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ABSTRACT
Co-scheduling is known to optimize the utilization of super-
computers. By choosing applications with distict resource
demands, the application throughput can be increased avoid-
ing an underutilization of the available nodes. This is espe-
cially true for traditional multi-core architecture where a
subset of the available cores are already able to saturate the
main memory bandwidth.
In this paper, we apply this concept to upcoming many-

core architectures by taking the example of the Intel KNL.
Therefore, we take a memory-bound and a compute-bound
kernel from the NAS Parallel Benchmarks as example ap-
plications. Furthermore, we examine the effect of different
memory assignment strategies that are enabled by the two-
layered memory hierarchy of the KNL.
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1. INTRODUCTION
Supercomputers will considerably change on their path to

exascale systems. The growth in size will be accompanied
by an increasing complexity of the compute nodes in terms
ascending core counts and multi-level memory hierarchies.
These changes put high demands on the application devel-
opers. They do not only have to ensure scalability on the
inter-node level for up to thousands of nodes, but also need
to hand-tune their code for the full exploitation of resources
on the intra-node level. This trend is especially challenging
for legacy codes which are rarely adapted to the peculiarities
of every upcoming generation of supercomputers.
Co-scheduling is one approach for an optimization of the

system’s utilization when running non-highly tuned codes.
As opposed to an exclusive allocation of nodes to applica-
tions, the goal is to find suchlike with diverse resource de-
mands to share a set of cluster nodes. Thereby, the individ-
ual job experiences a slow down compared to its exclusive
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execution but the overall runtime may be reduced compared
to their serialized execution.
Intel’s recently introduced many-core architecture Knights

Landing (KNL) presages potential characteristics of upcom-
ing supercomputers. It is a single chip possessing up to
72 cores exposing four Hardware Thread Contexts (HTCs)
each. In contrast to common Xeon CPU cores, they are
based on Intel’s Silvermont micro-architecture which was
originally designed for mobile processors such as Intel’s Atom.
However, the large amount of cores per chip and their 512 bit-
wide Single Instruction Multiple Data (SIMD) units reveals
a strong potential for highly parallel and vectorized codes.
Furthermore, the KNL provides an additional level in the
memory hierarchy by the introduction of on-die high band-
width memory. This is put close to the processor and pro-
vides a bandwidth superior to the normal DRAM at the
expense of slightly increased latency at lower bandwidth uti-
lizations.
In this paper we investigate the viability of co-scheduling

on many-core architectures by taking the example of the
Intel KNL. Therefore, we use two kernels of the NAS Par-
allel Benchmarks (NPBs) suite for the conduction of both
performance and energy measurements. Thereby, we want
to estimate if our considerations made in previous works [2]
apply to upcoming many-core architectures as well. In con-
trast to these studies, the additional level in the memory hi-
erarchy of the KNL enables further co-scheduling scenarios,
e. g., two applications may be executed concurrently using
the different memory levels.
This paper is structured as follows: the next section pre-

sents the Intel KNL while discussing the different cluster
modes and memory configurations. Section 3 gives an in-
troduction to the NPBs and provides information on the
runtime characteristics of the two kernels EP and CG which
have been used for the evaluation of our work. After pre-
senting a comprehensive evaluation in terms of performance
results and energy consumption in Section 4, we discuss re-
lated work in Section 5 before concluding the paper in Sec-
tion 6.

2. INTEL KNIGHTS LANDING
The Intel KNL is the second generation many-core pro-

cessor of Intel’s Xeon Phi product line. In contrast to its
predecessor, the KNL is a self-boot processor that features
binary compatibility to the mainline Xeon Instruction Set
Architecture (ISA) [9]. The processor is divided into 36 tiles
connected by a 2D-mesh which implements a YX-routing.
Each tile posses two cores based on Intel’s Silvermont micro-
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architecture which have been adapted especially for High
Performance Computing (HPC), e. g., each core provides
four HTCs. There are two memory controllers on either side
of the chip providing three channels respectively for mem-
ory bandwidths of up to 90 GiB/s. Apart from the well-
known DDR4-DRAM, the KNL additionally provides up to
16 GiB of Multi-Channel DRAM (MCDRAM) which is 3D-
stacked on-package memory. This memory type targets at
high bandwidths of around 400 GiB/s, however in contrast
to DDR4 it shows slightly higher latencies. The MCDRAM
is directly connected to the mesh by using 8 memory con-
trollers.
For the evaluation we used the Intel Xeon Phi 7210 pos-

sessing 64 cores and a total of 256 hyperthreads. The cores
are clocked at 1.3 GHz. Besides the 16 GiB of MCDRAM
the system is equipped with 96 GiB of DDR4 memory. We
disabled the turbo mode for the avoidance of fluctuations in
the measurements.

2.1 Cluster Modes
The 2D interconnect is used for the implementation of

cache coherency among the cores. It can be configured in
three different so-called cluster modes on the BIOS level.
The all-to-all mode is the most general and allows for unbal-
anced memory distributions across the two DDR4 memory
controllers [5]. Therefore, it does not implement an affinity
between the tiles, directories, and the memory by uniformly
hashing all memory addresses across the distributed direc-
tories.
In contrast, the quadrant mode divides the chip into four

virtual quadrants which realize an affinity between the dis-
tributed directories and the memory. In this mode, the
memory addresses are hashed to the directories which be-
long to the same quadrant as the memory. However, this is
transparent to the software which sees a one-socket system
exposing 64 cores.
Finally, the Sub-NUMA Clustering (SNC) exposes the

quadrants as individual NUMA domains to the software.
Hence, NUMA-aware applications can profit from lower la-
tencies by reducing memory accesses to remote quadrants.
For all measurements presented in this paper we activated
the SNC mode.

2.2 Memory Configurations
The 3D-stacked MCDRAM can be configured in three dif-

ferent ways. Just as with the cluster modes, the configura-
tion can only be performed by changing the BIOS settings
accordingly. In the so-called flat mode, the memory extends
the physical address space of the system and is explicitly
exposed as NUMA domain to the software. Thus, in the
quadrant cluster mode one additional NUMA domain shows
up while there are four in the SNC mode.
Alternatively, the MCDRAM can operate in the cache

mode in which it acts as last-level cache for the DDR4 mem-
ory in transparency to the software. Finally, in the hybrid
mode, a portion of the MCDRAM acts as cache while the
remainder can be used in flat mode. The measurements pre-
sented in this paper where conducted by using the stacked
memory in flat mode.

3. NAS PARALLEL BENCHMARKS
The NPBs [1] is a set of computing kernels intended for

the performance evaluation of supercomputers. They rep-

resent common kernels of computational fluid dynamics ap-
plications and offer different problem classes. Therefore, the
benchmarks are well-suited for the evaluation of a wide range
of cluster sizes.
For the evaluation of our work we chose the two kernels

EP and CG. Furthermore, we chose Class C as problem size
depicting a reasonable size for a workstation test system like
the one used for our work. The CG kernel computes the ap-
proximation to the smallest eigenvalue of a large sparse ma-
trix [8]. This benchmark is characterized by irregular mem-
ory accesses and communication and therefore likely to be
limited in performance by the available memory bandwidth.
EP computes statistics from Gaussian pseudo random num-
bers. As the name suggests, there are neither dependencies
between the individual work items nor does the benchmark
dependent on the available main memory bandwidth.
As we aim at applying co-scheduling to many-core sys-

tems, the combination of these two kernels is a reasonable
choice. They perfectly meet the requirement of distinct re-
source demands and should complement each other in a co-
scheduling scenario.

4. EVALUATION
This section presents an evaluation of the two kernels EP

and CG from the NPBs suite. We start with an analysis of
their scalability and power consumption using DDR4 mem-
ory and MCDRAM respectively. In the second part we dis-
cuss the performance and energy results obtained from co-
scheduling the two kernels in different configurations. Each
meter point was captured by executing the respective ap-
plications for 15 min in a loop and averaging the results af-
terwards. For a reduction of the captured meter points we
chose a step width of 4 threads.

4.1 Application Scalability
The scalability results of the CG and the EP kernel are

presented for both memory types in Figure 1. The speedup
is computed based on the best sequential execution. This
was for both kernels a single thread running on DDR4 mem-
ory since this provides slightly better latencies than the MC-
DRAM. The EP kernel should not be sensitive to certain
pinning strategies and we therefore performed a compact
pinning on the core level, i. e., we started to fill up the phys-
ical cores one by another before using the HTCs. In contrast,
we used a scatter pinning on the core level for the CG kernel
due to its memory-bound characteristics.
At least for small thread counts, the speedup curves of

the EP kernel do not differ when using either of the mem-
ory types (cf. Figure 1b) since the kernel is compute-bound.
However, for rising thread counts we can observe a contin-
uously growing overhead of up to around 10 % when using
traditional DDR4 memory ( ). This might stem from the
higher contention on the memory controllers and the mesh
which can be handled more efficiently by the 8 controllers for
the high-bandwidth memory in contrast to the two DDR4
memory controllers.
The CG kernel stronger benefits from the high-bandwidth

memory. Already using 8 threads, its execution on MC-
DRAM starts to outperform the results obtained on the
DRAM. For thread counts greater equal to 40 threads, we
observe a performance benefit of 10 % to 20 %. However,
for both memory types the kernel does not make efficient
use of additional HTCs. This can be explained by the fact
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Figure 1: Runtime and speedup of the CG and the EP benchmark from the NPB with varying number of
threads. The CG benchmark has been pinned in accordance with the scatter strategy while compact pinning
on a core granularity was used for EP.

that the KNL employs out-of-order cores. In contrast, Ra-
machandran et al. could observe a constant performance
increase for the CG kernel on its predecessor which was still
based on an in-order architecture [6].
Figure 2 shows the power consumption of the two comput-

ing kernels which was captured by both using the Running
Average Power Limit (RAPL) counter [3, 4] and a node-
external Power Distribution Unit (PDU). The latter is a
MEGWARE1 Clustsafe unit which gauges the complete sys-
tem power consumption including the power supply. Unfor-
tunately, the RAPL counter available on the KNL only pro-
vide energy information of the memory and the whole CPU
package but do not allow for a measurement of the energy
consumed by the cores only.
The EP kernel exhibits a nearly constant growth of the

power consumption except for the spikes at the HTC bound-
aries which correspond to the performance results discussed
above. This is also true for the energy efficiency measured in

1http://www.megware.com/.

mega-operations per watt ( / ). The measurements
reveal that the usage of the on-package memory result in a
slight decrease of the overall power consumption ( / )
which matches with the values obtained for the package and
the memory controllers. The latter decreases by around 4 W
to 6 W for larger thread counts while the power consumption
of the package only increases by 1 W to 3 W.
The power consumption of the CG kernel increases as

well for rising thread counts, however logarithmically in this
case. Although we see a performance optimum at around
60 threads, the optimal power efficiency is already reached
at around 36 and 40 threads when using DDR4 memory and
MCDRAM respectively. As the energy efficiency for the CG
kernel is improved by up to 20 % when using MCDRAM, we
should obtain best co-scheduling performance when running
it on the MCDRAM. In contrast, EP is not sensitive to the
assigned memory type and therefore we might see perfor-
mance benefits on its execution using DDR4 memory in a
co-scheudling scenario.

http://www.megware.com/.
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Figure 2: Power consumption (left y-axis) and power efficiency (right y-axis) of CG and EP using different
thread counts respectively. The solid lines represent application runs using the DDR4 memory while the
dashed lines show the results when using the on-package MCDRAM.

4.2 Co-scheduling Applications
An analysis of co-scheduling the CG and the EP kernel is

presented in Figure 3 with respect to the applications’ ef-
ficiency and power consumption. The former is computed
based on the most efficient exclusive application run, i. e.,
using 60 threads for CG and 256 threads for EP, while as-
signing the MCDRAM respectively.
The solid lines represent application runs in which both

kernels only allocate memory from the DDR4 memory. In
this case, we do not expect larger benefits of co-scheduling
both applications as the CG kernel strongly profits from
the exection on MCDRAM (cf. Section 4.1). All the more
surprising that we can observe a total efficiency greater than
one for certain configurations.
In contrast, the dashed lines correspond to applications

runs using only the MCDRAM for both kernels. In this
scenario we can observe an increase of the overall efficiency
by up to 38 % when assigning 112 to CG and the remain-
ing cores to EP. Interestingly, around twice as much CG
threads are necessary for a saturation of the efficiency in
the co-scheduling case (instead of only 60 threads in the
exclusive case). We expect this to be the result of a high
contention within the on-die mesh caused by EP threads.
There is only little influence on the power consumption when
switching the memory types. The power consumption of the

package increases when allocating the memory purely on the
MCDRAM while that of the RAM decreases likewise. This
is expected behavior since the former belongs to the pack-
age power domain. However, both CG and EP experience
with 26.4 s and 8.5 s respectively a significant reduction of
their performance compared to the exclusive cases. Since
EP achieves almost the same efficiency on DDR4 memory
and MCDRAM, i. e., it is only about 3 % faster on the MC-
DRAM when using 144 threads, one could assume that the
efficiency of the co-scheduling scenario can be further in-
creased when assigning distinct memory resources to each
application.
The results obtained when running CG exclusively on the

MCDRAM while EP uses DDR4 memory are represented
by the dotted curves. However, in contrast to our expec-
tations this strategy does not allow for an improvement of
the overall efficiency. We expect that this is again caused by
contentions within the on-die mesh as discussed before. Al-
though this scenario realizes an exclusive assignment of the
available resources, i. e., the two different memory types,
the interconnect is still a shared resource and becomes the
bottleneck. However, further research is necessary for a vali-
dation of these assumptions, e. g., a more sophisticated pin-
ning of the threads could reduce the average path length
to the memory controllers. The deviation from the MC-
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Figure 3: Co-scheduling scenario of CG and EP: (a) the application efficiency which is computed based on the
most efficient exclusive application run and (b) the power consumption for each application run. The solid,
dashed, and dotted lines represent runs using DDR4 memory, MCDRAM, and DDR4 for EP and MCDRAM
for CG respectively. The x-axis shows the number of threads used by the CG benchmark, the HTCs used by
the EP benchmark can be computed via 256 minus the number of CG threads.

DRAM-only case for a high number of EP threads can be
explained by its sensitivity to the memory type for high
thread counts (cf. Section 4.1).

5. RELATED WORK
Simultaneous scheduling of different applications is com-

mon in the area of server and desktops systems. The hard-
ware is designed with multiple HTCs for this type of simul-
taneous scheduling. However, most compute centers do not
offer support for co-scheduling and rather assign the nodes
explicitly to HPC applications.
A more common approach for the handling of underuti-

lized nodes is frequency scaling. In doing so, the frequency
is dynamically adapted which implicitly results in a reduc-
tion of the power consumption. Such an approach is obvi-
ously not able to increase the throughput but rather tar-
gets at an improved energy efficiency of the HPC systems.
Wang et al. [10] discuss a scheduling heuristic reducing the
overall system power consumption via Dynamic Voltage Fre-
quency Scaling (DVFS). The Adagio [7] tool analyzes the

time spent in blocking MPI function calls and decreases the
CPU frequency accordingly. Thereby, the energy efficiency
of the HPC system can be improved.
Energy efficient scheduling algorithms are also developed

for task scheduling where a task graph representing a pro-
gram is allocated and ordered on multiple processors. DVFS
has been employed for a reduction of the energy consump-
tion of the generated schedules, hence running the processors
at heterogeneous speeds. Sinnen et al. discuss task schedul-
ing algorithms [11] and show their potential to improve the
energy efficiency on current CPUs.

6. CONCLUSION
In this paper we analyzed the benefit of co-scheduling on

upcoming many-core architectures by taking the example of
the Intel KNL. Furthermore, we examined the influence of
different memory assignment strategies that are enabled by
the additional layer in the memory hierarchy provided by the
KNL. Our results show that co-scheduling can be valuable
for manycore architectures as well, i. e., we could increase the



overall efficiency by up to 38 %. Against our expectations,
we could not further improve the performance by dedicating
the MCDRAM exclusively to the memory-bound application
while serving the other from DDR4 memory. We assume
that a high contention in the on-die mesh is the reason for
the observed behavior.
For future work we plan a comprehensive analysis of the

effects from different pinning strategies to confirm our as-
sumptions. Therefore, we will use a set of micro-benchmarks
to determine key figures such as latencies and maximum per-
tile bandwidth.
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