} c x {|λx ′. x ′︸︷︷︸

tbind «inv» i

∧ (x ′,x ) ∈ R︸      ︷︷      ︸
tbind «var» i

|}

and the rest as in Rule WhileC, the resulting VC will not only contain the default term binding

for the conclusions, but also term bindings called “inv” and “var” corresponding to I x ′ and

(x ′,x ) ∈ R (which might have been transformed by the VCG).

It is easy to see that this set of labeled rules conforms to the local wellformedness conditions. If

we change the VCG for L to use the labeled rules, it produces the labeled veri�cation conditions

from Example 6.7 for the program from Example 6.2.

6.5. Spli�ing Tuples

Consider the while combinator for the language L: this combinator allows only for one variable

as loop state. Similarly, the branches of the cond combinator can only “modify” one variable.

Multiple variables can be simulated by using tuples. To allow a more readable presentation,

programs written in one of AutoCorres’s languages (which are the basis for L) make heavy use

of the pattern-matching syntax λ(x1, . . . ,xn ). t x1 . . . xn , cf. Figure 6.5. Here (x1, . . . ,xn ) is a

shortcut for (x1, (x2, . . . ,xn )) and λ(x1,x2). t x1 x2 abbreviates λx . case-prod (λx1 x2. t x1 x2) x .

where x does not occur in t . The function case-prod is de�ned by case-prod f (x ,y) = f x y.

To handle this syntax, the inference system forL is extended with Rule Product, see Figure 6.6.

This rule moves case-prod out of the way – otherwise, no rule of our calculus would apply to

the body of one of the while loops in Figure 6.5b. The rule is demonstrated by the partial proof
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∀y, z. x = (y, z) =⇒ {|P y z |} c y z {|Q |}

{|case-prod P x |} case-prod c x {|Q |}
Product

Figure 6.6.: Inference Rule for Pattern Matching

∀x r i x ′. x = (r , i )

=⇒ case-prod (λr j . i < a ∧ j ≤ b ∧ r = i · b + j ) x ′ ∧ ¬case-prod (λr j . j < b) x ′

=⇒ vc 〈6, «post», []〉B [〈3, «while», [x ′]〉B , 〈1, «invariant», []〉B , 〈1, «while», [x]〉B]

case-prod (λx y. case-prod (λr i . i ≤ a ∧ r = i · b) (r , i + 1)) x ′

Figure 6.7.: A VC of Figure 6.5b. The premise x = (r , i ) arose from Rule Product (lifted to

ignore the labeling). Note that x is only used in the label; the conclusion uses i
instead. The outer case-prod arose from the postcondition of the inner while

loop.

below (the irrelevant branches are omitted for space reasons):

∀x ,y, z. x = (y, z) =⇒ {|I (y, z) ∧ b (y, z) |} c y z {|I |}

∀x . {|case-prod (λy z. I (y, z) ∧ b (y, z)) x |} case-prod (λy z. c y z) x {|I |}
Product

∀x . {|I x ∧ b x |} case-prod (λy z. c y z) x {|I |}
Conseq

{|I r |} while b I (λ(y, z). c y z) r {|Q |} While
(6.15)

A mechanism for structured proofs should support this style of simulating multiple variables.

In particular, this means the ability to write case (while r i) for a while loop using a tuple as

loop state, as in Figure 6.5b, and have r and i correspond to the expected values both in the VC

belonging to the invariant and the VC belonging to the postcondition. There are two separate

issues:

• There is a term case-prod t x in the premises or conclusion of a veri�cation condition,

where x is a top-level quanti�ed variable. This x needs to be replaced with fresh bound

variables y, z and occurrences of case-prod t x need to be replaced by t y z.

• The command of a Hoare triple has the form case-prod t x . Then, Rule Product removes

the pattern matching and introduces additional bound variablesy and z, without removing

x . The labeling needs to record that x was replaced by (y, z).

The �rst case occurs e.g. for the postcondition of Rule While, the second for the invariant

in the same rule (see Figure 6.7). Note that both cases need to be handled consistently and

simultaneously for all veri�cation conditions to preserve the wellformedness of the labeling.

Only the second issue needs a change to the labeling. We do not yet have a labeling to express

that the block which recorded the variable x should now record y, z instead. One could rewrite

the label with the premise x = (y, z), but for the sake of robustness it is preferable not to rewrite

with arbitrary equations. Hence, we introduce a dedicated labeling constant:
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Definition 6.23 (Tuple Label). The labeling constant split takes two terms of the same type and
is de�ned as split a b B (a = b).

This label di�ers from the ones in Section 6.4 in that it is not purely syntactic and is used as

an additional assumption, not attached to the conclusion. Similar to ctxt, split only occurs in

intermediate steps and is not expected to end up in the �nal veri�cation conditions.

Note that Rule Product introduces two variables. These will not be recorded in a block, as

they only exist temporarily, until the split is resolved. Instead, they are marked with a tuple

label.

Definition 6.24 (Wellformed Split-Labeling). Let S be a set of subgoals having a position-
wellformed labeling such that for each φ ∈ S holds: for any assumption split x y in φ, y is a
(tuple of) top-level quanti�ed variables and the variables in y occur neither on the right hand side
of another split nor in the blocks of the labeling of this subgoal. Then S is a position-wellformed

split-labeling.
A wellformed labeled rule is a wellformed split-labeled rule, if for each assumption split x y in

a premise P holds: y is a (tuple of) top-level quanti�ed variables in P and the variables in y occur
neither on the right hand side of another split nor in blocks P \blocksQ , whereQ is the conclusion
of the rule.

The labeled version of Rule Product then is de�ned as follows:

∀y, z. split x (y, z) =⇒

ctxt i ct o︷               ︸︸               ︷
{|P y z |} c y z {|Q |}

{|case-prod (λy z. P y z) x |} case-prod (λy z. c y z) x {|Q |}︸                                                                       ︷︷                                                                       ︸
ctxt i ct o

ProductC

Obviously, this rule is a wellformed split-labeled rule. I now describe a transformation from a

position-wellformed split-labeling into a position-wellformed labeling which eliminates the

tuples recorded in the labeling:

Definition 6.25 (Tuple Postprocessing). For all labeled veri�cation conditions, perform the fol-
lowing steps:

1. Split all variables of tuple-type which are recorded in labeling. This is easily achieved by
controlled rewriting with the theorem

∀x . P x ≡ ∀a b . P (a,b).

Update the labeling by �attening the tuples.2

2. Rewrite all occurrences of case-prod (λz w . t z w ) (x ,y) to t x y.

3. Simplify split annotations by replacing each premise of the form split (x ,y) (z,w ) by two
premises split x z and split y w .

2
If the program uses tuples not only for simulating multiple variables, this step might split more then intended. An

easy solution is the introduction of special tuple type.
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4. For each annotation split x y where x is top-level quanti�ed, rewrite x to y and remove the
annotation.3

Lemma 6.26 (Tuple Postprocessing Preserves Wellformedness). If S is a set of subgoals with
a position-wellformed split-labeling, then the result of the tuple postprocessing of S also has a
position-wellformed labeling.

Proof. Steps 1 to 3 obviously preserve the wellformedness. After step 3, in each annotation

split x y either x is not a top-level quanti�ed variable or x is a top-level quanti�ed variable and

not of tuple type. In the former case, the unfolding of split does not a�ect the labeling (and

hence the wellformedness). In the latter case, both x and y are top-level quanti�ed variables of

the same type, where y is not bound in the blocks of the labeling; so the rewriting preserves the

wellformedness. �

After Tuple Postprocessing, the veri�cation conditions of Figure 6.5b faithfully present the

“multiple variables” view.

Example 6.27. Recall the veri�cation condition from Figure 6.7. By Tuple Postprocessing this is
transformed to:

∀r i y y ′. (i < a ∧ y ′ < b ∧ y = i · b + y ′) ∧ ¬y ′ < b

=⇒ vc 〈6, «post», []〉B [〈3, «while», [y,y ′]〉B , 〈1, «invariant», []〉B , 〈1, «while», [r , i]〉B]

(i + 1 ≤ a ∧ y = (i + 1) · b)

After generating the cases, if the user selects the nested cases

case (while _ i) { case invariant { case (while r j) { case post ... }}}

then assumption and conclusion are presented as

(i ≤ a ∧ j ≤ b ∧ r = i · b + j ) ∧ ¬j < b and i + 1 ≤ a ∧ r = (i + 1) · b,

respectively, which is exactly what the notation in Figure 6.5b suggests.

6.6. Other Applications

So far, we have considered labeling the veri�cation conditions generated from a program.

In this section, I give two further examples for the labeling: a small veri�cation condition

generator for logical formulas built from if-then-elses and atoms and a replacement for Isabelle’s

unfold_locales proof method.

Example 6.28 (Decomposing Conditionals). A labeling VCG for logical formulas made from
if-then-else and atoms can be constructed from the following rules.

3
This step is easily implemented by instantiating Isabelle’s hypsubst tactic for the split constant.
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As a shortcut we write ctt = 〈i, «then», []〉B :: ct and cte = 〈i, «else», []〉B :: ct.

vc ct︸︸
t
t︷︷

ctxt i ct (i+1)

FinalC
hier ctt a =⇒

ctxt (i+1) ctt o′︸︸
b hier cte (¬a) =⇒

ctxt (o′+1) cte o′︸︸
c

(if a then b else c )︸                 ︷︷                 ︸
ctxt i ct o

IfC

The VCG decomposes the goal with Rule IfC and �nishes the computation of the statement
numbers by applying Rule FinalC to each subgoal. The hier label records where the assumption
was introduced, so the assumption ends up in the case described by ctt resp. cte.
Applying this VCG to the expression

if a then (if b then c else d ) else e

yields the following list of cases:

C {name = «then», fixes = [], asms = [(«asm»,a)], binds = [],

cases = [C {name = «then», fixes = [], asms = [(«asm»,b)], binds = [(«goal», c]},

C {name = «else», fixes = [], asms = [(«asm»,¬b)], binds = [(«goal»,d )]}]},

C {name = «else», fixes = [], asms = [(«asm»,¬a)], binds = [(«goal», e )]}

This VCG can serve as a basis to expose the various execution paths of a program, i.e., the How
of Section 6.4: the VCG for L described in Section 6.4 does not generate separate veri�cation

conditions for the two branches of a conditional command. Instead, the weakest precondition

of the conditional command contains a conditional expression, which will usually end up as the

conclusion for a veri�cation condition generated by Rule Conseq.

The use of annotated terms to generate a cases structure is not only useful for program

veri�cation. Another candidate is Isabelle’s unfold_locales proof method (and its cousins

intro_locales and intro_classes). This method is used to prove that some set of parameters

constitute an instance of a locale. The result of this proof method are subgoals for each of the

assumptions of the locale and the assumptions of the ancestors of the locale. As all these have

names, it would be useful to have these names re�ected in a cases structure. However, this is

deemed too complicated to be worth the e�ort by the Isabelle developers:

There are presently two main applications where goal cases are really needed in regu-
lar Isar proofs: intro_classes and intro_locales. Since these proof methods are a bit too
complex to provide properly named cases (although it is possible in theory), post-hoc
addition of “goals” is the way to do it.

— Makarius Wenzel, 2015-07-02 on the Isabelle development list

In this quote, “goal cases” refers to the technique of generating cases directly from (unlabeled)

subgoals by naming them «goal1», «goal2» and so on.

Conceptually, unfold_locales is very simple: It applies a set of introduction rules repeatedly,

which can be written as intro rules in Isabelle. With the existing infrastructure, this repeated
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application su�ces to make building a cases structure to complex: instead of using a basic

combinator like intro, one would need to apply the rules step-by-step, building the cases

structure simultaneously. Using the labeling presented in this chapter makes this complexity go

away.

Example 6.29 (Labeled unfold_locales). Let R be the set of theorems used by unfold_locales and
assume that for each rule R ∈ R there is a naming function fR such that fR i is the name of the
i-th premise of R. We write cti = 〈oi−1, fR i, []〉B :: ct. Then the labeling of such a rule is de�ned as

labR =

ctxt o0 ct1 o1︸︸
P1 . . .

ctxt om−1 ctm om︸︸
Pm

Q︷︷
ctxt o0 ct om

where R =
P1 . . . Pm

Q

Then, a version of unfold_locales which produces proper case names can be de�ned by applying
the rules labR repeatedly (with intro, as usual), �nishing the labeling by applying Rule FinalC to
all resulting subgoals, and then applying the procedure from De�nition 6.22.

6.7. Discussion

In this chapter, I described a method to expose the implicit structure of veri�cation conditions

to the user in the Isabelle/HOL theorem prover. This method consists of two parts: First, by

labeling the rules the VCG uses, the structure is explicitly recorded in the generated veri�cation

conditions. Second, these labels are turned into a cases structure which is presented to the user.

The �rst part requires only minor changes to the VCG, while the second part is completely

independent. For the user, the advantages are twofold: The user can directly apply her intuition

to a veri�cation condition, without needing to interpret it �rst, and the full power of the Isar

proof language is available. Equally relevant, the proofs become easier to read and hence to

maintain. A case study using the case labeling to verify a non-trivial program is given in

Chapter 7.

This method of labeling is not restricted to program veri�cation as demonstrated in Section 6.6.

Currently, the cases mechanism in Isabelle is only used by a few, specialized methods as creating

meaningful cases with the primitives provided by Isabelle is tedious. My labeling makes it

feasible to use cases more widely.

I have implemented the second part, i.e., the procedures described in De�nition 6.22 and

De�nition 6.25, in Isabelle/HOL. For the “Hoare” theory in the Isabelle distribution and the

languages used by AutoCorres, I provided labeled VCGs (i.e., an implementation of the �rst

part). The latter has been used to verify the Planarity Checker in Chapter 7 and proved to be

very useful there. The implementation, together with labeled VCGs for “Hoare” and a simpli�ed

version of the AutoCorres languages can be found in the Archive of Formal Proofs [62] (the full

version depends on AutoCorres, which is not yet in the AFP).

The act of labeling the rules of the VCG is straightforward. A reason for that is that each

rule can be labeled in isolation, obeying the wellformedness conditions of De�nition 6.18 and

De�nition 6.24. In particular, the labeling of the rules does not need to be reconsidered if

additional rules are added to the calculus.
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In this chapter, I assumed that the VCG only applies a limited set of rules to decompose a

Hoare triple into its veri�cation conditions. However, often VCGs perform additional steps,

for example by automatically eliminating technical side conditions or simplifying certain

patterns. Technically, any proof step preserving the wellformedness of the labeling is allowed.

Additional care is necessary if subgoals are duplicated or top-level quanti�ed variables are

replaced (although I did not encounter this issue with the VCGs I adapted to use case labeling).

The bigger issues lie on the user interface side: The form of the veri�cation conditions should

be predictable. This means that systematic simpli�cations (like the removal of case-prod or

the removal of trivial veri�cation conditions) are usually �ne, but more heuristic steps (like

running the standard rewriting tactic on each goal) are better avoided, as they make the proofs

more brittle and confusing.

Proof tools used by a VCG often expect the subgoals to be in a certain shape, which is hidden

by the labeling. Provided such a tool does not create additional subgoals, this can be usually

solved by moving the label temporarily to the assumptions of the subgoal.

The labeling stores the structure in the veri�cation conditions itself. As a result of this, the

veri�cation conditions do not need to be produced by a single monolithic proof method. Instead,

arbitrary proof methods can be combined, provided they preserve the wellformedness of the

labeling. This is the case for many of the common proof methods in Isabelle. This makes it easy

to add extensions like the Tuple Postprocessing.

One of the guiding principles of Isar is to reduce implicit state in proofs. In particular,

assumptions and subgoals should typically be explicitly spelled out in a structured proof. The

cases mechanism trades explicitness for more formal structure, on the premise that it should

only be used for proof methods with a predictable result.

One can claim with some merit that a VCG stretches the idea of predictable results. If one is

of that opinion, it is still possible to avoid the term bindings and state the assumptions explicitly,

e.g., by using literal fact propositions [78, §3.3.7] Otherwise, named assumptions and term

bindings spare the author from copy-and-pasting long terms, while providing at least a rough

idea of what they are referring to. In any case, case labeling creates an intelligible proof structure,

which allows for a more convenient development of proofs and increases maintainability.

We conclude this chapter by reviewing some related work. As mentioned in the introduction,

specialized program veri�cation tools use labels to relate veri�cation conditions and source

positions [8, 46]. The VCG in ESC/Java [46] computes where to insert the labels, but the position

de�ned by the label is directly taken from source program.

In an unpublished article, Gast [29] uses a similar term labeling for the veri�cation of C-like

programs in Isabelle/HOL. He provides a special command which takes a C-like program,

embeds it into the logic and starts the veri�cation process. The labels refer to positions in the

AST of the program and an additional user interface shows the source code, highlighting the

positions in the label. This approach relies on a tight integration between the parser, the proof

rules and the user interface. In contrast, my approach does not need additional infrastructure

and can be integrated with any language embedded in Isabelle with little e�ort.

Recently, Daniel Matichuk et al. have been working on Eisbach, an extension to the Isar

proof language [49]. In particular, this language allows a direct access to the components of a

subgoal, without using a classical structured proof. This allows to structure the proof of each

veri�cation condition, but does not help in exposing the program structure. In a sense, Eisbach
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covers some middle-ground between the two extremes of unstructured and structured proofs I

described in Section 6.2.

Moreover, a VCG often generates large subterms, for example for modi�ed program state. In

many proofs, the user will need to refer to these terms, so these should be made available to the

user as term bindings. In his work on implementing separation logic on top of Simpl [71], Gast

[28] extracts such terms. It remains to be seen whether this can be done in a way which keeps

the generation of nested cases agnostic of the VCG.

For another approach of structuring program veri�cation proofs, albeit with a di�erent focus,

see the work on Ribbon Proofs [80].
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In Chapter 5, I discussed a non-planarity certi�cate and presented a veri�ed implementation of

the predicateWFalse together with a proof of the witness property. In this chapter, I complete

the checker for the planarity test by verifying an implementation ofWTrue. However, the main

focus is on the tool used for the veri�cation, the case labeling from Chapter 6.

After sketching the implementation and the correctness arguments, I look at the veri�cation

process and the resulting proof text and discuss the advantages and short-comings of the case

labeling, compared to a VCG without support for structured proofs.

7.1. Implementation

As mentioned, the main focus of this chapter is on the evaluation of the case labeling. For this, it

is not necessary to start from a C implementation of the checker. Most technicalities stemming

from C can already be dealt with in an abstraction step as described in Section 5.4.1. Hence, the

checker is directly implemented in one of the target languages of AutoCorres, using Isabelle

datatypes like natural numbers, sets, and pairs. The level of abstraction is similar to the one in

the Simpl implementation of the non-planarity checker.

The used language is very similar to the language L described in Section 6.1, but supports a

program heap (which is not actually used here). The set of labeled rules for the VCG is described

in Appendix A.

Recall the de�nition of the witness predicate for planarity:

WTrue B {(x ,y,w ) | y = True ∧w is a planar map forx }

IfWTrue (x ,y,w ) holds, then x is combinatorially planar (this can be easily seen by unfolding the

de�nition of combinatorial planarity). For the implementation, we use the same representation

of graphs as in Chapter 5, see Figure 5.4. A map is represented by three functions, corresponding

to π , ρ and ρ−1. See Figure 7.1 for details.

We assume that there is already a trustworthy program computing the number of components.

Computing the components of a graph is a separate problem, for which again exist certifying

algorithms [52, §7.4]. Alkassar et al. [2] formalize a partial checker for this problem.

The implementation consists of a procedure is-planar which can be divided into four parts:

1. test whether M is a map for G,

2. compute the number of isolated nodes,

3. compute the number of face cycles, and

4. check whether the genus is 0.
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record IMap = im-rev : N→ N, im-succ : N→ N, im-pred : N→ N

definition
mk-mapG M B (G, perm-restrict (im-rev M ) AG , perm-restrict (im-succ M ) AG )

definition as-bidir (G,π , ρ) B (G,π )

Figure 7.1.: Representation of maps in the implementation. The function mk-map converts

an IMap into a map and as-bidir treats a map as bidirected digraph.

For this procedure, I prove the following correctness result:

Theorem 7.1 (is-planar implements WTrue). Let iG be a representation of a �nite digraph G
with a distinct list of vertices and let c be the number of strongly connected components of G.
Then is-planar iG iM c terminates. It returns True if iM is a representation of a planar map
for G and im-pred iM is the inverse of im-succ iM on the arcs of iG. Otherwise, it returns False.

In particular, is-planar returns True only if G is a planar.

Of the steps above, step 1 is the most involved part of the proof. As I can demonstrate all

my points about case labeling on this single step, I will not go into detail on the remaining

parts. Below, I shortly discuss the implementation and veri�cation of the procedure is-map,

implementing Item 1. The full implementation and proof is available in the Archive of Formal

Proofs [64].

Map Property Recall that (G,π , ρ) is a map if π reverses the arcs of G and ρ permutes the

outgoing arcs of each vertex cyclically. Figure 7.2a shows the implementation of the is-map
procedure checking whether (G,π , ρ) = mk-mapG M for some IMap M is a map.

The �rst loop tests whether π reverses the arcs of G, i.e., whether (G,π ) is a bidirected

digraph. The remainder of the is-map procedure checks whether ρ has the required properties.

The second loop tests whether ρ is a permutation of AG , mapping arcs to other arcs with the

same tail. Here, im-pred iM is a witness inside a witness: It allows to certify easily that ρ is

injective. As ρ : AG → AG and AG is �nite, bijectivity follows.
1

If the check implemented by the second loop is successful, we already know that orbit ρ a ⊆
out-arcs G a for all a ∈ AG . The last loop then checks whether ⊆ can be replaced by equality.

The idea is to iterate over the arcs and mark both its tail and all arcs in its orbit. If an unmarked

arc is encountered whose tail is already marked, the orbit is a proper subset.

The invariants for the �rst two loops are straightforward, see Figure 7.3 for the invariants of

the last loop. It is then straightforward to verify that is-map returns True if and only if (G,π , ρ)
is a map and ρ is the inverse of ρ−1. Note that the termination of the inner loop of the third

loop depends on ρ being a function AG → AG , which is why succ1 is part of the loop condition.

1
A certifying algorithm producing the certi�cate will usually be able to produce the inverse of ρ. For example,

LEDA stores the order of the arcs around a vertex as a cyclic list. From this representation, both im-pred iM and

im-succ iM are easily computed.
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1 definition is-map iG iM B
2 DO (_, rev)← while
3 (λ(i , ok) s . i < |ig-es iG | ∧ ok)
4 (λ(i , ok). DO
5 j ← return (im-rev iM i);
6 in← return (j < |ig-es iG |);
7 neq← return (j , i);
8 swp← return (ig-es iG ! j = swap (ig-es iG ! i));
9 invol ← return (im-rev iM j = i);

10 return (i + 1, in ∧ neq ∧ swp ∧ invol)
11 OD)
12 (0, True);
13 (_, succ1)← while
14 (λ(i , ok) s . i < |ig-es iG | ∧ ok)
15 (λ(i , ok). DO
16 j ← return (im-succ iM i);
17 in← return (j < |ig-es iG |);
18 ends← return (ig-tail iG i = ig-tail iG j);
19 perm← return (im-pred iM j = i);
20 return (i + 1, in ∧ ends ∧ perm)
21 OD)
22 (0, True);
23 (_, succ2, _, _)← while
24 (λ(i , ok, V , A) s . i < |ig-es iG | ∧ succ1 ∧ ok)
25 (λ(i , ok, V , A). DO
26 (x , V , A)← condition (λ_. ig-tail iG i ∈ V )
27 (return (i ∈ A, V , A))
28 (DO
29 (A′, j)← while
30 (λ(A′, j) s . j < A′)
31 (λ(A′, j). DO
32 A′← return (insert j A′);
33 j ← return (im-succ iM j);
34 return (A′, j)
35 OD)
36 (∅, i);
37 V ← return (insert (ig-tail iG j) V );
38 return (True, V , A ∪ A′)
39 OD);
40 return (i + 1, x , V , A)
41 OD)
42 (0, True, ∅, ∅);
43 return (rev ∧ succ1 ∧ succ2)
44 OD
45

(a) Implementation

1 { case weaken then show ?case
2 by (auto simp: rev_inv_def) }
3 { case (while i ok)
4 { case invariant
5 { case weaken then show ?case
6 by (auto simp: rev_inv_def elim: less_SucE) }
7 }
8 { case wf show ?case by auto }
9 { case postcondition ... }

10 }
11 case (bind _ rev)
12 { case (while i ok)
13 { case invariant
14 { case weaken ... }
15 }
16 { case wf show ?case by auto }
17 { case postcondition then show ?case
18 by (auto simp: final_def succ1_inv_def) }
19 }
20 case (bind isucc1 succ1)
21 { case (while i ok V A)
22 { case invariant
23 { case weaken
24 interpret postcond0 iG iM rev isucc1 succ1
25 using weaken by unfold_locales auto
26 have i < |ig-es iG | and succ1 ok
27 using loop_cond by auto
28 ...
29 show ?case
30 proof branch_casify
31 case then ...
32 next
33 case else ...
34 qed
35 }
36 { case if case else case (while A′ i ′)
37 { case invariant
38 { case weaken ... }
39 }
40 { case wf show ?case by simp }
41 { case postcondition ... }
42 }
43 }
44 { case wf show ?case by auto }
45 { case postcondition ... }

(b) Partial proof

Figure 7.2.: The is-map procedure.
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definition succ2-inv iG iM rev isucc1 succ1 i ok V A B
A = (

⋃
k < (if ok then i else i − 1). orbit (im-succ iM) k)

∧ V = {ig-tail iG k | k. k < (if ok then i else i − 1)}
∧ ok = (∀k < i . ∀j < i . ig-tail iG k = ig-tail iG j −→ j ∈ orbit (im-succ iM) k)
∧ rev = bidirected-digraph (as-bidir (mk-map (mk-graph iG) iM))
∧ succ1-inv iG iM isucc1 succ1 ∧ final iG isucc1 succ1
∧ i ≤ |ig-es iG | ∧ wf-digraph (mk-graph iG))

definition succ2-inner-inv iG iM isucc1 succ1 i ok V A i ′ A′ B
A′ = (if i = i ′ ∧ i < A′ then ∅ else {i} ∪ segment (im-succ iM) i i ′)
∧ i ′ ∈ orbit (im-succ iM) i
∧ ig-tail iG i < V ∧ succ1 ∧ ok ∧ succ2-inv iG iM rev isucc1 succ1 i ok V A B
∧ i < |ig-es iG |

Figure 7.3.: Invariants of the �nal loop of is-map and its inner loop. The variable names

correspond to those used in Figure 7.2b. The if-then-else in the �rst invariant

covers the early exit of the loop (A and V are not updated in this case). The

if-then-else in the second invariant is necessary as i = i ′ holds at the beginning

(where A′ = ∅) and the end of the loop (where A′ = orbit (im-succ iM ) i )).

7.2. Evaluation of the Case Labeling

Proof Layout Figure 7.2b shows an excerpt of the correctness proof for the is-map procedure.

Before applying the VCG, the program has been annotated with the invariants (Figure 7.3). For

this, the rewrite method described by the author and one of its students [74] has been used. I

want to draw my reader’s attention to a few �ne points regarding the layout of the proof.

As discussed in Section 6.4, the rule for bind opens a new block. While this is necessary to

capture the variables introduced by bind, it results in deeply nested cases, instead of a �at list

of cases. Luckily, these blocks do not need to be re�ected explicitly in the Isar proof text: The

case command activates the components of a case for the rest of the proof block, without the

need to open a new proof block. The layout in Figure 7.2b takes advantage of this to present

the linear structure of the program: all cases for bind are activated in the outermost proof block

(see lines 11 and 20).

This layout works nicely together with the folds the prover IDE Isabelle/jEdit automatically

creates for the proof text: in the editor, each block wrapped in curly braces can be collapsed to

a single line, showing only the contexts of the �rst line. Hence, if the innermost proof blocks

(containing the actual proofs for the veri�cation conditions) are collapsed, the proof structure is

clearly visible in the editor.

This allows it to prove even complicated veri�cation conditions directly in this structured

proof without compromising legibility. In contrast, for unstructured proofs it is paramount

to separate the proof of complicated veri�cation conditions into dedicated lemmas. In the

veri�cation of is-map I used a split approach: Partial results which would be needed in more

then one case where moved into separate lemmas or a locale.

In Isar, it is customary to separate cases with the next command, which closes the current
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block and opens a new proof block. For the reasons detailed above, it is preferable to use explicit

curly braces instead.

The implementation does not bind the �rst result of the second loop (see line 13 in Figure 7.2a).

Nevertheless, the user can still bind this result in the proof (compare isucc1 in line 20 in Figure 7.2b).

For example, the variable isucc1 is used the invariant.

To prove that the �nal loop preserves its invariant, one has to consider two code paths,

depending on which branch of the conditional statement has been taken taken. Hence, the

conclusion of the associated case weaken in line 23 is a conditional expression. Here, I used the

labeling for conditionals from Section 6.6 to prove both branches separately (lines 29-34).

Leaving aside this sub-proof, only one branch of the conditional statement is visible at all

in the proof structure of the program (line 36). The reason is that only one branch contains a

command (namely the inner while loop) giving rise to a veri�cation condition.

Proof Strategy Experience shows that veri�cation of programs is not a linear process. In-

stead, it is an explorative process where loop invariants, the program and sometimes even the

speci�cation are adapted as the ongoing proof uncovers problems.

Case Labeling supports this process: as selecting the desired veri�cation condition can be done

with almost no e�ort, it encourages a non-linear proof style. For example, in the veri�cation of

is-map, the �rst step was devising the invariants of the three outer loops.
2

Knowing the VCG,

I could then identify trivial veri�cation conditions by their name and discharge these, often

without looking at the formulas (e.g., lines 1, 5, and 17).

After that, I proved the postcondition of is-map, before even thinking about a formal invariant

of the inner loops. This style of proving allowed me to keep my mind on one aspect of the

program at a time, without getting lost in details.

Changing the program or the invariants often breaks already �nished parts of the proof.

With Case Labeling, it becomes immediately visible which parts of the proof are a�ected. In

the veri�cation of is-map, this helped the author a few times to detect trivial mistakes, before

spending time on a wrong invariant in other parts of the proof.

Program Variables Apart from naming the veri�cation conditions, case labeling provides

the following features to facilitate writing intelligible structured proofs: Predictable naming of

variables, splitting variables of product type, named assumptions, and term bindings.

When a case is activated, the bound variables can be named in a controlled manner. Having

predictable names for the bound variables greatly reduces the mental e�ort necessary to parse

the veri�cation conditions. The user is free to use meaningful names, the same names as in

the program, or to mark them as irrelevant by not giving them any name. In any case, relating

variables in proof and program only needs a look at the proof resp. program structure. The

labeled rules given in Appendix A bind variables in the outermost case possible. Using the proof

layout recommended in this section then guarantees a consistent naming of variables across

veri�cation conditions.

2
Actually, the very �rst step is usually writing down a skeleton of the structured proof. For this, the command

print_nested_cases supplied by the implementation of case labeling is useful. It shows the full case structure

generating by the case labeling (Isabelle’s standard print_cases command only shows the outermost cases).
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As a result, in the veri�cation of is-map, it its obvious for both the author and any later reader

of the proof that assuming succ1 means that the second loop delivered a positive result. This

information is obtained by just looking at the single case command introducing this variable

and its position in the proof structure (see line 20). To understand that succ1 refers to the second

loop variable of the second loop, one does not even need to know the program!

Splitting product variables in separate variables is a prerequisite for taking full advantage

of predictable names. It relieves the user of manually splitting the products and prevents the

automatic splitting by various proof tools, which would lose the predictability of names. By

simplifying case-prod, it makes assumptions and goals shorter and therefore more intelligible.

Example 7.2. Consider the veri�cation condition for the postcondition of the last while loop (i.e.,
the case in line 45). With case labeling, the user gets the theorems

succ-orbits-inv iG iM i ok V A
rev = bidirected-digraph (as-bidir (mk-map (mk-graph iG) iM))
succ-perm-inv iG iM isucc1 succ1
final iG isucc1 succ1
i ≤ |ig-es iG |
wf-digraph (mk-graph iG)
¬ (i < |ig-es iG | ∧ succ1 ∧ ok)

to prove the following goal:

(rev ∧ succ1 ∧ ok) = (digraph-map (mk-map (mk-graph iG) iM)
∧ (∀i < |ig-es iG |. im-pred iM (im-succ iM i) = i))

Here, variable names correspond to the names �xed by the user. Without case labeling, the follow-
ing goal state is shown to the user:

∀r i rev ra ia succ1 rb s .
r = (i , rev) =⇒
ra = (ia, succ1) =⇒
(case rb of (i , a)⇒ case a of (ok, a)⇒ case a of (V , A)⇒

λs. succ-orbits-inv iG iM i ok V A ∧
rev = bidirected-digraph (as-bidir (mk-map (mk-graph iG) iM)) ∧
succ-perm-inv iG iM ia succ1 ∧
final iG ia succ1 ∧
i ≤ |ig-es iG | ∧ wf-digraph (mk-graph iG))

s =⇒
¬ (case rb of (i , a)⇒ case a of (ok, a)⇒ case a of (V , A)⇒

λs . i < |ig-es iG | ∧ succ1 ∧ ok)
s =⇒

(case rb of (x , xb, xa, y)⇒
λa. (rev ∧ succ1 ∧ xb) =

(digraph-map (mk-map (mk-graph iG) iM) ∧
(∀i < |ig-es iG |. im-pred iM (im-succ iM i) = i)))

s

Some of the variable names are useful (as the VCG tries to preserve the names used in the program).
However, it is customary to simplify the veri�cation with a weak automatic proof method (for
example clarsimp) which is designed to “clarify” a subgoal. Doing so will lose any of the useful
names inside the case-expressions:
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∀ia succ1 x1 x1a x1b x2b.
succ1 −→ x1 < |ig-es iG | −→ ¬ x1a =⇒
succ2-inv iG iM x1 x1a x1b x2b =⇒
succ1-inv iG iM ia succ1 =⇒
final iG ia succ1 =⇒
x1 ≤ |ig-es iG | =⇒
wf-digraph (mk-graph iG) =⇒
(bidirected-digraph (as-bidir (mk-map (mk-graph iG) iM)) ∧ succ1 ∧ x1a) =
(digraph-map (mk-map (mk-graph iG) iM) ∧ (∀i < |ig-es iG |. im-pred iM (im-succ iM i) = i))

7.3. Conclusion

The veri�cation of the is-planar procedure completes the veri�ed checker for the planarity test;

provided a veri�ed (or certi�ying) algorithm to compute the number of components is available.

The implementation consists of around 125 lines of proof text. Building on the theory about

combinatorial planarity from Chapter 4, the veri�cation takes about 1100 lines of proof text. In

addition, 120 lines are necessary to provide the labeled rules for the implementation language.

The veri�cation was straightforward, requiring little inspiration, except for the invariants.

Nevertheless, the correctness proofs for the procedures required a considerable amount of work

and case labeling proved to be a valuable tool. While case labeling does not make the proof

obligations simpler, it makes them easier to understand, closing an important gap to proof tools

dedicated to program veri�cation. Moreover, even for this small example, it greatly increases

the readability and maintainability the proof.
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Roughly speaking, this thesis covers two topics: formalization of graph theory and veri�cation

of checkers (for planarity certi�cates).

8.1. Results

The overarching theme of the �rst topic is the graph library I presented for reasoning about

directed and, to some degree, undirected graphs. This library contains a formalization of many

basic concepts and is �exible enough to be used with many di�erent classes of digraphs. If not

needed, this �exibility can be hidden, for example by using pair graphs, without losing the results

of the general theory. Using this library I proved a characterization of Euler digraphs correct

and formalized two characterizations of planarity: Kuratowski planarity and combinatorial

planarity. I provided one half of the equivalence proof for these characterizations, that is

comb-planarG =⇒ kuratowski-planarG, and implemented a veri�ed decision procedure for

combinatorial planarity which is suitable for small graphs.

Independent of this graph library, I formalized a probabilistic proof of the Girth-Chromatic

Number Theorem. Later, I transferred this result to the graph library using Isabelle’s transfer

mechanism. This required only shallow reasoning about the used constants and shows that

results formalized with regard to other de�nitions of graphs can be embedded in my graph

library with reasonable e�ort. The important point here is that the graph library is general

enough to embed other graph representations as subtypes.

On the topic of veri�cation, I veri�ed checkers for both the planarity and the non-planarity

certi�cates emitted by the certifying planarity test from the LEDA library. For the non-planarity

checker, which is modeled after the implementation in LEDA, I showed that it accepts not only

Kuratowski subgraphs but a slightly wider class of graphs which still guarantees non-planarity.

This checker has been implemented in Simpl and in C. Both version have been veri�ed. It turned

out that abstraction of word arithmetic is crucial for the e�cient veri�cation of the C program.

This prompted me to develop an abstraction framework which allows to separate reasoning

about words from reasoning about the rest of the program and can additionally be use to insert

ghost code.

The planarity checker has been implemented and veri�ed in the abstract language of Auto-

Corres. This veri�cation was used as a case study for my case labeling technique. Case labeling

carries the program structure through the VCG over to the veri�cation conditions, such that

this structure can be exposed to the user with the help of Isabelle’s cases mechanism. This

makes proof more convenient and maintainable, as the user is relieved from manually matching

veri�cation conditions with fragments of the program. Beyond program veri�cation, case

labeling is applicable to many areas where proof obligations are structurally decomposed in a

recursive fashion. Therefore, case labeling has the potential to make Isabelle’s cases mechanism
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more widely used, in particular for proof methods for which this was considered infeasible

before One example for this are proofs for Isabelle’s locale predicates.

8.2. Future Work

I conclude this thesis with a list of projects which seem to be a worthwhile continuation of this

work.

Three Chapters of Graph Theory My graph library has been designed to be general, so it

can useful for a wide range of graph theory. However, the selection of concepts and results I

proved has been guided very much by my focus on planarity certi�cates. Similar to the work by

Hölzl and Heller [37] for measure theory which provided the title so this paragraph, formalizing

a few chapters of an introductory graph theory text book would give a wider base to this library.

Undirected Graphs, Hypergraphs, and More Some results, for example those of Chapter 4,

can be smoothly formalized using digraphs-as-undirected-graphs. On the other hand, some of

the proofs in Chapter 5 would probably have been easier with “real” undirected graphs. There

are also proofs using mixed graphs [7] (i.e., graphs with both directed and undirected edges)

and some of the formalized results can be generalized to hypergraphs. One structure which

can support all these kinds of graphs natively is a triple of a set of vertices (of type β), a set of

arcs (of type α ), and a set of links (of type α × (β × β )). Depending on the restrictions enforced

for the set of links, such a structure would correspond to directed graphs, undirected graphs,

directed or undirected hypergraphs, or mixed graphs. Properties like degree and walks can

be de�ned in terms of links, uniformly for all this variants of graphs. It would be interesting

to explore whether this even more general structure can be used for proofs about undirected

graphs or digraphs without incurring too much overhead.

Equivalence between Kuratowski and Combinatorial Planarity I proved that combi-

natorial planarity implies Kuratowski planarity, but omitted the other direction. I expect that

this proof would need a result equivalent to the Jordan Curve theorem, which is still missing

from Isabelle.

Case Labeling For the case labeling, I presented a set of conditions which guarantee that

a set of rules will generate a wellformed labeling. Labeling a set of rules according to these

conditions is a very mechanical task. It is easy to imagine some lightweight annotations which

supply just the names and from which the full labeling can be generated automatically.
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A. A Language with State and Failure

Labeled rules for the language with state and failure used in Chapter 7.

∀x .

ctxt (o1+1) (〈«bind»,o1+1,[r ]〉B ::ct) o2︷           ︸︸           ︷
{|R x |} д x {|Q |}!

ctxt i ct o1︷      ︸︸      ︷
{|P |} f {|R |}!

{|P |} bind f (λx . д x ) {|Q |}!︸                           ︷︷                           ︸
ctxt i ct o2

ctxt (i+1) ct o︷       ︸︸       ︷
{|P |} f {|Q |}! ∀s . P ′s =⇒

vc (〈«weaken»,i,[s]〉B ::ct)︸︸
P s

{|P ′ |} f {|Q |}!︸        ︷︷        ︸
ctxt i ct o

∀y, z. split x (y, z) =⇒

ctxt i ct o︷                ︸︸                ︷
{|P y z |} f y z {|Q |}!

{|case-prod P x |} case-prod f x {|Q |}!︸                                         ︷︷                                         ︸
ctxt i ct o

{|λs . P ( f s ) s |} gets f {|P |}!︸                           ︷︷                           ︸
ctxt i ct (i+1)

GetsC

ctxt i (〈«then»,i,[]〉B ::ct) o1︷     ︸︸     ︷
{|L|} l {|Q |}!

ctxt (o1+1) (〈«else»,o2,[]〉B ::ct) o1︷      ︸︸      ︷
{|R |} r {|Q |}!

{|λs . (if c s then L s else R s ) |} cond c l r {|Q |}!︸                                                    ︷︷                                                    ︸
ctxt i ct o2

{|P x |} return x {|P |}!︸                  ︷︷                  ︸
ctxt i ct (i+1)

Pinv ∀x .

vc (〈«wf»,o,[]〉B ::ct′)︷︸︸︷
wf R ∀x , s . [[I x s;¬c x s]] =⇒

vc (〈«postcondition», (o+1),[s]〉B ::ct′)︷︸︸︷
Q x s

{|I x |} while c f x I R {|Q |}!︸                           ︷︷                           ︸
ctxt i ct (o+1)

WhileC

For the rule WhileC, I used the following abbreviationsfollowing de�nitions:

ct ′ B 〈«while», i, [x]〉B :: ct

Pinv B ∀x , s .

ctxt (i+1) (〈«inv»,i,[s]〉B ::ct′) o︷                                                                                             ︸︸                                                                                             ︷
{| I x︸︷︷︸

tbind «linv» i

∧ c x︸︷︷︸
tbind «lcond» i

∧ λs ′. s ′ = s︸     ︷︷     ︸
tbind «lvar» i

|} f x {|λr ′. I r ′︸︷︷︸
tbind «inv» i

∧ λ . (r
′, r ) ∈ R︸         ︷︷         ︸

tbind «var» i

|}

113


	Introduction
	Outline
	Publications
	Isabelle/HOL

	A Probabilistic Proof of the Girth-Chromatic Number Theorem
	Modeling Graphs
	Probability Space
	Handling Asymptotics
	Proof Outline
	The Proof
	Discussion

	A Graph Library for Isabelle
	Introduction
	Representation
	Operations and Properties
	Euler Graphs
	Other Graph Formalizations
	Conclusion

	Planarity of Graphs
	Permutations
	Two Definitions of Planarity
	An Executable Specification of Combinatorial Planarity
	Kuratowski Graphs are not Combinatorially Planar
	Planarity under Subdivision
	Planarity under Subgraphs
	Discussion

	A Checker for Non-Planarity
	Certifying Algorithms
	A Checker Algorithm for Non-Planarity
	Implementation in Simpl
	Implementation in C
	Conclusion

	Structured Proofs in Program Verification
	A Simple Imperative Language
	Problem Statement
	Labeled Subgoals
	A Labeling VCG for L
	Splitting Tuples
	Other Applications
	Discussion

	A Checker for Planarity
	Implementation
	Evaluation of the Case Labeling
	Conclusion

	Conclusion
	Results
	Future Work

	A Language with State and Failure

