Technische Universitiat Miinchen
Fakultit fiir Elektrotechnik und Informationstechnik

Lehrstuhl fiir Kommunikationsnetze

Analysis and Design of Distributed Control Plane
Mechanisms in SDN-based Industrial Networks

Ermin Sakic, M.Sc.

Vollstandiger Abdruck der von der Fakultét fiir Elektrotechnik und Informationstechnik der Technischen

Universitidt Miinchen zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Sebastian Steinhorst
Priifer der Dissertation: 1. Prof. Dr.-Ing. Wolfgang Kellerer
2. Prof. Dr.-Ing. Hermann de Meer

Die Dissertation wurde am 17.06.2020 bei der Technischen Universitdat Miinchen eingereicht und durch

die Fakultit fiir Elektrotechnik und Informationstechnik am 14.12.2020 angenommen.






Analysis and Design of Distributed Control Plane Mechanisms
in SDN-based Industrial Networks

Ermin Sakic, M.Sc.

14.12.2020

iii






Abstract

This thesis analyzes the existing work, proposes, and evaluates novel designs surrounding the logically-
centralized, physically-distributed Software Defined Networking (SDN) network control plane in in-

dustrial settings.

The motivation behind the presented work is two-fold. First, the recent rise in adoption of SDN
in data-center and campus networks has sparked an interest in the corresponding technology transfer
to the industrial domain. While the application of SDN for industrial use cases is well understood,
necessary adaptation of SDN designs to fulfill the non-functional requirements and constraints of
the industrial domain remains an open point. Second, recently proposed Ethernet extensions by the
Institute of Electrical and Electronics Engineers (IEEE) 802.1 Time-Sensitive Networking (TSN) group
improve the determinism of performance of distributed real-time applications, at the expense of an
added network configuration complexity. Efficient management of the proposed TSN mechanisms can
only be achieved by a centralized decision-making entity, equipped with admission control, scheduling,
and planning logic. Future industrial networks will require an efficient interplay of data and control
plane in order to enable strict End-To-End (E2E) latency, control plane response time, multi-tenancy
and auto-configuration requirements imposed by the dynamic Industry 4.0 use cases. Combined with
the prerequisite of robust operation, novel control plane designs are necessary in order to enable its

guaranteed low response time while minimizing the associated deployment complexity.

Indeed, deployment of SDN in industrial scenarios requires catering for the issue of control plane
dependability. The impact of distributed controller operation on resulting network performance is,
however, under-investigated in existing literature. A provably robust logically-centralized industrial

control plane design is necessary for its successful adoption in production settings.

We postulate the feasibility of using a highly-available and resilient SDN controller solution as an
enabler of future softwarized industrial networks. To this end, we provide an analysis of the availability,
reliability and response time properties of the existing consensus-based solutions. In order to achieve
the low response times, we propose multiple enhancements to handling flexibly-consistent control
state updates at scale. We furthermore define mechanisms for tolerating semantic faults in replicated
controller state independent of the root cause (e.g., software / hardware bug, malicious takeover or
diverged controller state). The proposed designs are validated analytically and empirically. To simplify
the deployment of the resulting control plane, we propose a novel automated bootstrapping approach
that omits any data plane dependencies, so to isolate the control and data plane responsibilities,

providing for easier verification and analysis of the system’s correctness.



Succinctly summarized, our thesis achieves four goals:

* Assessment and hardening of existing distributed SDN control plane designs: We provide the
analytical guarantees for availability and response time metrics of state-of-the-art distributed
SDN control plane proposals. Steady-state and transient analysis based on Stochastic Activity
Networks (SANs) are used in dependability and performance evaluation. We furthermore assess
corner cases impacting the correctness of existing control plane designs. In particular, scenarios
of leader oscillation and unsuccessful election were reproduced with existing SDN controllers.
To cater for and alleviate such issues, we propose for decoupling of the underlying failure

detection procedure from controller state consensus.

* Design of a scalable fault-tolerant distributed control plane: We propose multiple designs for
realizing a multi-controller SDN control plane that simultaneously enables a Fail-Stop-tolerant
and scalable system operation. To this end, we introduce the notion of adaptive consistency, a
state replication model that autonomously adapts to provide for a sufficient degree of consistency
for the hosted SDN applications, under consideration of the constraints on the worst-case state

divergence.

* Design of mechanisms for supporting reliable distributed control plane operation: To ensure
correct handling of faults rooted in Byzantine events, we propose novel control mechanisms
that guarantee a transparent system transition from faulty-to-stable state even if some controller
replicas are computing unreliable outputs due to internal faults. The proposed control plane
extensions optionally leverage programmable forwarding elements in order to minimize the

footprint of controller instance replication.

* Automated bootstrapping of a highly-available and reliable distributed control plane: We
propose two novel bootstrapping schemes to initialize a complex distributed system comprising
arbitrary number of controller replicas. The in-band control plane is thus bootstrapped with
availability guarantees - i.e., it is automatically protected against individual data plane and

controller failures.

The majority of designs proposed in this thesis were evaluated under assumption of industrial
network Key Performance Indicators (KPIs), i.e., they assume the respective typical topologies and
parameter configurations. Nevertheless, the advantages of introduced designs apply to other domains,

e.g., the data-center and campus SDNs.



Kurzfassung

Diese Arbeit liefert eine griindliche Analyse des Standes der Technik im Kontext der verteilten SDIN-
Netzsteuerungsebene. Desweiteren schligt sie neuartige Funktionen und Entwiirfe fiir industrielle
SDN-Netzsteuerungsebene vor und fiihrt empirische und analytische Auswertungen der resultierenden

Entwiirfen in realen Umgebungen durch.

Die Motivation hinter der vorgestellten Arbeit ist zweifach. Erstens hat die Adoption von SDN
in Rechenzentrums- und Campusnetzen ein Interesse am entsprechenden Technologietransfer in den
industriellen Bereich geweckt. Wihrend die generellen Anwendungsfille von SDN im industriellen
Kontext umfassend untersucht sind, werden weitere Anpassungen und Erweiterungen der kritischen
Steuerungsfunktionen benétigt, die ebenso notwendigen, nicht-funktionalen Anforderungen umzuset-
zen. Zweitens, die jiingst verabschiedenten Erweiterungen der Ethernetstandards in der IEEE TSN
gruppe erzielen die Sicherstellung der deterministischen Kommunikation der verteilten Echtzeitan-
wendungen, allerdings passiert dies zugunsten der erhohten Komplexitit in Netzkonfiguration. Eine
effiziente Verwaltung der vorgeschlagenen TSN-Mechanismen kann ndmlich nur von einer zentralen
Entscheidungseinheit erreicht werden, die mit Mechanismen fiir Zugangskontrolle und Ablaufpla-

nungslogik ausgestattet ist, die aber den Anforderungen der hohen Zuverlédssigkeit bedarf.

Die Realisierung zukiinftiger Industrienetze erfordert damit ein effizientes Zusammenspiel zwi-
schen Daten- und Steuerungsebenen des SDNs um die strikten Anforderungen aus der Industrie 4.0
zu ermOglichen u.a. auch begrenzte E2E Paketverzdgerungen, niedrige Reaktionszeit der Steuerungs-
ebene, Multi-Mandantenfahigkeit und automatische und dynamische Netzkonfiguration. In Kombi-
nation mit der Herausforderung einen robusten Betrieb zu garantieren, werden neuartige Designs
benétigt die garantierte niedrige Reaktionszeit zu gewdhrleisten und zugleich die damit verbundene
Bereitstellungskomplexitidt zu minimieren. Der Einfluss von verteilten Netzsteuerungsebene auf die
resultierende Netzwerkleistung ist in der vorhandenenen Literatur wenig untersucht. Der Einsatz von
SDN in industriellen Szenarien bedarf aber der Beriicksichtigung des Problems der Zuverldssigkeit der
Steuerebene. Fiir den Einsatz in Produktionsumgebungen wird dementsprechend der Nachweis einer

robusten logisch-zentralisierten industriellen Steuerungsebene unbedingt erforderlich.

Wir postulieren fortan die Verwendung einer hochverfiigbaren und ausfallsicheren SDN Controller-
losung als Wegbereiter fiir Ansteuerung und Betrieb der zukiinftigen Industrienetze. Dementsprechend
untersuchen wir die Eigenschaften der Verfiigbarkeit, Zuverldssigkeit und Reaktionszeit der bereits vor-
handenen konsensusbasierten Losungen. Um die geringen Antwortzeiten und eine hohe Skalierbarkeit

der verteilten Steuerungsebene zu garantieren, fiihren wir neue Mechanismen fiir effiziente Behand-
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lung der Zustandsaktualisierungen in der verteilten Steuerungsebene ein. Auflerdem definieren wir
Mechanismen zur Toleranz semantischer Fehler in Controller-Replikaten, unabhingig von Grundursa-
che des Fehlers, z.B. aufgrund von Software- und Hardware-Storungen, bosartiger Ubernahmen der
einzelnen Controller-Replikaten oder inkonsistenter Controller-Zustiande. Wir stellen einen neuartigen
automatisierten Bootstrapping-Ansatz vor, um die Bereitstellung einer zuverléssigen verteilten SDN
Steuerungsebene in In-Band Netzen zu vereinfachen. Unsere Designs werden analytisch und empirisch

validiert.

Kurz zusammengefasst adressiert unsere Arbeit die folgenden Punkte:

* Auswertung und Hdrtung der SDN Steuerungssebene: Wir definieren neue Methoden zur Si-
cherstellung der analytischen Garantien fiir Verfiigbarkeit und Reaktionszeit der verteilten SDN
Steuerungsebene. In der Leistungsanalyse setzen wir Steady-State und transitive Methoden ba-
sierend auf SANs ein. Wir werten zudem die Eckfille aus, die sich negativ auf die Korrektheit der
bestehenden Designs auswirken. Insbesondere werden Szenarien der Leaderoszillation und der
erfolglosen Leaderwahl untersucht und reproduziert. Um diese zu lindern, entkoppeln wir das

zugrunde liegende Fehlererkennungsverfahren von Konsensmechanismen des SDN Controllers.

* Design einer skalierbaren fehlertoleranten verteilten Steuerungsebene: Wir schlagen mehre-
re Entwiirfe zur Realisierung eines Multi-Controller SDNs vor, die zugleich ein Fail-Stop
-tolerantes, sowie einen skalierbaren Betrieb ermoglichen. Wir definieren ein adaptives Zu-
standsreplikationsmodell, dass jederzeit einen ausreichenden Konsistenzgrad fiir die ausgefiihr-
ten SDN Anwendungen bereitstellt. Dabei werden die Divergenz der Zustandsaktualisierungen
in Replikaten und damit die Worst-Case Leistung der ausgefiihrten Anwendung (z.B. Routing,

Load Balancing usw.) eingeschrénkt.

* Design von Mechanismen zur Unterstiitzung eines zuverldssigen Betriebs einer verteilten Steue-
rungsebene: Um eine korrekte Behandlung von Fehlern die auf byzantinischen Ereignissen
beruhen zu gewihrleisten, schlagen wir neuartige Mechanismen vor, die einen transparenten
Systemiibergang vom fehlerhaften in den stabilen Zustand garantieren. Somit wird ein korrek-
ter Betrieb sichergestellt auch wenn bestimmte Controller-Replikaten unzuverlidssige Ausgaben
berechnen. In diesem Zusammenhang werden neuartige P4-basierte Mechanismen in der Date-

nebene eingesetzt um den Overhead der Replikation der Controller-Instanzen zu minimieren.

* Automatisiertes Bootstrapping der hochverfiigbaren und zuverliissigen verteilten Steuerungs-
ebene: Wir schlagen zwei neuartige Bootstrapping-Schemata vor, um ein komplexes verteiltes
System bestehend aus einer beliebigen Anzahl von Controller-Replikaten zu initialisieren. Die
In-Band-Steuerungsebene wird somit mit Verfiigbarkeitsgarantien gebootet - d.h. sie wird auto-

matisch gegen einzelne Datenebene- und Controller-Austfille geschiitzt.

Die iiberwiegende Mehrheit der in dieser Arbeit vorgeschlagenen Designs werden unter der An-
nahme eines industriellen Netzwerks ausgewertet, d.h. die Evaluierung der KPIs beriicksichtigt die
jeweiligen typischen Topologien und Parameterkonfigurationen. Die Vorteile eingefiihrter Designs

sind jedoch auf andere Doménen transferierbar, z.B. auf Rechenzentrum- und Campus-Netze.
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Chapter 1

Introduction

Software Defined Networking (SDN) is a recent paradigm in control and management of communica-
tion networks [64, 95, ]. In contrast to a fully distributed network control model, where network
logic is shared across multiple autonomous network devices (e.g., network switches, routers and Vir-
tual Network Functions (VINFs)), SDN centralizes the decision-making logic in a single configuration
entity - the SDN controller. Thus, with SDN, the network logic (e.g., traffic engineering [75], virtual
network embedding [31, 43], load balancing [2, ] etc.) and the network knowledge state (e.g.,
resource mappings, topology graphs, forwarding tables etc.) are present in the controller instance
responsible for its administrative domain. The data is exposed to higher-layer applications (i.e., data
consumers) using a set of northbound interfaces, hence enabling a simplified access to the network

logic and knowledge state, compared to a fully distributed network control plane.

The advantages of the SDN architecture have recently been transferred to industrial networks (e.g.,

in automotive, energy, factory automation, healthcare domains), providing for significant advances

w.r.t., network visibility [124, ], intrusion detection and prevention [ 13, ] and dynamic routing
and resource reservation [74, 75]. Thus, the overhead of configuration engineering and the configu-
ration staticity of Industrial Ethernet networks [63, ] is superseded by the dynamicity of network

control and management introduced by SDN [9]. In fact, IEEE’s TSN group has recently specified and
standardized a set of Standard Ethernet extensions to support Industry 4.0 use cases with requirements
on dynamic point-to-multipoint stream establishment, low and bounded forwarding latency and high
availability of established streams [204, ,607,92,93, ]. The corresponding amendments to (ma-
jorly) the IEEE 802.1Q standard [93] (Bridges and Bridged Networks) have adopted and assume the
centralized approach to network control and management. The centralized SDN approach is preferred
in scenarios where global network visibility and serialized decision-making is necessary in order to
compute and deploy complex configurations for solving multi-constrained problems, e.g., for band-

width and delay-constrained multicast stream-establishment assuming Time-Aware Shaper (TAS) [30,

’ > ]‘

An SDN approach assumes logical centralization of the networking knowledge. This necessarily
poses a number of dependability-related concerns: (i) the impact of single-controller deployment on

the resulting network service availability; (ii) the reliability of single-controller decisions; (iii) the
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imposed response time drawback by the centralization of network control Application Programming

Interfaces (APIs); and (iv) the incurred overhead of deployment complexity.

We next discuss these concerns in more detail and refer to the approaches of distributed SDN
control plane that aim to address a subset of the concerns. We additionally summarize the remaining
challenges specific to industrial SDN deployment. Finally, we briefly discuss the contributions made

by this thesis, encompassing analysis, design and optimization of the distributed SDN control plane.

1.1 Challenges and Thesis Contributions

1.1.1 Challenge I - Fault Tolerance Concerns

Centralized network control introduces the issue of a Single Point Of Failure (SPOF). A controller
failure in an SPOF deployment necessarily leads to loss of a network control and management interface
to forwarding devices. This issue is of fundamental importance in critical industrial networks that

often must achieve extremely high system dependability [134].

Various approaches to enabling a redundant operation of the SDN controllers were proposed to
alleviate the SPOF issue [39, 98, , , R , ]. Most notably, controller clustering
designs [39, ] enable a quorum-like operation of the SDN controller cluster, where after reaching
consensus, each knowledge-base update in one of the controllers is propagated across the cluster
members, so to enable the consistency in ordering and value changes of state updates. In a leader-
based design, whenever the leader controller instance fails, consistent backup controller replicas

autonomously decide on the new leader. Hence, eventually the SDN control plane stabilizes.

For dependability, certification and Quality of Service (QoS) guarantees, critical infrastructure
providers require latency and availability guarantees on partaken reconfigurations [3, 88, , 1.
As discussed above, SDN can enable the necessary robustness against Fail-Stop failures by controller
clustering and controller state replication. The replication, however, incurs additional performance
overhead. Indeed, consensus systems typically assume a single-leader operation (or a centralized
serializer), thus imposing a non-negligible system fail-over time after leader (or serializer) failure.
The existing literature generally neglects the impact of failure occurrences on control plane’s response
time. In particular, no guarantees on control plane performance in failure case are given by present
designs. Characterization of expected response time is hence typically based on limited experimental

validations for fixed control plane and topology parametrizations [181, 1.
Our contributions in this context are two-fold.

Contribution 1 - Analytic models for availability and response time evaluation of a distributed
SDN control plane: We propose the usage of SANs [44] for modeling and numerical evaluation of
distributed SDN controller clusters [3]. Specifically, Chapter 3 and Chapter 4 describe a framework for
exact modeling of the distributed consensus algorithm Raft [146] used in production-ready SDN con-
troller platforms OpenDaylight (ODL) and Open Network Operating System (ONOS). The developed

models are applicable to other leader-based consensus algorithms as well (e.g., Multi-Paxos [218]).
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The solutions to the introduced SAN-based models allow for response-time and availability character-
ization of arbitrary cluster parametrizations. Furthermore, a failure injection and controller recovery
models are proposed for evaluation of the two metrics under the effect of an arbitrary number of cor-
related controller failures. Using transient and steady-state analysis, we provide analytical guarantees
on the event handling response times and long-term availability of an arbitrary SDN control plane
configuration, respectively. Thus, with the proposed approach, evaluation and optimization of optimal
cluster configuration for an industrial network becomes possible without costly hardware setups for

experimental evaluation and lengthy simulation runs.

Contribution 2 - Correctness guarantees in distributed SDN control plane in the face of
network partitions: In the face of network partitions, a distributed system becomes unable to progress
its state in each of the active replicas. To agree on the existence of potential partitions, the consensus
abstractions hence require a deployment of a minimum of 2- F'+1 controller instances in order to tolerate
a maximum of F instance failures. However, in the case of network partitions with partial reachability,
where individual instances are mutually reachable but an any-to-any connectivity matrix cannot be
established, the consensus protocols may encounter an unstable state where no leader can be identified
due to a leader oscillation issue. In Section 3.4 we present this issue and introduce, validate and
evaluate a design to decoupling the underlying failure detection process from state consensus protocol
capable of stabilizing the consensus in the face of network partitions. Additionally, Section 4.2 provides
an analytic framework for computation of the corresponding convergence times necessary to converge

the distributed failure detection process in each active controller replica.

1.1.2 Challenge II - Tolerating Byzantine Faults

Single-leader distributed control plane designs are susceptible to Byzantine faults, which directly impact
the system reliability. Byzantine faults result in failures where imperfect information is available on
whether a component has indeed failed [54]. They can, for example, be caused by a malicious
adversary in possession of any controller replica [115, ]. Additionally, they can have origin in
internal semantic or logic faults in the replica, e.g., caused by the aging of controller software [ 18, 189]
or state inconsistencies [ 13]. Byzantine faults may eventually result in a faulty replica computing an
output to a client request that deviates from expected correct output and thus potentially destabilizes

the overall system.

Reliability of decisions of a control entity is of utmost importance for operation of critical
infrastructure [ 179], e.g., in automotive or avionics networks where consistent and correct configuration
of network flows is necessary to enable the connectivity of fail-safe applications deployed in end-points.
To this end, Byzantine Fault Tolerance (BFT) has been thoroughly investigated in the automotive [62,

, ] and train control [227] domains, especially with regard to control application execution.
BFT in the networking and SDN context has, however, only recently started gaining attention in the

research community [115, ].

Contribution 3 - An adaptive design for efficient BE'T SDN control plane: In Chapter 6, we
introduce MORPH [1], a design capable of distinguishing Byzantine from Fail-Stop controller failures
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at runtime. Following a Byzantine or Fail-Stop controller failure, MORPH autonomously adapts the
cluster membership configuration, so to minimize the distributed control plane overhead. The proposed
design achieves a performance improvement both for average- and worst-case system response time by
optimally deducing the amount of active controllers at runtime. The QoS-constrained reassignment of
Controller-To-Switch (C2S) relationships is formulated as an optimization problem, capable of online
execution in large-scale control planes comprising at least up to 16 controller replicas. The time
required to re-adapt the system configuration scales proportionally with the number of successfully
detected faulted controllers. Average- and worst-case computational and communication overheads

are significantly decreased compared to alternative designs [115, 1.

1.1.3 Challenge III - Response Time Concerns

Consensus algorithms, such as Raft and Paxos [87, 110], guarantee the property of Strong Consistency
(SC) of control plane state. With SC, each system state update is propagated among all active controller
replicas and is confirmed by the majority of the cluster members, prior to being marked as committed
(i.e., and eventually executed). Putting the issue of single-leader election discussed in Section 1.1.2

aside, the response time drawbacks when deploying consensus and hence SC are multi-fold:

1. The replicated control plane runs at the speed of the slowest replica in the cluster majority -
that is, the replica taking the longest time to apply its local update will block the leader in its
execution. This in return results in a considerable system throughput decrease, compared to

single-controller execution.

2. Distributing the control plane updates to multiple replicas necessitates consensus. During the
synchronization period, the control plane does not progress its state and blocks indefinitely until

the agreement on update order is reached by the majority of controller replicas.

3. In the face of a leader failure and during a leader re-election period, the system does not progress
its state until a majority vote has been decided on the next term leader. Hence, during the

leader-failed period, the system is unavailable for serving any external user requests.

4. Convergence time after a leader failure is governed by the speed of the slowest controller in
the fastest cluster majority. Leader election procedure initiates the selection of the new cluster
leader and subsequent agreement on the new leader, only after a certain minimum timeout has
expired. Hence, the control plane’s long-term average unavailability is a function of the number
of deployed replicas, as well as the network design and runtime factors, such as Controller-To-

Controller (C2C) communication and processing delays.

Industrial networks explicitly define maximum response time requirements on E2E network stream
establishment. We discuss these in Section 2.2.2 but summarize our contributions related to response

time minimization here.

Contribution 4 - Response time minimization in Fail-Stop approaches using flexible consis-

tency models: Section 5 investigates the impact of a particular consistency model’s deployment on
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the overall control plane performance. To this end, we evaluate the state-of-the-art eventual and strong
consistency models and compare them to our adaptive consistency approach [2, 10]. Adaptive con-
sistency ensures that certain invariants on state synchronization divergence hold among all controller
replicas at all times. It provides the state divergence guarantees under efficient operation by means
of runtime adaptation of the active consistency levels. A consistency level property is individually
assigned to every resource state accessed by an SDN application (e.g., a path finder or load-balancer)
and is adapted based on the the inefficiencies resulting from operations using stale state. The proposed
method enables the design of a scalable SDN control plane relying on state replication, since, in
contrast to a strong consistency setup, the majority of state updates execute as non-blocking, eventually

consistent operations.

Contribution 5 - Minimization of response time of a BI'T distributed control plane using
dynamic agreement groups: In Section 7.1 we introduce a design for minimizing the overhead of
command ordering in a BFT deployment of the distributed SDN control plane. In particular, we pro-
pose and implement two agreement-based and an opportunistic BET protocol for request sequencing
and state synchronization in Byzantine scenarios, and analyze their overheads in experimental envi-
ronments [7]. The proposed protocol designs offer a considerably decreased response time compared

to the sequencing-based approaches presented in existing literature.

Contribution 6 - Minimization of incurred control plane load of a BE'T distributed control
plane using control plane task-offloading: Section 7.2 extends the previous contribution by mini-
mizing the overall control plane load generated in a BET setup. We introduce an approach relying on
programmable data plane primitives, i.e., the P4 [46] data plane programming abstraction, to intercept
C2S control plane flows and agree on the correct control message prior to the packets’ delivery at
the destination switch’s software control plane. The offloading thus leads to a decrease of resulting

incurred data plane overhead without loss of correctness of the BFT process [46, 11].

1.1.4 Challenge IV - Deployment Complexity of Reliable In-Band Industrial Networks

State-of-the-art SDN deployments in data-centers typically assume an Out-Of-Band Network Control
(OOBC) control plane deployment, where controller replicas manage the forwarding plane using a
physically isolated, dedicated management network. A cost-effective multi-controller control plane in
typical industrial scenarios will, however, entail an In-Band Network Control (IBC) network setup.
With in-band control, data plane and control plane flows must share the same forwarding substrate.

However, a a reliable IBC deployment must consider two requirements.

First, an IBC control plane must fulfill the stringent high-availability and reliability properties: i.e.,
the IBC control flows must be isolated from data plane traffic, and the impact of data plane failures on
control plane stability must be minimized. Second, a distributed control plane imposes the following
invariant: No configuration updates may be applied in the network, as long as all controllers have not

agreed to the planned configuration change.
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These two requirements pose the fundamental challenge: How to bootstrap a reliable distributed
SDN control plane, and accordingly enable the C2C connectivity if, by definition, no switch configu-

rations may execute without a prior C2C consensus?

Contribution 7 - Bootstrapping schemes for automated deployment of reliable distributed
IBC SDNs control planes: In Chapter 8 we answer this question and design and evaluate two IBC
bootstrapping schemes that autonomously bootstrap a multi-controller SODN with a resilient control
plane and automatic Internet Protocol (IP) address and OpenFlow (OF) controller list provisioning to
the switches. We validate the practicability of both approaches and quantify their trade-offs in realistic
industrial network topologies with up to 64 OF switches deployed in a single broadcast domain. The
schemes are evaluated with regard to their computation complexity, legacy protocol requirement,
convergence time, flow table occupancy, and network extension time and have been successfully

demonstrated in an industrial network with critical fail-safe requirements.

1.2 Thesis Overview

The organization of thesis is visualized in Fig. 1.1.

Chapter 2 discusses the exemplary industrial control plane applications requiring fault-tolerant SDN
operation and thus details the KPIs of relevance for the work conducted in this thesis. Additionally, it

contains the summary of contributions related to each of the presented KPIs.

Chapter 3 details the state-of-the-art distributed control plane designs used to tolerate Fail-Stop
failures, prevalent in existing major controller platforms. It then proceeds to present the analytical
models that leverage SANs for estimation of resulting long-term control plane availability. It discusses
a number of corner-case issues related to correctness of the distributed consensus that arise after
occurrence of network partitions and presents and validates a decoupled interaction between the

distributed consensus and underlying failure detection to resolve these issues.

Chapter 4 presents and solves the SAN models for determining the upper bounds on control
plane response time after occurrence of replica failures. Next, the chapter investigates the scalability
and accuracy of the underlying discrete-time Markov process relevant for large-scale control plane
deployments. The remainder of the chapter introduces an analytic formulation to worst-case conver-
gence time of the orthogonal failure detection process. The derived worst-case directly influences the

unavailability incurred by the distributed leader election procedure.

Chapter 5 investigates the impact of the deployed consistency model on scalability and correctness
metrics of the distributed SDN control plane. It proposes, validates and evaluates a novel adaptive
consistency approach. It empirically demonstrates how application of the adaptive model results in
a higher request-handling throughput and a decreased response time time, compared to the strong
consistency approach, while guaranteeing correctness semantics unavailable with eventual consistency

semantics.

Chapter 6 describes a novel control plane design capable of tolerating both Fail-Stop and Byzantine

failures. It furthermore optimally solves a C2S connection assignment problem by leveraging the



1.2. Thesis Overview 7

awareness of the source of failure (i.e., Fail-Stop or Byzantine-induced), thus minimizing the number

of active controllers and the resulting controller and switch reconfiguration delays.

Chapter 7 investigates the optimizations for response time and packet load overhead minimization
in BFT scenarios. It additionally investigates the benefits of offloading the procedure of control plane
packet comparison, required for identification of Byzantine replicas, to carefully selected network

switches, thus decreasing the resulting control plane network load.

Chapter 8 introduces two automated bootstrapping schemes for a multi-controller IBC distributed
control plane resilient to link, switch, and controller failures. The proposed schemes enable fast
bootstrapping of a robust industrial SDN with proactive redundancy and network extension support,

while being interoperable with off-the-shelf OF switches.

Chapter 9 concludes the thesis.
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Chapter 2

Motivation for a Highly Available and
Reliable Network Control Plane

[nternational Organization for Standardization (ISO) 25000 [97] defines reliability as the degree to
which the system performs a specified function under specified conditions for a specified period of
time. Availability, on the other hand, is a sub-component of reliability and defines the degree to which
the system under consideration is operational and accessible to use at a given point in time. Thus,
an available system may be operational but performing in a manner incompatible with its expected
correct state. Specifically in the context of SDN controller instances, we consider a controller available
if, during the observed period, it is capable of delivering a response to client requests. In contrast,
an active controller capable of providing a guarantee of delivering a correct output given an arbitrary

input, is considered both available and reliable.

Industrial services often require a highly-available deployment [90], with a subset of mission-
critical applications requiring tolerance against reliability faults [179, ]. While a highly-available
and reliable industrial control plane design may seem optimal in any industrial SDN, providing for

reliable operation comes at a cost of increased computational and communication overhead.

Designs proposed in this thesis enable a highly-available and reliable operation of controller
instances. Providing availability guarantees is achieved by tolerating Fail-Stop (also Fail-Silent, Fail-
Fast) failures [49], i.e., types of failures that result in an eventual halt of the faulty instance. To this end,
we rely on using consensus-based controller state replication. Reliability guarantees are provided by
means of a BFT design that tolerates Byzantine faults. Prior to describing the approaches in detail we

first clarify the exemplary industrial control plane applications requiring either type of fault tolerance.

2.1 Target Systems and Use Cases

The following section gives an overview of exemplary industrial control plane applications necessitating
redundant operation to tolerate Fail-Stop and Byzantine faults. While the focus of the thesis is
put on distributed SDN control plane, the presented approaches are applicable to other critical
control functions that benefit from increased availability and reliability, including Programmable

Logic Controllers (PLCs) and selected TSN functions.

9



10 Chapter 2. Motivation for a Highly Available and Reliable Network Control Plane

2.1.1 Industrial SDN Control Plane

In critical infrastructure networks, such as in the utility [90, , , ] and automotive [ 103, ]
domains, resilience of the communication network is an important criterion for adopting a disruptive
network technology such as SDN. The unavailability of the SDN controller leads to loss of control
and monitoring channels with the network devices, risking the auditing capabilities of the system and,

potentially, a system instability.

An industrial SDN control plane may be deployed in different manners:

» Focus on network service engineering: The network is designed to operate in a fail-safe manner
even after a controller failure. For example, the controller may be used as an engineering
tool, which, following its failure, does not impact the ongoing operation of the (reliable) data
plane. Thus, the SDN controller is deployed as a non-critical function, used for rollout of pre-
planned initial switch configurations (e.g., forwarding rules, 802.1Qbv Gate Control List (GCL)
schedules [216], Virtual LAN (VLAN) configurations etc.) and used at runtime only for e.g.,

passive data collection and logging, failure localization and optional traffic engineering.

* Focus on online service admission: SDN control plane supports the dynamic applications, e.g.,
industrial 5G and multi-tenancy scenarios that require dynamic provisioning of QoS-constrained
flows and dynamic reservation for newly registered services, so to enable efficient utilization
of network resources shared by multiple tenants. The control plane failures there lead to an
unavailability of the flow admission service and thus a degraded user experience. Furthermore,
unavailability of basic services may enact unplanned operational losses due to Service Level

Agreement (SLA) invalidations.

Deployment of a distributed control plane is, however, beneficial in both scenarios, i.e., providing
for highly-available network monitoring in the first case, and the transition to a backup resource
reservation instance on failure of the main instance, in the latter case. The criticality and importance
of timely fail-over motivates the differentiation of two controller redundancy models: the hor- and

cold-standby controller redundancy (discussed in later Section 3.1).

2.1.2 802.1 Time-Sensitive Networking: Logically Centralized Network Functions

Time-Sensitive Networking (TSN) is a family of standards under development by the TSN task
group of the IEEE 802.1 working group. TSN standardizes the extensions to Ethernet, targeting the
support for time-sensitive (i.e., bounded latency) applications used in e.g., factory automation, process
industry and automotive applications. In particular, the standards address the gap of inadequate time
synchronization, per-flow (i.e., per stream) scheduling, traffic shaping and policing, frame preemption,

dynamic path reservation, and per-stream fault-tolerance, in the existing Ethernet specifications.

In terms of the TSN control plane, IEEE proposes the path reservation protocol and bridge con-
figuration models for centralized control plane in the 802.1Qca [92] and 802.1Qcc [93] amendments
to the 802.1Q standard, respectively. In particular, [93] specifies distributed, centralized and hybrid
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configuration models to managing the TSN mechanisms. All three approaches rely on a number of
logical functions requiring highly-available and reliable operation for ensuring data plane correctness.
In particular, the dynamic stream establishment using highly-available and reliable centralized admis-
sion control in a single and across multiple TSN domains, as well as a redundant clock source function
for supporting time-aware shaping, policing and frame preemption must be supported by the resulting
implementation. TSN standards, however, do not specify exact mechanisms and redundancy protocols

used to realize these requirements.

In the remainder of the section, we discuss these individual requirements in more detail.

2.1.2.1 GADAG Computer and Grand Master Functions

Generalized Almost Directed Acyclic Graph (GADAG) Computer Redundancy: In order to provide
for redundant point-to-multipoint streams, 802.1 TSN-enabled bridges compute Maximally Redundant
Trees (MRTs) that stretch across all TSN domain forwarding elements. To ensure consistency of packet
propagation along the computed trees, bridges compute these based on a unique GADAG, distributed
to each bridge by the current GADAG Computer [207]. Upon reception of a new or updated GADAG,
each TSN bridge computes the MRTs, in isolation of other bridges. The use of a GADAG computer

hence solves the issue of inconsistent forwarding on the current topology.

To persist bridge operation upon failure of the current GADAG, a redundancy and synchronization
mechanism must be made available, guaranteeing ordered GADAG computation in the GADAG
Computer, and the eventual propagation of GADAG to all bridges in the topology. The centralization
of GADAG computation, however, represents a SPOF and motivates the need for its redundant and

strongly consistent deployment.

Grand Master Redundancy: 1EEE 802.1AS-2011 defines a method to establish a clock hierarchy in
order to synchronize the time in each device of the common TSN domain, relative to acommon reference
clock. To account for the data path delays, the proposed protocol measures the frame residence time
within each bridge (comprising processing, queuing and ingress-to-egress port transmission delays),
and the link latency of each hop. The calculated delays of all bridges are then referenced to the Grand
Master clock with clock advertisement paths established using a clock spanning tree protocol. The
Grand Master is elected based on the Best Master Clock Algorithm, taking clock accuracy, clock class,

clock variance and priority values into account.

In case of a failure of an existing Grand Master, a secondary Grand Master replica must take over.

We identify two main requirements related to establishing its redundant operation:

1. On current primary failure, a fail-over to a secondary Grand Master must take place. However,

a maximum of one Grand Master source clock may be elected at any point in time.

2. The base standard specifies a fixed "announce timeout" interval. After exceeding this interval
without updated clock announcements, secondary instances will take-over the role of new Grand
Master. In the case of network partitions, however, coupling the failure detection with Clock

Master operation may lead to "flapping" of the current Grand Master [201]. This problem
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is related to any replicated components relying on leader election, and is discussed further in

context of SDN controller replication in Section 3.4.

2.1.2.2 Centralized Network and User Control Functions

Analogue to the SDN controller operation, 802.1Qcc amendment [93] proposes two components
responsible for network and end stations’ configuration in a dynamic manner: (i) the Centralized
Network Configuration (CNC) - a component that configures network resources on behalf of TSN
applications (users); and (ii) the Centralized User Configuration (CUC) - a centralized entity that
discovers end stations, retrieves end station capabilities and user requirements, and configures TSN

features in end stations.

In International Electrotechnical Commission (IEC) / IEEE 60802 standard draft [224], both
components are coupled in the single logical entity called Network Management Entity (NME). The
NME is responsible for typical SDN controller functions, including the configuration of end-points’
application parameters. Additionally, NME is capable of east-westbound communication to NME
instances of neighboring TSN domains (i.e., other administrative domains), so to enable provisioning

of inter-TSN-domain path computation and enforcement.

The requirements of a highly available and reliable NME are the same as in the generic SDN
scenario presented in Section 2.1.1. The cross-domain stream establishment further motivate the need

for reliable NME, due to the cross-domain interactions relying on their correct operation.

2.1.3 Reliability of Industrial Control Systems

Ubiquitous redundancy solutions are necessary in industrial field control and fault-tolerant Internet
of Things (IoT) devices as well [208, ]. There, PL.Cs used in open- or closed-loop control
may be deployed with redundant highly-available Central Processing Units (CPUs) [219], so to support
redundant hot-standby execution in case of primary instance failure. For example, Siemens’s SIMATIC
S7-400H [219] supports automatic event-driven synchronization of internal processing events between
the master and backup CPUs so to enable an interrupt-free operation by the secondary CPU even if
the master CPU fails. Similarly, the Input / Output (IO) devices used in sensor reading and actuation
may be deployed or interconnected redundantly to the PLLC CPUs. The CPUs are, however, connected
by two multi-mode fiber-optic cables with maximum cable length of up to 10m, or single-mode
fiber-optic cables with a maximum cable length of up to 10km, thus limiting the deployment of the
approach in virtualized environments that rely on Virtualized Programmable Logic Controller (vPLC)

execution [56].

Designs presented henceforth extend the event synchronization capability to more than two applica-
tion replicas and support arbitrary distribution of physical / virtual network functions, while nonetheless
guaranteeing the convergence time on deterministic detection of failed instances. Although we hence-
forth put focus on network control functions, the presented approaches may be applicable to the domain

of distributed virtualized PL.Cs and fault-tolerant loT and industrial edge devices as well [208].
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2.2 KPIs and Related Challenges

Fail-Stop failures in the SDN control plane can be addressed by distributing the logical control plane
among multiple virtualized or physical resources [39, , , ]. In the case of a primary
instance failure, a secondary instance may take-over the primary’s role. However, the multiple
instances’ deployment comes with an overhead of an added response time, incurred by blocking
on synchronization events and proximity of replicas, a prolonged convergence time after failures, and
the deployment complexity. Similarly, Byzantine (i.e., reliability) faults are not tolerated by the designs

addressing Fail-Stop failures only.

Based on the discussed industrial use cases, we next derive a set of capital system requirements
specific to the industrial scenarios and summarize the contributions to those properties presented in
this thesis.

2.2.1 Fault Tolerance and Correctness Property

In single-controller SDN scenarios, unavailability of the controller leads to loss of control and
monitoring channels with the network devices and hence a system instability. The loss of network
control may result in production and power outages in smart grid domain [90] or even life-threatening
scenarios in dependable automotive domain [179]. An industrial system may be impacted with
Byzantine and Fail-Stop faults, respectively impacting reliability and correctness of decision-making

or only the availability of the control plane.

As a consequence of a Byzantine fault, the system may compute wrong decisions, while in the
case of a Fail-Stop fault, the impacted instance halts and stops responding to client requests. Some
SDN applications, e.g., load-balancing of non-critical client-server requests, collection of the data for
monitoring purposes or statistics processing etc., may indeed tolerate reliability-related failures with
collected statistics or decisions being incorrect or suboptimal [113]. In others, e.g., for time-critical
TSN stream establishment, faulty network reconfigurations can impact the correctness of the overlaying

mission-critical applications and thus the overall system dependability [224, 1.

Our contribution: To enable efficient designs for supporting both types of mission-criticality, we
introduce the approaches for providing basic fault-tolerance for non-mission critical SDN applications
in Chapter 3. For application domains requiring strict correctness of decision-making, in the face
of Byzantine faults (sourced in e.g., inconsistencies or aging-related bugs [18, ]) we present a

Replicated State Machine (RSM)-based design of multi-controller execution in Chapter 6.

2.2.2 Response Time Property

Critical infrastructure providers often have stringent requirements on the experienced control plane
delay. For example, the smart grid is a delay-sensitive infrastructure that requires techniques which
identify and react to any abnormal communication network changes in a timely manner. If the
detection and responses are not made promptly, the grid may become inefficient or even unstable and

cause further catastrophic failures in the entire network [90]. Events in the grid may require rapid
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reaction from the network controller - e.g., rerouting after power grid failures, expedited diagnostics

and alarm handling [15].

Furthermore, Network Management Systems (NMSs) in the 5G context can require bounded
configuration times when establishing on-demand network services [10]. Recent IEC / IEEE activities
have motivated the support for dynamic network extensions in machine assemblies [213, ]. These
impose the requirement of Layer 2 (L2) multicast tree establishment with response time guarantees
using a reliable network controller (i.e., a Raft-enabled distributed SDN controller [39, 1. Thus,
the response time of the distributed network control plane must be minimized to guarantee the upper

bound value for tree computation and enforcement in under 500ms [224].

The total resulting response time comprises two delay sources: i) the time taken to process the client
requests (e.g., route computation and enforcement) and ii) the time delay during control plane recovery
after transient data plane / control plane failures during request processing. We next distinguish and

discuss these components in more detail.

2.2.2.1 Handling Controller Requests

SDN controllers may host arbitrarily complex application logic, e.g., routing algorithms or algorithms
for data analysis relying on large data sets. The worst-case response time, e.g., < 500ms required
by [224], must not be exceeded by the computation task of the responding controller instance indepen-

dent of the task’s complexity.

Additionally, the distribution of stateful controller replicas imposes significant synchronization
overhead in terms of time delay necessary to exchange, apply state updates and maintain consistent
state in each of the instances [181, ]. Both the intrinsic computation time and the synchronization

delay must hence be considered separately in the worst-case analysis of the system response time.

2.2.2.2 Convergence Time on Control Plane Reconfigurations

The worst-case response time must also consider the possibility of controller and network failures
during idle time or request handling. For example, on occurrence of a controller failure or loss
of communication link to the currently elected master instance, a backup replica may need to be
elected a new master, and subsequently re-initiate failed client requests, thus increasing the operational

per-request delay.

Similarly, network partitions and unreliable communication channels between particular replicas
can cause the state-of-the-art failure detectors of off-the-shelf distributed controller distributions [39,
] to miss meeting the response time demands. In this light, Zhang et al. [201] have demonstrated
the issue of oscillating leadership when using distributed consensus for synchronization of replicated

SDN controller instances.

Our contribution: Chapter 4 discusses the analytic methods for identifying deterministic response
time of the distributed control plane capable of tolerating Fail-Stop failures. In particular, Section 3.3

and Section 4.1 propose the usage of SANs to model and bound the system response time of a
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single-leader distributed control plane for a given parametrization, with support for transient controller
failures. Section 4.2 continues with an analytic approach to bounding the worst-case failure detection
time with support for network partitions (resulting from data plane failures). When requiring tolerance
against Byzantine faults, however, we guarantee seamless fail-over to backup replicas by relying on
replicated concurrent execution of controller tasks, leading to no interruptions at expense of a higher

computational overhead. The related design is detailed in Chapter 6.

The approaches for decreasing the average response time in either single-leader (Fail-Stop) or

BFT-enabled distributed control plane are presented in Chapter 5 and Chapter 7, respectively.

2.2.3 Configuration and Bootstrapping Complexity

Data-center SDN deployments heavily rely on OOBC, where control traffic is exchanged between
switches and SDN controller(s) using dedicated links and switch management ports. OOBC, however,
is often undesirable in large-scale and critical industrial environments due to its associated capital
expenditure costs, complexity and installation efforts [38, 82, ]. For example, deploying an addi-
tional network in machine tool manufacturing or drive technology networks is immensely expensive,
due to associated cabling costs for the shielding required for Radio Frequency (RF) / Electromagnetic
Interference (EMI) noise suppression. Similarly, avionics and automotive networks benefit greatly
from decreased cabling weight [82]. Alternatively, the applicability of wireless in-band management

is limited due to contention and medium unreliability [144, 1.

Industrial Ethernet protocols assume in-band control and management [224]. With In-Band
Network Control (IBC), control traffic is forwarded along the same links used for the data plane traffic.
This makes [BC networks the preferable solution from the cost and operational perspective. However,
their implementation is challenging. For example, current popular open-source controller platforms
ODL [123] and ONOS [39] provide no mechanisms to support or automate the [BC bootstrapping, nor
do they allow for protection of control plane traffic against arbitrary link and node failures, both which
are of critical importance in industrial networks [204]. Summarized, enablement of a distributed SDN

control and its reliable bootstrapping in an industrial scenario must address the following challenges:

1. Establishing robust Switch-to-Controller (S2C) and C2C connections using IBC and an initially
unconfigured control plane;

2. Preserving the control plane stability in case of multiple link, switch and / or controller failures;
3. Support for addition of new nodes and links to the previously reliably bootstrapped IBC network;

4. Minimization of manual per-device preconfiguration.
Our contribution: Chapter 8 investigates the design for automated bootstrapping of a resilient dis-
tributed control plane. We propose two novel automated bootstrapping schemes targeting [BC networks

with highly-available control plane support and evaluate the proposed designs in realistic industrial

topologies with varying sizes and controller placements. The deployments are evaluated w.r.t. (i) the
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time required to converge the bootstrapping procedure, (ii) the time required to dynamically extend the
network, and (iii) the flow table occupancy. The chapter also discusses general implementation aspects

relevant for a successful introduction of the designs in industrial networks equipped with off-the-shelf

OF agents.



Chapter 3

Enabling Fault Tolerance in Fail-Stop
Control Plane

The centralized control paradigm of SDN introduces an SPOF and scalability challenges related to
state synchronization of the control plane. A number of approaches have been proposed in literature
to alleviate the SPOF issue [39, , , ], with the majority relying on state- and function-
replication across the replicas of the SDN controller cluster. With the concept of state replication,
the SDN controller instances replicate their data store contents to other members that take part in a
logical controller cluster, using a state distribution protocol of choice (e.g., Raft [87], Paxos [218]).
When a failure of a controller is suspected, another replica from its cluster is able to take over and
continue to serve future application’s requests. In addition to fault-tolerance guarantees, deployment
of the distributed control plane in industrial scenarios introduces requirements on guaranteed response
time (ref. Section 2.2).

Chapter Summary: In this chapter, we discuss the distributed control plane design to tolerate
Fail-Stop failures, deployed in existing controller designs and implementations of major open-source
controller platforms ODL [123] and ONOS [39]. We henceforth introduce and present a SAN-based
modeling framework for analytical estimation of resulting control plane availability when deploying
state-of-the-art distributed SDN control plane solutions. We postpone the closely related discussion
of the deterministic response time bounds during transient failures to Chapter 4, and in this chapter
instead put focus on the availability-related evaluation only. To this end, we evaluate the availability of
the distributed SDN control plane using long-term failure rates and steady-state analysis at sub-module,

process and hardware level.

In the second part of this chapter, we demonstrate a correctness issue which may arise when
leveraging distributed consensus. False positives in failure detectors of the controller replicas may
lead to oscillating leadership and control plane unavailability and thus degrade the applicability of
existing SDN controller designs in industrial environments. We first elaborate the problematic scenario.
We then resolve the related issues by decoupling the failure detector from the underlying signaling
methodology and by introducing event agreement as a necessary component of the proposed distributed
control plane design. The proposed reference model is validated using exemplary implementations

and extensions of the state-of-the-art mechanisms.

17
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The proposed analysis methods and designs were published in augmented form in [8, 3].

3.1 Cold- and Hot-Standby Redundancy in SDN Control Plane

We coarsely distinguish two types of replicated controller deployments: (i) cold- and (ii) hot-standby

redundancy.

Cold-standby redundancy: With cold-standby redundancy, a single controller instance is involved
in control and management of all switches, operating autonomously until its eventual failure. Thus,
the current master omits any communication with controllers from the set of backup controllers [128].
In the case of a master controller failure, a backup controller instance takes over the management of

the switches in the impacted administrative domain.

This approach can be simply adopted in the industrial control plane [224] but comes with multiple
limitations: (i) an operational interrupt is imposed due to a non-seamless take-over of the switches
(i.e., registration / authentication of the new master controller in each switch); (ii) failure of the master
results in the loss of any stateful controller information. Indeed, the backup controllers could observe
the current state of the managed switches and thus fetch and synchronize their internal state in order
to ensure consistency of control information in controllers’ and switches’ configuration data store.
However, this comes with the penalty of a blocking synchronization period, as well as the loss of

information on high-level network relations [94].

Consequently, practical state-of-the-art distributed SDN control plane solutions rely on hot-standy

redundancy with active state synchronization during operation.

Hot-standby redundancy (L.eader-based): With leader-based hot-standby redundancy, controller
instances have their internal applications (i.e., routing, load-balancing) replicated. Similarly, the high-
level configuration state (i.e., intent relations) as well as low-level configuration state (e.g., installed flow
rules) are continuously replicated in each controller replica for the purpose of seamless and consistent
fail-over. In order to provide a fallback solution in case of the current master controller’s failure, the
backup controllers keep track of the internal state information related to the switches managed by the
master. When a master fails, another replica from the same cluster with an up-to-date state is elected
the new master by the remaining members. Eventually, the elected new master takes over and resumes

operation with some downtime.

Due to the majority of important industrial network control applications requiring stateful operation
(i.e., resource and flow management for QoS-constrained operation [30, 9, 74, 15], inter-domain
forwarding in TSN [224], intent translation and enforcement [39, ] etc.), we focus on the hot-
standby operation of controllers. We do note that in particular scenarios the requirement of consistent
state exchange and synchronization among controller instances may indeed be relaxed to a state-
independent (stateless) operation due to a decreased application complexity [I]. In the remainder
of the thesis, however, we assume hot-standby replication as the measure of handling the stringest

requirements of the industrial SDN control plane applications.
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3.2 On Strong Consistency and Consensus

In the following subsections we give a definition of strong consistency model, enforced by the majority of
existing distributed SDN control plane implementations, considered necessary by a subset of industrial
applications. We furthermore elaborate on its relation to consensus algorithms. We then present an
overview of the Raft consensus algorithm responsible for state synchronization, cluster leader election
and state recovery of SDN controller replicas after failures. We put focus on Raft [87] due to its proven
applicability in a number of practical SDN deployments [221, ] and wide adoption in numerous

open-source SDN platforms [39, ].

3.2.1 Strong Consistency Model

With hot-standby replication model, controllers continuously synchronize their state in order to ensure
consistent up-to-date state in each replica. Depending on the consistency model (i.e., strong [39,

], eventual [35, 36, ] or adaptive [32, 33, 2, 10]) which defines the ordering of synchronization
messages, the synchronization procedure imposes a varying overhead on the control channel [10, 135].
The two major controller platforms ODL [123] and ONOS [39] implement the Strong Consistency (SC)
model, which requires that the update of a distributed state has been seen by the majority of the cluster
members prior to being committed. In the SC model, each consecutive operation that modifies the
internal state of the controller is serialized and confirmed by a quorum of replicas, before processing
subsequent transactions. Specifically, in leader-based SC approaches (e.g., in Raft [87, 1), all
requests are serialized by a cluster leader, in order to provide for a consistent data store view across all
cluster followers. Thus, with SC, a large distributed system consisting of multiple controller replicas is
effectively constrained into a monolithic system where each data store modification incurs two message
rounds and a linear message complexity (in the case of a stable leader) in order to synchronize the

controller views [48, , ].

3.2.2 Consensus on Message Updates

In an SC cluster, whenever an update request is initialized by a client at one of the replicas, the
receiving replica proxies the received request to the current cluster leader. The leader is the controller
replica that orders all incoming state update requests, so as to allow for a serialized history of updates
and thus operational state consistency at runtime. Following a state update at the leader, the update
is propagated using a consensus protocol to the cluster replicas, and is committed to the data store
only after the majority of replicas have agreed on the update. A consensus algorithm ensures that all
replicas always decide on the same value (agreement), with the constraint that only a value proposed
by one of the replicas eventually becomes accepted after the synchronization procedure (infegrity).
Google’s Chubby [48] is a distributed locking service whose state-distribution and failure tolerance
mechanism are based on a variation of the well-known Paxos consensus algorithm [218, ]. ODL
and ONOS, however, implement the more recent algorithm Raft [87]. Unlike Paxos, Raft also provides

for persistent logging and state reconciliation for recovered replicas.
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3.2.3 Assumptions on the Industrial Network

for the purpose of fault-tolerant operation. Fig. 3.1 depicts a deployment of the redundant control- and
data planes in an exemplary industrial SDN comprising |C| = 3 controllers, and a number of disjoint
paths in between them for fail-over purposes in case of link and node outages. In general, a deployment
of |C| = 2F + 1 controllers tolerates a maximum of F controller failures before the SDN cluster
becomes unavailable. Thus, in Fig. 3.1 only a single controller failure is tolerated before the cluster
stops to serve the clients’ requests. The clients of the controllers, such as the network administrators,
switches, network appliances and end-hosts, can trigger controller events that lead to a cluster-wide
state synchronization and subsequent event processing in the cluster leader. Clients communicate
their requests (i.e., Remote Procedure Calls (RPCs), state updates, topology events etc.) to any live
replica that is a member of the SDN cluster. The replica then contacts the current leader to serialize
(order) the request, which in return distributes the request to other replicas, commits the request and
executes its local state machine (in zero-failure case). The replica is then notified of the result of the
request execution and can respond to the client with an application response. In the case of a leader
failure during the request processing, a new leader is elected by executing a consensus algorithm and

the synchronization process is re-initiated.
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Figure 3.1: Exemplary industrial SDN with redundant paths for majority of Controller-To-Controller (C2C)
and Controller-To-Switch (C2S) connections. SDN controllers execute a consensus protocol (e.g., Raft [87]),
responsible for state synchronization, leader election and cluster recovery after individual replica failures. Red
dashed lines represent the consensus protocol exchanges between the replicas, blue dashed lines are the "client"
connections (S2C or northbound Client-to-Controller (CLI2C)).

The limitation of supporting only F failures when 2F + 1 replicas are deployed relates to the
Consistency, Availability, Partition Tolerance (CAP) theorem [68]. This theorem states that any
distributed system can provide a maximum of two of the following three system properties at the same
time: consistency, availability and partition-tolerance. Consensus algorithms such as Raft [87] and
Paxos [218, ] favor consistency and partition-tolerance properties, and hence can forward their
state consistently even in the face of network partitions. A consistent operation of a controller cluster
ensures that the majority of controllers have the same controller state at any given time, and that no
two conflicting state updates are ever successfully committed to the shared update history. Hence,
controllers are in consensus with regards to their state. Consistent and partition-tolerant operation,
however, comes at the cost of a decreased service availability, since consistent operation in the face

of network partitions can only be guaranteed by disabling the operation of minority partitions while
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the majority continues to operate. Thus, we consider the system available whenever the majority of

replicas are available and are mutually reachable.

Controller-to-Switch Channel: Typically, the SDN controllers implementing hot-standby syn-
chronization also implement the OF-based [122] Southbound Interface (SBI) to control and manage
OF-based data plane elements. OF allows for assignment of multiple controller instances to the same
switch, using [P-based controller list configuration. Thus, multiple controllers may concurrently con-
nect to the same switch. However, depending on the selected operation mode, either all or a maximum
of one assigned controller (i.e., the switch’s master) may modify switch configurations at any point in
time. To support consistency of the control plane, production-ready distributed controller platforms

typically allow only the current master controller to modify the switch state at any point in time.

3.2.4 Related Work - On Availability Estimation of a Distributed SDN Control Plane

Availability and overhead modeling of SDN has recently started to gain traction. In [141, 1,
Nencioni et al. investigate the impact of operational and management failures on the availability in
SDN. They focus on the long-term availability impact of adding additional controllers, but do not
consider the impact of C2C synchronization at micro-scale nor do they provide for a response time

analysis (ref. Section 3.3).

Tuncer et al. [184] propose a placement heuristic to cater for the optimality of the controller cluster
imbalance. Given an arbitrary network topology, they compute the number of required replicas and
their placement, while considering a distance constraint (i.e., the C2C delay). We instead focus on
the complementary problem of the availability analysis of an arbitrary SDN cluster configuration /

placement.

Several works have investigated the phenomenon of software aging wherein the health of a software
system degrades over time [ 185, ]. These works conclude that a mechanism which rejuvenates the
software component to its stable state, would provide long-term benefits in terms of its availability.
Accordingly, in Section 3.3.3 we introduce the mechanism for fast software system recovery that relates
to the concept of software rejuvenation. We have evaluated the benefits of the reactive controller
recovery where, following a detected failure, the impacted component is reinitialized in order to
minimize the downtime. While considered in research, the alternative proactive software rejuvenation
is currently not featured in any of the existing SDN controller implementations. An implementation of
the respective proactive mechanism would require sophisticated aging-detection characteristics [185],
which in return requires considerable effort to become practical in complex controller codebases that

potentially span millions lines of code [230].

Since all available SDN cluster implementations focus on a single master for any switch in its
administrative domain at runtime, we put focus on the evaluation of a single-leader Raft-based cluster
and consider its direct comparison with multi-leader approaches such as EPaxos [133] as future work.
Comparison of Raft with eventually consistent approaches [ 10, ] in terms of the resulting control

plane response time is presented in Chapter 5.
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3.2.5 Raft Working Model

Raft is a distributed consensus algorithm that provides safe and ordered updates in a system comprised
of multiple running replicas. Raft is the only consensus algorithm implementation in ODL and
ONOS. It solves the issues of understandability of the previous de-facto standard consensus algorithm

Multi-Paxos [111], and additionally standardizes the leader election and post-failure replica recovery.

Replica

Times out,
restarts_election

Follower
(Updated)

Leader

from follower
majority

Follower
(Lagging)

Discovers replica
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Figure 3.2: A simplified lifecycle schema of a replica inside the Raft cluster. Adapted from [87], extended for
the purpose of detailed modeling.

A Raft cluster comprises leader, follower and candidate replica roles. The leader is the node that
parses and distributes incoming client updates (reads, writes and no-ops) to Raft followers and ensures
safe commits. The majority of cluster followers must confirm the acceptance of a new update before
the leader and the followers may commit the update in the local commit log. Only after the update
is committed, the SDN applications built on top of a Raft agent can continue their processing. After
the application has executed the operation associated with the state update, a response is forwarded
to the requesting client (e.g., a switch or an NMS). Raft guarantees that the applied state updates are
eventually committed in every available replica in the cluster in the right order. Furthermore, each
update is applied exactly once, hence enabling linearizable semantics [87] when operating on the
controller state. In the case of a leader failure, after an expiration of an internal follower timeout,
the remaining followers automatically switch to a candidate role. A candidate is an active replica
which offers to become the new cluster leader. To do so, it propagates its candidate status to the other
available replicas. If a majority of nodes vote for the same candidate, this candidate node becomes the

new leader.

Updates in Raft require a single-round trip delay between the leader and the preferred follower
majority (the fastest to reach followers). When a controller failure occurs, depending on the role of the
failed replica, additional delay overhead is imposed. Failures in the Raft leader during the processing
of a particular update lead to a new leader election after an expired election timeout. After an exceeded
client timeout, the client retries its request. If instead of the leader a follower had failed, depending on

the follower’s type and the number of active followers, we distinguish three scenarios:
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* Failure of a follower that is not a member of the preferred follower majority results in no

additional imposed delays between the leader and the cluster majority.

* Failure of a follower that is a member of the preferred follower majority leads to the Raft leader
having to include an additional "slower" follower in the preferred follower majority. This, in
return, negatively impacts future update commit times. The intensity of added delay depends on

the follower’s placement and distance to the leader.

* Failure of any follower that comprises the follower set, with no backup followers available (stand-
by Raft members), necessarily leads to the cluster unavailability and thus rejection of incoming

client requests.

After a successful recovery of the majority of the Raft members and the re-election of a new leader,
Raft is able to forward its state and commit new updates to the commit log. Depending on the source of
failure and the repair time, as well as on the Raft recovery parameters (candidate and election timeout),

the recovery takes a non-deterministic period to finish.

Fig. 3.2 gives a high-level overview of the states a cluster replica may traverse throughout its
lifecycle. We present the more detailed structural and behavioral models of Raft in zero- and multiple-

failure cases in Section 3.3.2.

3.3 Modeling the Availability of a Raft-enabled SDN Control Plane

In this section, we first give a brief summary of the most important SANs concepts used in our modeling
of a distributed SDN control plane. We then proceed to provide detailed estimation of availability
measures of an industrial control plane. Our SANs comprise the detailed sub-models of the Raft
consensus algorithm, specifically the cluster failure and recovery processes of Raft. The response
handling model, on the other hand, is detailed in later Section 4.1. Failures are modeled as stochastic
arrival processes for long-term, and deterministic occurrences for worst-case evaluations. As per the
nature of the modeled consensus algorithm Raft, the recovery process too is a combination of stochastic
and deterministic message and timeout delays. We further introduce an enhancement to the current
controller platforms for enabling a fast recovery of controller bundles and processes. We evaluate its

benefits w.r.t. to the long-term cluster availability.

Our SAN models are compiled into Continous Time Markov Chain (CTMC) state spaces. In
contrast to existing works on consensus algorithms that derive their performance analysis from
experiments, we provide analytical guarantees. To this end, our numerical solutions cover the space of

all possible state combinations which an SDN cluster may be in.

3.3.1 Overview of Stochastic Activity Networks (SANs)

In contrast to measurement techniques, deductive analysis allows for a system evaluation before the
system is actually deployed. Hence, significant savings can be achieved if the deductive solutions are

able to accurately predict the real-world behavior of the future non-implemented system or system
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extensions. Discrete-event simulation is, for example, partially applicable to our problem. Simulation
allows for a tunable quality of the results by repeating execution of a given model and derivation of the
relevant output measures. However, the simulation methodology may not handle corner cases, which
are numerous in a consensus algorithm such as Raft. With this in mind, contrary to the previously
published methods on evaluation of the distributed SDN control plane, which base their analysis on a

limited number of physical cluster configurations [181, 1, we opt for a deductive study.

Analytic numerical solvers allow for an accurate evaluation of each system state configuration. For
this purpose, they require a manually or automatically generated model state space as an input. The
additional overhead of the state space generation, as well as the inclusion of each state in the solution,
generally leads to a higher computational effort compared to simulation. Namely, the generation
of the state space may lead to a state explosion problem and infeasible solving times. Therefore, in
Section 4.1.4.1 we discuss the scalability of the presented models. Instead of manual state modeling, we
automate the model generation process and hence avoid the issue of largeness [44] of the resulting state
space. For the purpose of automated model generation, we rely on SANs, a prominent representative

of model generation frameworks.

SANs are an extension of Petri Nets (PNs) and an established graphical language for describing
the system behavior. They have been successfully used in survivability and performability studies of
critical infrastructures [34], industrial control systems [ 140] and telecommunication systems [71] since
the late 1980s. We specifically choose SANs over Generalized Stochastic Petri Nets and Stochastic
Reward Nets due to their practical extensions for the inhibition of state transitions, as well as the flexible

predicate assignment to the gate abstractions.

A SAN consists of places, activities, input gates and output gates. Places have a certain token
assignment associated with them. Every unique assignment of tokens across the places uniquely
defines a state of the SAN. These states are called markings. In Markov Chain analogy, a single
marking represents a unique state of a Markov Chain. An activity element of a SAN defines a
transition with the corresponding transition rates, and allows for controlling the flow of tokens from a
single SAN place into a different SAN place. Furthermore, an activity allows for connecting a place to
an output gate where, on transition of a token from a place to an output gate, a sequence of actions can
be taken - e.g., "if the number of tokens in place A >n — increment the number of tokens in place B by
m". Hence, compact state changes (and a large number of unique markings) triggered by a particular
transition may be modeled using a smaller number of modeling elements, compared to a traditional
Markov Chain.

When an activity fires, a number of tokens are removed from the source place and transferred to
a destination place connected by the activity. An input gate serves as an inhibitor of an associated
activity. It specifies a boolean predicate which, when evaluated true, enables an activity and allows
the firing of the activity. If the inhibitor evaluates false, the associated activity is disabled. An
instantaneous activity is enabled at all times, and will fire whenever there are tokens available in its
input place. A timed activity, on the other hand, is assigned a time distribution function which specifies
the firing rate of a specific activity. In our model, for timed activities we assign the deterministic

(Erlang-approximated) and exponential firing rates, but also specify instantaneous activities where
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necessary. An activity may further lead to a token transfer from a source place to one of multiple
destination places. This uncertainty is modeled using a case definition for each destination state, where

each case is assigned a probability parameter.

To solve the SAN, it is first transformed into a discrete-state stochastic process [44]. We make
use of the flat state space generator implemented in the Mobius modeling tool [55], to generate the
CTMC state space inherent to the evaluated SAN. To derive instantaneous state probabilities of a
CTMC, the transient solver of Mdbius implements the uniformization method [44, ]. In short,
using uniformization, the transient state probability vector n(t) of the CTMC can be expressed in
terms of a one-step probability matrix of a Discrete Time Markov Chain (DTMC), so that all state
transitions of a resulting DTMC occur with a uniform rate g. As a result of the transformation, the
desired state probability vector 7 (¢) at time 7 is governed by a Poisson variable ¢ - and can be expressed

as follows: _
i=r

1)t
n(t) = Z v(i) - e_q'tg where v(0) = 7(0) 3.1
il
i=l
where v (i) represents an iteratively computed DTMC state probability vector at step i. Lower and
upper bounds, / and r, govern the number of iterations required to compute the state probability vector

with an overall error tolerance of € = &; + &, and truncation points / and r, respectively.

We refer the reader to comprehensive descriptions of SANs in [44, 1.

3.3.2 SAN Model Representations

In this section, we present the SAN models for failure and recovery processes of a Raft-enabled
SDN control plane. We represent places as blue circles, timed activities as thick blue vertical bars,
instantaneous activities as thin blue vertical bars, and input and output gates as thick red and black

arrows, respectively.

3.3.2.1 Cluster Failure Model

To evaluate the performance of the SDN distributed control plane and Raft in the face of failures, we
introduce a dedicated failure model. For general long-term considerations, we distinguish between
hardware and software failures with failure rates Ar,, and Afg, respectively. All specified non-
deterministic timeouts, failure and repair rates in our model follow a Negative Exponential Distribution
(N.E.D.). For software failures, we distinguish failures at the application bundle (i.e., an Open Services
Gateway initiative (OSGi) bundle in ONOS [39] and ODL [123]) and process level. Similarly, repair

rates are distinguished as specified in Table 3.1.

The SAN failure model is depicted in Fig. 3.3. The place NodesUp contains the total number
of available controllers, not yet necessarily assigned a Raft member role. Depending on the failure
type (at hardware, process or bundle level), after an occurrence of a failure, a token is placed into the
respective NodesDown place. Furthermore, each firing of a failure activity triggers a token addition in
the place NodeDownSelectFailure and results in a subsequent evaluation in the instantaneous case
activity failureSelectRole. We distinguish between the safe-follower (Fs ), follower-majority
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(F j) and leader failures (F7 4, ), with probabilities:

Fup IC]-1
—L- when F, 2[—+1]/\L >0
P(Fsy) = Fup+l up 2 up

0 otherwise

1 when F, <[w+lva =0
P(Fy;) = up 2 up
0 otherwise

1 [C|-1
+—— when F, 2{ +1}/\L >0
P(FLay) = Fup+ up 2 up
0 otherwise

where F,,, and L, are the counters of tokens in places FollowersUp and LeaderUp before the
failure occurrence, respectively. Failure of the follower-majority Fy, ;, or a leader failure Fy 4, during
the event handling in controller, results in a client timeout and subsequent restart of the event handling
process. On the other hand, failure Fy does not affect the cluster availability as the reorganization of
a stable cluster majority is still possible with the remaining nodes, albeit with an added delay (as per

the definition of Ty, discussed in the SAN-based response time analysis in the next chapter).
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Figure 3.3: SAN model of the failure processes includes the long-term failure rates (Hw_F, Process_F and
Bundle_F) and the controlled failure injection (Inj_Hw_F, Inj_Process_F and Inj_Bundle_F). The failure
type is decided based on a random selection process (bottom-left), and its severity is a function of the current
system state (bottom-right).

In order to observe the response time during and shortly after the failure, we also model a
procedure for controlled failure injection of single and multiple-correlated transient controller failures
and observe the system performance over a short-term time range at millisecond granularity. The
correlated failures are modeled as bursty and may occur concurrently. In the past, correlated failures
have been investigated in the context of distributed systems [137], and represent a flexible method to
consider chained failure propagation, i.e., resulting from a malfunctioning replicated SDN application.
The failure injection process is depicted in the upper left part of the SAN shown in Fig. 3.3. The
place BurstyFailureTokens initially holds a number of tokens corresponding to the number of
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simultaneous bursty failure injections. The activity selectFailureType governs the probability

distributions for encountering a particular type of node failure.

Critical data plane failures: In a DTMC, the probability of occurrence of an SDN controller

element failure F, or a critical data plane element failure F,; corresponds to:

P(F.NFy) = P(F,) + P(Fy) — P(F. U Fy) (3.2)

In the continuous time domain, failure arrivals for the critical data plane elements that carry the
C2C flows, and failure arrivals for the SDN controller elements can be represented as two independent
Poisson processes N;(t) and N, (¢) with the unique firing rates 1, and A., respectively. Since the two
processes are independent, they also have independent increments. Therefore, critical failure arrivals

associated with the summed process N; (1) = N, () + N (t) can be modeled using the rate 1, = A5+ A..

The failure rates for the critical data plane paths which carry the network control flows can
be embedded in the parametrization of our models without an additional modeling overhead (ref.
Table 3.1). However, we primarily focus on studying the control plane consensus for the use case of
a highly redundant industrial network [130, ]. Thus, we intentionally decouple our work from the

data plane reliability studies and assume the reliable parametrization 1/1,; = co.

3.3.2.2 Cluster Recovery Model

The Raft recovery SAN model in Fig. 3.4 depicts the process of re-inclusion of a previously disabled
controller replica in the Raft cluster. The place InitElectionPool holds a token for each running
controller replica that is available but still needs to be admitted in the cluster. As per Raft design, the
replica expects the Raft leader of the current term to announce its presence using a leader heartbeat.
If a leader is identified before the follower timeout expires, the replica takes upon the follower role
and a token is assigned to the place AnnounceFollowerRole. Alternatively, the replica switches to
the candidate role (place AnnounceCandidateRole). Three cases are now possible, each adding its
specific delay to the overall response time:

1. If the cluster majority is up (> L%J + 1) and the replicas acknowledge the candidate as a
new leader before the expiration of the candidate timeout, the candidate is elected as the leader
(output gate setLeaderUp). The announcement of the candidate role from the candidate to the

cluster majority takes an additional round trip.

2. If another leader is identified while the replica is in the candidate state, the candidate replica
becomes a follower and a token moves from the AnnounceCandidateRole place to the
setNewFollowerUp output gate.

3. If the cluster majority sends no acknowledgment to the candidate nodes during the candidate

timeout (occurs whenever a total of {%J + 1 replicas are down), the candidate waits for the

timeout to expire and then repeats the candidate procedure.
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Figure 3.4: The Raft recovery SAN depicts the inclusion of a previously unavailable controller replica into the
cluster. The replica may become either the new Raft leader or a follower. Duration of the recovery process will
affect the resulting event response time and the cluster availability if the recovering replica is needed to establish
a follower-majority and elect a new Raft leader.

If the replica becomes a Raft leader, a token is assigned to the LeaderUp place (previously empty),
alternatively the token is assigned to the place FollowersUp. In both cases, the NodesUp token

counter is incremented by 1.

3.3.3 Fast Recovery Mechanism for Bundles and Processes

In contrast to evaluating the system with purely fixed software repair rates [117, ], we model the
recovery process taking into account state-of-the-art SDN controller implementations. Furthermore,
we propose an optimization to enhance upon the standard repair time - a watchdog-like mechanism that
monitors the critical controller components’ health and correctness. The watchdog monitors both the
granular SDN controller bundles and the controller process (comprising many bundles). Whenever a
bundle or a process fails, watchdog schedules a rejuvenation procedure [185] that repairs the affected

component.

Realization: While there may exist various designs to realize a watchdog functionality for the
purpose of monitoring the liveness of a software or hardware component, we opted to implement the
watchdog as a software agent external to the OSGi container hosting the SDN controller bundles.
Following a successful start-up of both the watchdog and the SDN controller processes, the watchdog
establishes a connection to controller’s OSGi environment. We make use of the Apache Karaf’s!

Remoting mechanism to allow for remote connections to a running Karaf instance.

Our agent periodically polls the status of a bundle’s lifecycle and discovers that the bundle is in one
of the following UP states: {INSTALLED, STARTING, ACTIVE}; or DOWN states: { UNINSTALLED,
STOPPING, RESOLVED}. Upon discovery of a bundle that is in a DOWN-state, the agent schedules
a bundle:start-transition for the affected bundle, in order to get it up and running in an UP-state. In
the case of an unsuccessful remote connection to Karaf, the watchdog evaluates the current list of
processes for false positives and, if a missing Karaf process is detected, it schedules an immediate

restart of Karaf.

The watchdog process could also be executed externally to the machine running the SDN controller.

Hence, while not considered in our evaluation, the same mechanism can be applied to schedule physical

! Apache Karaf - an OSGi distribution offered by the Apache Software Foundation based on Apache Felix - https:/karaf.
apache.org
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or Virtual Machine (VM) reboots in case of a hardware or hypervisor failure. On the other hand,
hardware or hypervisor issues may be a sign of misconfigurations or recurring defects whose source

should be diagnosed manually.

To collect the accurate real-world repair rates for controller bundles and processes, we have used
our watchdog agent implementation to evaluate the bundle and process reboot times in a clustered
ODL setup. We had experimentally injected bundle- and process-critical failures in sequence and then
measured the subsequent recovery time required to re-stabilize the system. The distinguished mean
bundle and software process repair times, measured during the controlled rejuvenation of the critical
Raft component sal-distributed-datastore and the ODL’s controller process, peaked at 182.9ms and
26.9s respectively, far below the 3 minute recovery intervals previously proposed in literature [141,

]. The measured recovery time purposely does not include the time needed to re-include the
recovered node in the Raft cluster, since this is modeled as a separate non-deterministic process in
our SANs. The bundle and process reboots took place inside a dedicated ODL. VM that was part of a
bigger ODL controller cluster, virtualized on a modern Intel Xeon-based server, with each of the ODL
VMs assigned 4 vCores and 8 GB of DDR4 memory. ODL was loading the OSGi bundles available

in the OpenFlowPlugin and Controller projects and had the Clustering component enabled.

Table 3.1: SAN model parameters used in our solutions.

Parameter Intensity  Unit Meaning

Ta 1 [ms] Application handling time

Tc 1 [ms] Data store commit delay

1/ 225 [ms] Mean follower timeout

1/2ca 225 [ms] Mean candidate timeout

TcL 50 [ms] Client timeout

Tr(Twm,,,,,.) 10 [ms] Worst-case replica-leader delay
Tw,,., 5 [ms] Best-case majority-leader delay
Tcr 1 [ms] Delay client-to-replica

Nr 1..C N/A Controller failure count

1/, 6 [months]  Hardware failure rate

1/AF 1 [week] Software failure rate

1/4 Fs, 30/#p [ms] Software failure rate (injected)
1/Ary, 12 [h] Hardware repair rate

1/24 00 [h] Critical data plane failure rate
1/ ARy 3 [minutes] Bundle and process repair rate
1/Agg,.. 182.9 [ms] (Watchdog) Bundle repair rate
1/a Rspw 26.9 [s] (Watchdog) Process repair rate
E; 20 N/A Erlang approximation stages
Ry 10 N/A Max. inconsistent Raft terms

3.3.4 Evaluation and Results: Raft Cluster Availability

Fig. 3.5 depicts the unavailability of a 3-node controller cluster setup. We emphasize the long-term
advantage of an SDN controller bundle / process watchdog mechanism by evaluating the availability
of 3-node configuration over an observation period of 1000 hours. The unavailability measure is
defined as the probability of encountering an unavailable cluster of controllers at any time instant ¢ as:
Pc, (1) =1—=Pc,(t). Pc,(t) represents the probability of encountering a system in a state where the

Raft leader and the majority of Raft followers are available and have converged their leader-election
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processes. Software and hardware failures are modeled using the long-term exponential hardware and

software failure rates presented in Table 3.1.

The approximated unavailability measure saturates after ~85 hours, which is an expected mean
failure time for the combined software failures at bundle and process level, given the individual
exponentially distributed failures with a mean of 1 week (~170 hours) for individual arrivals. We
consider the process and bundle failure arrivals as two independent Poisson processes with variably
configured rates. Hence, merging the two independent processes with equal arrival rates results in
an approximately halved inter-arrival time between software failures. The usage of a watchdog that
proactively rejuvenates a system after a software failure leads to a shorter overall experienced downtime,
and hence a lower expected Raft cluster unavailability in the long-term. Configurations with five or

more replicas guarantee a negligible unavailability of < 1e~® and are hence not included in the figure.
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Figure 3.5: Transient analysis of the SDN controller cluster unavailability over a 1000 hour period. The cluster
size of 3 controllers was considered in the analysis. As expected, the inclusion of a liveness guard mechanism
results in a lower overall unavailability. SDN controller clusters that include 5 or a higher number of replicas per
cluster have shown to posses negligible availability concerns. This confirms the claims made in [141], where
authors discuss the minimal effect of long-term failure rates on the experienced downtime of the control plane.

3.4 Supporting Partially-Observed Network Partitions: Decoupling

Consensus from Event Detection

In Raft, the leader is in charge of serialization of message updates and their dissemination to the
followers. In the face of network partitions and unreliable communication channels between particular
replicas, however, the simple timeout-based failure detector of Raft cannot guarantee the property of
the stable leader [201]. Zhang et al. [201] demonstrate the issue of the oscillating leadership and unmet
consensus in two scenarios involving Raft. To circumvent the issues, the authors propose a solution -
redundant C2C connections with packet duplication over disjoint paths. This solution is expensive for
a plethora of reasons: a) additional communication links impose significant communication overhead
and thus negatively impact the system scalability; b) selection of the paths that would alleviate the
failures is not a trivial task, especially when the locality and the expected number of link / node failures
is unknown; c) certain restrictions on topology design are imposed - their solution requires disjoint

paths between any two controller replicas.
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In contrast to [201], we identify and associate the core issue of unreliable Raft consensus with the
lacking design of its failure detection. In fact, state-of-the-art control plane solutions, i.e., ODL [123],
Kubernetes [143], Docker (Swarm) [139]) all tightly couple the Raft leader election procedure with
the underlying follower-leader failure detection, thus allowing for false failure suspicions and arbitrary

leader elections as a side-effect of network anomalies.

We solve the issue of oscillating consensus leadership and unmet consensus as follows: We alleviate
the possibility of reaching false positives for suspected controller replicas by disaggregating the process
of distributed agreement on the failure event, from the failure detection. Namely, we require that an
agreement is reached among active controller processes on the status of the observed member of the
cluster, prior to committing and reacting to a status update. We confirm the correctness of the analytical

formulation for the worst-case agreement period using an empirical approach.

3.4.1 Related Work - On Correctness Issues with Raft

Zhang et al. [201] propose packet duplication for C2C connections over disjoint paths to solve the
issues of oscillating leadership and unmet consensus in scenarios involving Raft. In comparison, we
solve these issues more efficiently by removing the possibility of reaching false positives for suspected

controller replicas by introducing the requirement of distributed agreement on the failure event.

In another recent evaluation of Raftin ONOS [39], Hanmer et al. [ 78] confirm that a Raft cluster may
continuously oscillate its leader and crash under overload. This behavior may arise due to increasing
computation load and incurred delays in heartbeat transmissions in the built-in signaling mechanism.

The issue is unsolvable using the means of disjoint flow replication alone [201].

On a similar note, in Raft, a split votes scenario may occur after a leader failure and a subsequent
simultaneous leader election procedure. In split votes, the nodes in the cluster compete for the cluster
leadership [87] without any of the nodes winning the majority vote. The candidates are hence unable
to come to consensus about the future leader since the votes remain repeatedly divided. To minimize
the probability of a split vote, Raft introduced randomized follower timeout parametrization which
varies the per-node time-to-become-candidate duration (~ 150ms —300ms as per [87]). The split votes
may theoretically delay the leader election indefinitely, however, designs such as a Round-Robin-based

election of the leader or randomized timeouts ensure the scenario does not occur in practice.

3.4.2 Problematic Scenario: Oscillating Leadership

With single-leader consensus, e.g., in Raft-based clusters, the controller replicas agree on a maximum
of a single leader during the current round (called ferm in Raft). The leader replica is in charge
of: i) collecting the client update requests from other Raft nodes (i.e., followers); ii) serializing the
updates in the underlying replicated controller data store; iii) disseminating the committed updates to

the followers.

In the case of a leader failure, the remaining active replicas block and wait on leader heartbeats for
the duration of the expiration period (i.e., the follower timeout [87]). If the leader has not recovered, the

follower replicas announce their candidation for the new leader for the future term. The replicas assign
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their votes and, eventually, the majority of the replicas vote for the same candidate and commonly
agree on the new leader. During the re-election period, the distributed control plane of the system is
unavailable for serving incoming requests [3]. However, not just the leader failures, but also unreliable
follower-leader connections as well as link failures, may lead to arbitrary connection drops between
members of the cluster and thus the re-initialization of the leader election procedure [201]. Raft
realizations typically implement the C2C synchronization channel as a point-to-point connection, thus

realizing W bidirectional connections per replica cluster.

Figure 3.6: Non-failure (a) and an exemplary failure case (b) scenarios with injected communication link
failures (loosely dotted). In the non-failure case, direct any-to-any connectivity between the controller replicas
is available. The depiction is agnostic of the underlying physical topology and represents a logical connectivity
graph.

To demonstrate a possible issue with the consensus design, consider the task of reaching consensus

in the multi-controller scenario comprising |C| = 5 controllers, depicted in Fig. 3.6 a):

1. Assume all depicted controller replicas execute the Raft [201] consensus protocol. Let replica

C2 be selected the leader in term T1 as the outcome of the leader election procedure.

2. Assume multiple concurrently or sequentially induced link failures, i.e., on the logical links
(C2,C4) and (C2,C5). Following the expiration of the follower timeout, C4 and C5 automatically
increment the current term to T2 and initiate the leader re-election procedure by advertising their
candidate status to C1 and C3. Since a higher-than-current term T2 is advertised by the new
candidate(s), C1 and C3 accept the term T2, eventually vote for the same candidate, resulting in
its election as leader. Depending on whose follower timer had expired first, either C4 or C5 is
thus elected as the leader for T2.

3. After learning about T2, C2 steps away from its leadership and increments its term to T2. As itis
unable to reach C4 and C5, C2’s follower timeout eventually expires as well. Thus, C2 proceeds
to increment its term number to T3 and eventually acquires the leadership by collecting the votes
from C1 and C3. Term T3 begins. The oscillation of leadership between C4/C5 and C2 can thus

repeat indefinitely.

4. Should either C4/C5 or C2 individually apply a client update to their data store during their
leadership period, the replicas C1 and C3 will replicate these updates and thus forward their log

correspondingly. This in return leads to the state where only replicas C1 and C3 are aware of the
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most up-to-date data store log at all times. As per the rules of Raft algorithm [223], from then

onwards, only C1 and C3 are eligible for leadership.

5. Since the link / connection (C1,C3) is also unavailable (ref. Fig. 3.6 b)), the leadership begins
to oscillate between replicas C1 and C3, following the logic from Steps 1-3.

Hence, in the depicted scenario, the Raft cluster leadership oscillates either between C2 and C4 /
C5, or C1 and C3. Zhang et al. [201] have empirically evaluated the impact of the oscillating leadership
on system availability. During a 3-minute execution of an oscillating leadership scenario using
LogCabin’s? implementation of Raft and 5 Raft nodes, the authors observed an average unavailability

of ~58% and 248 leadership shifts, even though the network itself was not partitioned.

3.4.3 Decoupling Consensus from Failure and Recovery Detection

We next introduce a generic design that alleviates the leader oscillation issue. Specifically, we ensure
the above Step 2 never occurs, by requiring all active replicas to reach agreement on the inactive replica

prior to restarting the leader election.

The communication topology between replicas is modeled by a connectivity graph G = (C, &)
where C is the set of controller replicas and & is the set of active communication links between the
replicas. An active link (i, j) denotes an available point-to-point connection between the replicas i
and j. The communication link between two replicas may be realized using any available mean of
data-plane forwarding, e.g., provisioned by OF flow rule configuration in each hop of the path between

i and j, or by enabled Media Access Control (MAC)-learning in non-OF data plane.

Let D contain the guaranteed worst-case delays between any two directly reachable replicas. In
the non-failure case (ref. Fig. 3.6 a)), V(i,j) € & : Ad; ; € D. In the failure case, depicted in
Fig. 3.6 b), we assume that partitions in the connectivity graph have occurred (e.g., due to flow rule
misconfigurations or link failures). Connectivity between the replicas i and j may then require message
relaying across (multiple) other replicas on the path #; ;, with P; ; € &. In both non-failure and failure
cases, direct communication or communication over intermediate proxy (relay) replicas, respectively,

is possible between any two active replicas at all times.

Replicas that are: a) physically partitioned as a result of one or more network failures, and are thus
unreachable either directly or over a relayed connection by the replicas belonging to majority partition;
or are b) disabled / faulty; are eventually considered inactive by all active replicas in the majority

partition.

Each controller replica executes a process instance incorporating the components for failure
detection and event agreement, together with the corresponding signaling and dissemination methods
(Section 4.2.3 details these components in more detail). Any correct proposed combination of these

methods must fulfill the properties of:

» Strong Completeness: Eventually all inactive replicas are suspected by all active replicas.

2LogCabin - Distributed storage system built on Raft - https://github.com/logcabin/logcabin
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» Eventual Strong Accuracy: Eventually all active replicas (e.g., still suspected but already

recovered) are not suspected by any other active replica.

3.4.4 Introducing the Event Agreement Component

The replica i can become suspected as inactive by replica j, following either the failure of the observed
replica i or the failure of the communication link (i, j). Since individual replicas may lose connection
to a particular non-failed but unreachable replica (i.e., as a consequence of an active replica but failed
physical link(s) or data plane node(s) undermining the logical communication link (i, j)), a particular
subset of replicas may falsely consider active replicas as inactive. To alleviate this issue, we introduce

the Event Agreement function block in each replica.

To reach agreement on an observed replica’s state, the active observing replicas must first acknowl-
edge the failure of the suspected replica in an agreement phase. We consider two types of the event
agreement - "local" and "global" agreement:

* Local Agreement on failure (recovery) is reached when a replica observes that at least [@]
active replicas have marked the suspected replica as INACTIVE (ACTIVE).

|Cl+1
2

* Global Agreement is reached when a replica observes that that at least | 1 active replicas

have confirmed their Local Agreement for the suspected replica.

The global agreement imitates the semaphore concept, so to ensure that active replicas have
eventually reached the same conclusion regarding the status of the observed replica. We assume that
physical network partitions may occur. To this end, the majority confirmation is necessary in order to
enable progress only among the active replicas in the majority partition. Reaching the event agreement

in a minority partition is thus impossible.

We next propose two Event Agreement instances: a) the List-based Event Agreement (L-EA) and
b) the Matrix-based Event Agreement (M-EA).

In Section 4.2.5 we provide a detailed analysis of the response time penalty imposed by the Event
Agreement component. In this chapter, however, we limit our analysis to basic correctness evaluation

using empirical validation.

3.4.4.1 List-based Event Agreement (L-EA)

With L-EA, reaching the agreement on the status of an observed replica requires collecting a repeated
unbroken sequence of a minimum of Iy, - (JC| — 1) matching observations from active replicas. s
is the confirmation multiplier parameter allowing to suppress false positives created e.g., by repeated

bursts of same events stemming from a single replica.

L-EA maintains a per-replica local and global counter of matching observations in the local and
global failure (and recovery) lists of length |C| — 1, respectively. On suspicion of a failed replica, the

observer replica increments the counter of the suspected replica and forwards its updated local failure
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list to other active replicas. After receiving the updated list, the receiving replicas similarly update their
own counter for any replica whose counter is set to a non-zero value in the received list. The active
replicas continue to exchange and increment the local failure counter until eventually /, - (|C| = 1)
matching heartbeats are collected and thus the local agreement on replica’s failed status is reached. The
suspected replica’s counter in the global failure list is then incremented as well, and process continues
for the global agreement. If any active replicas identify the suspected replica as recovered, they reset
the corresponding counter in both local and global lists and distribute the updated vector, forcing all

other active replicas to similarly reset their counters for the suspected replica.

3.4.4.2 Matrix-based Event Agreement (M-EA)

Another realization of the Event Agreement entity is the matrix-based approach M-EA. Our design

extends [196] to cater for the recovery of failed replicas and to feature the global agreement capability.

In summary, all replicas in M-EA maintain a status matrix, and periodically inform all other active
replicas of their own status matrix view. The status matrix contains the vector with the locally perceived
status for each observed replica, as well as the vectors corresponding to other replicas’ views. Thus,
each replica maintains its own view of the system state through interaction with local failure detector
instance, but also collects and learns new and global information from other active replicas. The status
matrix is a |C|x|C| matrix with elements corresponding to a value from set {ACTIVE, INACTIVE,
RECOVERING}. RECOVERING state is necessary in order to consistently incorporate a previously failed

but recovered replica, so that all active replicas are aware of its reactivation.

Following a failure of a particular replica or a communication link to that replica, failure detector
of an active neighboring replica initiates a trigger and starts suspecting the unreachable replica. The
observing replica proceeds to mark the unreachable replica as INACTIVE in its locally perceived vector
and subsequently informs all other replicas of the update in asynchronous manner. The remaining
replicas store the state update in their own view matrix and evaluate the suspected replica for reached
failure agreement. Agreement is reached when all active replicas have marked the suspected replica
as INACTIVE.

In M-EA, each replica maintains two matrix instances:

1. local agreement matrix, where each locally perceived suspicion results in a state flip from ACTIVE
— INACTIVE, and where a newly seen heartbeat for a previously failed replica leads to a state
flip INACTIVE — RECOVERING. As soon as all active replicas have marked the suspected replica
as INACTIVE (RECOVERING for a recovered replica), the local agreement has been reached (state
flip RECOVERING — ACTIVE occurs for the recovered replica).

2. global agreement matrix, where state flip from ACTIVE — INACTIVE, and INACTIVE — ACTIVE,
occurs only if the local agreement was previously reached for the updated state of the observed

replica.

Dissemination triggers: Dissemination of the matrices is triggered periodically (according to

the Signaling entity). If a replica has, however, observed a failure using its local failure detector



36 Chapter 3. Enabling Fault Tolerance in Fail-Stop Control Plane

or has received a heartbeat from a replica considered inactive, it triggers the matrix dissemination

asynchronously.

3.4.5 Evaluation and Results: Validation of Correct Raft Operation with Network
Partitions

To demonstrate the correctness of the agreement-enabled consensus, we realize the connectivity graph
depicted in Fig. 3.6 a) and gradually inject the link and replica failures as per Fig. 3.6 b). We first inject
the three link failures at runtime. We then inject a failure in C2 and eventually recover it so to evaluate

the correctness of both failure and recovery detection.

Fig. 3.7 depicts the three successive logical communication link failure injections and the sub-
sequent replica failure injection in C2, as well as its recovery. The upper-left depicts the behavior
of replicas during the link failure injections for replicas communicating using Best Effort Broadcast
Dissemination (BEB-D) [49] (discussed in more detail in next chapter). After the missing signaling
heartbeats were observed by the local failure detector in the affected replicas, failure suspicion is
triggered for the unreachable replicas. Since six unidirectional link failures were injected (i.e., three
bidirectional link failures), six local suspicions are triggered across the cluster (twice by C2 and once
each by C1, C3, C4 and C5). In the case of Round Robin Gossip Dissemination (RRG-D) (ref. Sec-
tion 4.2.3) depicted in lower-left, the local failure detector never triggers suspicions in any of the five
controllers. This is due to propagation of heartbeats using gossip, where only a subset of all replicas

must be directly reachable in order to disseminate the heartbeat consistently to all members.

The suspicions in the local failure detectors after individual link failures are insufficient to agree
on the unreachable replicas as inactive, i.e., only direct partners on the failed link start suspecting
unreachable replicas as inactive. The inactive replicas are correctly marked as such only after an actual
failure in an actual failure in C2 (ref. center subfigure of 3.7). All active replicas eventually agree on

C2’s failure.

In the right-most subfigure, we recover C2 by restarting the replica and depict the time when the

local and global agreement on its recovery are reached in the active replicas.

By means of the proposed mechanism, Raft’s leader election can trigger only when global failure
agreement is reached, thus solving the issues related to oscillating leader. The response time analysis,
including detailed modeling of delays incurred by individual dissemination, signaling, failure detection

and agreement components are given in Section 4.2.

3.5 Chapter Summary and Outlook

SDN enables the necessary control plane robustness by controller and state replication. However,
the replication incurs the overhead in terms of resulting controller design complexity and response
time / load penalty. It is not always obvious which particular cluster configuration would best suit the

application and network configuration at hand.
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Figure 3.7: Link failure injections and the suspicions (left); the C2 replica failure injection (center) and;
replica C2 recovery injection (right) for connectivity graph depicted in Fig. 3.6. While the broadcast-based
failure detector (Best Effort Broadcast Dissemination (BEB-D)) tends to trigger local suspicion for disconnected
replicas, gossip-based dissemination (Round Robin Gossip Dissemination (RRG-D)) ensures the heartbeats are
eventually exchanged among all replicas, as long as no replica is fully partitioned away from the remainder of the
network. The center subfigure depicts the time-points where the local and global agreement are reached among
the active replicas. The right subfigure depicts the time-points where the local and eventually global agreement
are reached for the recovered replica C2.

We have investigated the application of SANs for modeling and numerical evaluation of availability
for arbitrary distributed cluster configurations. We have put special focus on the practically relevant
distributed consensus algorithm Raft, but have generalized our model to be applicable to similar Paxos
variants (e.g., Multi-Paxos). Indeed, Raft is implemented in two dominant open-source SDN platforms

and is of practical relevance for performance analysis of the distributed control plane.

Using transient solver methods, we were able to provide an analytic estimation of the availability
of a fault-tolerant control plane. We make similar guarantees for the response time system metric in
the next chapter. Assuming a balanced distribution of controllers in the network w.r.t. the C2C delays,
we conclude that larger control planes provide a higher system availability, eventually saturating at a
certain threshold. In fact, assuming realistic failure rates and no long-term data plane partitions, 5
controller instances can guarantee a negligible unavailability of the control plane (< 1e~°). To further
improve the long-term control plane availability, we have proposed a watchdog mechanism for fast

recovery from software failures and have proven its benefits on the long-term availability.

In the second part of the chapter, we have showcased the limitations of tightly coupled failure
detection and consensus processes by reflecting on the example of non-reachable agreement in a Raft-
based SDN controller cluster. In contrast to existing works, the proposed failure detection framework
considers the possibility of limited knowledge of occurrence of network partitions in the controller
replicas. We have solved the leader oscillation issue by introducing agreement as a necessary first step
to confirming a particular replica’s status, thus effectively ensuring no false positive failure / recovery

detection ever arises, independent of the cluster size and type of the deployed failure detector.

We have validated the correctness of our design on an example of a problematic scenario and the
corresponding framework implementation. We expect that this work motivates the future evaluations
of distributed failure detectors in combination with consensus protocols as a set of loosely coupled but

co-dependent modules.
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In the next chapter, we investigate the response time characteristics of the presented Raft-based

control plane and discuss its suitability for industrial applications requiring low response time.

Open points: Adaptations to proposed models to support the novel leaderless consensus protocol
variants, such as EPaxos [132], require significant changes and are thus considered as future work.
Additionally, the presented approaches are capable of tolerating Fail-Stop failures only and are thus
indifferent to semantic- and aging-related system faults (i.e., generalized to Byzantine faults). In

Chapter 6, we present strategies based on RSMs to enable tolerance against this class of faults.



Chapter 4

On Deterministic Response Time in
Fail-Stop Control Plane

In the SC model, configuration requests facilitate a number of C2C synchronization steps prior to
reaching consensus on a decision and finally executing the configuration change. For example,
in an SDN module that subscribes to topology changes (e.g., raises alarms to an administrator in
case of link failures), a topology change must first be committed across the cluster majority in
the replicated Raft commit log, before the subscribed SDN module is notified and can execute its
reactive step. The resulting response time is dependent on the the number and current availability of
controllers, their execution performance and the C2C delays. As discussed in Section 2.2, clustered
SDN controller solutions require estimation of their worst-case response times, before their deployment

can be considered in critical infrastructure networks.

In the first part of the chapter we present the detailed SAN models for modeling worst-case control
plane response times in a partition-free distributed control plane relying on Raft. In the second part,
we additionally present a method for estimation of worst-case agreement delay for a failed / recovered
controller replica in a Raft cluster impacted by network partitions. We assume a deployment extended
with components for failure detection and Event Agreement component as presented in Section 3.4.
We confirm the analytic formulations by empirical validation relying on varied cluster parametrizations
and controller cluster sizes. Finally, we discuss the impact of each component of our design on the

replica failure- and recovery-detection delay, as well as on the imposed communication overhead.

The proposed analysis methods and designs were published in augmented form in [8, 3].

4.1 Analytic Guarantees for Raft’s Response Time

The final SAN model presented here details the distributed Raft commit operation, specifically the
lifecycle of a Raft session during a client request handling procedure. By assuming reliable event
delivery and bounded network, application and data store commit delays, we provide stochastic delay
guarantees for response handling times in non-failure, partial-failure and cluster-majority failure states.
As before, we consider the mechanism for fast recovery of controller bundles and processes (presented

in Section 3.3.3) in evaluation of the resulting response time of the distributed control plane.

39
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4.1.1 Related Work - On Predictable Response Time of Cluster Operations

Mugaddas et al. [135, ] investigate the load overhead of the intra-cluster communication in a 2-
and 3-controller ONOS cluster. They propose a model to quantify the traffic exchanged among the
controllers and express it as a function of the network topology. They do not consider the effect of
the transient failures on the response time and availability. Zhang et al. [199] describe the single-data
ownership organizational model implemented by the Raft algorithm and propose an estimation formula
for approximating flow setup time in a distributed SDN controller cluster. Their estimation is however
fairly simplistic as it models only the average case. The worst-case estimations are not considered in

their analysis.

Ongaro [223] and Howard et al. [87] provide initial performance evaluations of Raft. Howard et
al. [87] furthermore implement an event-driven framework for prototyping of Raft using experimental
topologies. Contrary to the analytical approach presented in our work, their performance evaluation
of Raft is based on a limited number of repeated experiments and focuses on evaluating the Raft
leader re-election procedure following a failure. Unfortunately, these works do not provide a good

understanding of how the overall system response time is affected after a failure.

In two experiment-based studies, Suh et al. [181, ] measure the throughput and the recovery
time of a Raft-enabled SDN controller cluster with 1, 3 and 5 replicas. They put special focus on the
effect of ¢ accrual failure detector [80] on the resulting performance footprint. The authors deduce
that the controller fail-over time increases with ¢. With higher ¢, the ODL cluster becomes more
conservative in determining a controller failure, hence in case of failures, using a large ¢ values will
generally lead to slow failure discovery. Authors varied ¢ and measured the lowest recovery time of
~ 2,6s, which is a non-satisfying recovery time for many critical industrial applications. Instead of
using an adaptive scaling factor ¢, in the response analysis of the distributed Raft cluster, we rely on a
fixed follower timeout variable with a mean of ~ 225ms. We assume that the C2C delays are bounded
and will hence not exceed this value except in the case where a controller failure has occurred. This
value is recommended by the authors of the Raft consensus algorithm, and was determined to be a

good trade-off between recovery time and signaling overhead in their experiments [ 146].

Machida et al. [118] analyze the completion time of a job running on a server that is affected by
software aging, and consider the benefit of the preemptive-resume operation, where a job resumes
execution from the point of interruption as soon as the failed server recovers. Similar to this work,
we investigate the job completion time for a client request, but we consider a distributed multi-server
operation. We focus on the strategy where, assuming a failure occurs, the request is handled from the

beginning instead of delegating it to the next server.

Paxos [111] is another influential [45, 48] consensus algorithm that originally motivated the design
of Raft. Paxos ensures that any two distributed servers that are part of the same cluster may never
disagree about the value of a particular update, for any applied update in the update history. In
its optimized variations, its performance is comparable to Raft, in that, assuming a stable cluster
leadership, committing a cluster-wide update takes a single round trip in most cases [133]. Multi-

Paxos [218, ] is a prominent variation of Paxos, that assumes a stable leader for an infinite number



4.1. Analytic Guarantees for Raft’s Response Time 41

of sequential cluster updates. This allows for one-round-trip delay as the first phase of Paxos becomes
unnecessary for the majority of updates. In [214] the authors evaluate an implementation of Multi-
Paxos and conclude that the overall performance of Multi-Paxos is limited by the slowest node in the
fastest cluster majority. This is a valid observation for any quorum-based consensus algorithm, hence
we distinguish the leader failures as critical for our analysis. Cheap Paxos [109] is another variation of
Paxos which implements a dynamic cluster membership model, in order to allow making progress in
face of up to F failures by deploying F + 1 servers and F' backup servers. Hence, Cheap Paxos involves
less live-synchronized replicas but induces a non-negligible reconfiguration overhead after the replicas

in the main system have failed [ 109].

To minimize the impact of SPOF and maximize the request load balancing, Mencius [121] proposes
a round-robin-based handling of client requests by multiple leaders. Mencius indeed enables higher
throughput in the stable case, however, the cluster continues to run at the speed of the slowest elected
leader as new log updates may depend on actions assigned to the slow node. EPaxos [133] is a recent
leader-less take on Paxos that tries to circumvent these issues. It keeps track of the ordering and mutual
dependencies between the client-initiated updates. Hence, it is able to parallelize multiple update
instances when no collisions between concurrent client updates are expected. Like Raft, it requires a
single round-trip in most cases to commit a state update, and two round-trips if dependency conflicts
arise. Contrary to Raft and other leader-based Paxos variations, the response time in an EPaxos cluster
does not suffer from unstable leaders since the clients may always fall-back to any remaining live leader
replica. However, it adds additional complexity in state-keeping and log compaction tasks because of

the added dependency trees.

4.1.2 End-to-End Transaction Commit Model

The clients of the SDN control plane generate events, such as flow requests or switch notifications
which necessitate data store updates in the controller and their subsequent synchronization across
controller replicas. The client delivers these events in asynchronous and reliable manner to the replicas
for processing. After the control plane finish the processing, the client is notified of the result. The

SAN in Fig. 4.1 depicts this process.

Sub-process 1: The place IdleState models the initial system state where no events are queued
for internal processing. Following a new event arrival at any of the Raft replicas, the receiving
replica is tasked with the propagation of the new event to the current Raft leader. New event arrivals
increment the token amount in the state EventQueuedForLeader, where events are queued until a
leader becomes elected in the cluster. The input gates enumerated LeaderAndMajorityUp# ensure
that the transmission of the event to the Raft leader or replicas, as well as the intermediate processing
inside the cluster happens only in the case where both the Raft leader and the follower majority are

active.

Sub-process 2: Propagation of the event from the furthest-away replica to the leader is modeled
by the activity delayToLeader using a deterministic worst-case delay metric Tg = Ty, (further

discussed below).
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Figure 4.1: The Raft response time model depicting the sub-processes: (1) the reception of a client event at a
follower proxy-replica; (2) the event propagation to the Raft leader; (3) the event propagation from the leader to
the follower majority; (4) the data store commit of the client event; (5) its subsequent processing in the controller;
and (6) the propagation of the response from leader, through the proxy-replica, to client.

Sub-process 3: On a received event, the leader initiates the propagation of the respective data
store state update to its followers. The delays induced by the activities delayToMajorityFollowers
and delayFromMajorityToLeader correspond, in the best-case to the leader-to-(preferred)-majority
delay Tyy,,, ., - In the worst-case, to contact the follower majority, the leader needs to contact the follower
furthest away from it and hence induce the worst-case uni-directional network delay Ty, .,. Thus, the

delay between the Raft leader and the follower majority is governed by the number of failed followers.

Sub-process 4: When the follower majority has acknowledged the state update, the leader continues
committing the data store change locally, and the system eventually reaches the CommitDone state.
To prevent the leader from broadcasting multiple unacknowledged updates, we ensure the input gate
DisableConcurrentUpdates enables the transition delayToMajorityFollowers if and only if

the distribution states of Raft do not contain any outstanding tokens (no synchronization in progress).

Modeling Lagging Followers: In the case of at least one replica that necessarily comprises the
cluster majority lags behind the Raft leader in terms of its commit log (ref. Section 3.2.5), the
leader enforces additional steps in order to synchronize the cluster majority with its local view. To
this end, the activity majorFollowerNotUpToDate fires and a token is incremented in the place
BringFollowersUpToDate. The lagging followers are thus assigned the Follower (Lagging)
node status (depicted in Fig. 3.2). For each Raft term state that is missing in the lagging follower,
an additional round-trip delay in the critical path between the leader and replica is induced, hence
adding 2 - Ry - Tps to the overall delay, where Rj; is the maximum number of missing Raft terms
in the follower. This delay is imposed in the definition of the activity 1lateBringUpToDateNodes.
To govern the activation of the instantaneous activity majorFollowerNotUpToDate we make use
of a stateful counter CounterFailures that is incremented on each new logged replica failure (ref.
Section 3.3.2.1). We consider the worst-case and hence assume that at any time after {%J +1 replica
nodes have been disabled, out-of-date replicas are automatically present in the majority of the follower

nodes required to confirm a leader update. Hence, we infer the additional overhead of updating the
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lagging nodes in the replica majority. The flag to enable the activity majorFollowerNotUpToDate
is cleared after the reconciliation (as a side configuration of the gate resetCounter).

Sub-process 5: Following an applied data store commit in the majority of replicas, the leader
commits the state locally and the SDN application gets notified of the data store event. The data store
commit and the SDN application’s processing delay are induced during the activity applyCommit and

are modeled as T¢ and T4 in Table 3.1, respectively.

Sub-process 6: After the application has completed its processing (in ApplicationDone), the
leader notifies the replica that initially generated the update event (thus adding once-more Tx to the
overall worst-case delay), and the replica further forwards its response to the client (thus adding Tcg
which is the client-replica delay). The system then finally reaches the stable state SequenceEnd, where
the event is marked as successfully processed.

Modeling Reaction to Failure Events: In case of a failure occurrence in the leader or follower
majority during the event processing, the activities named CH# lead to a token being shifted from
the current SAN place to the EventQueuedForLeader place, using the output gate increment action
modeled by OGF#. Hence, the event distribution procedure restarts as soon as the cluster is re-
established. The delay until a critical failure occurrence of the leader or the follower majority is

noticed by the client is modeled using the client timeout Tc .

Modeling the delay from Raft leader to the furthest-away replica of the follower majority: This
delay varies depending on the availability and proximity of followers w.r.t. the current cluster leader.
We annotate the leader-to-majority followers delay as Tj;. Assuming a deployment of |C| controller
nodes and a single leader L where L € C atany time, the set Sy, = {Dg,, DR,...DR ¢ } where R; € C
contains the maximum bounded delays between the leader L and | |C|/2] follower nodes closest to L
w.r.t. delay between controller L and each of the available followers R;. Hence, we define the delay
between leader L and the follower majority as the delay between L and the farthest follower in the

majority Tpy = max(Sr).

To emphasize the effect of a failed preferred-follower replica on the response time, in our exemplary
evaluation, we scale the delay value to contact the followers majority linearly with the number of

currently available followers using a scaling factor S so that:

Sr - Twmy,,, WwhenF,, > [%J
Ty = ‘

unde fined otherwise

For the evaluation purposes we model the Sg as a function of the current marking of SAN so that
Sf = Eﬁ and thus:
up

Cl-1 c
|F,,|¢ : TMbesr When Fup 2 [%J

T = P

unde fined otherwise
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where F,,,, represents the number of currently available followers. In the best case where all nodes are
up, the leader-majority delay equals Ty, ,. In the worst case, the controller-majority delay peaks at
T, orse =Tr =2 - Ty, Wwhenonly | |C|/2] + 1 controller nodes (including the leader) are active.

Note: Using a fixed scaling factor is an exemplary and non-optimal representation, as the exact
worst-case leader-majority delay is equal to the delay between the leader and the farthest away follower
in the current follower majority, and hence necessitates knowing the exact bounded delays between
each two SDN controllers in the network. We omit this level of model granularity as the required
parameters would require population from an engineered network topology, and would further rely
on the optimality of the used controller placement technique. Nevertheless, the SAN model proposed

here can be extended to take an arbitrary set of C2C delay parameters with no added effort.

Data store sharding: The data store of an SDN controller (e.g., ODL) is sharded into an arbitrary
amount of data shards at a flexible granularity (e.g., data shard per virtual topology). If all data shards
are available on each replica, each available controller is an active member of each per-shard Raft
session. Raft can then handle the updates of different data shards concurrently and in isolation. This
enhances the overall throughput of the system as multiple asynchronous updates to different shards are

parallelized and may execute without blocking.

4.1.3 Model parametrization using a Raft experiment

To validate the fitness of our response time model, we first compare the analytics solution against an
experimental Raft setup in a zero-failure scenario. For this purpose, we implement a Raft agent and
deploy multiple copies thereof in a Raft cluster. For the Raft backend implementation, we use the
open-source Java library libraft 1. The cluster is organized so that the controller nodes, acting as Raft
agents, are reachable in an any-to-any manner over a single-hop Open vSwitch (OVS) 2 instance. The
OVS is configured to inject a constant symmetrical delay of Sms on each egress port. We use this
value as a deterministic reference leader-to-follower-majority delay 7, in the model parametrization.
Furthermore, based on the raftlib performance observations, we model the commit delay parameter
T4 as an exponentially distributed delay with a mean of 1ms. The resulting modeled response time
and the comparison with the experimental results for different controller cluster sizes are depicted in
Fig. 4.2. To reflect the stochastic performance guarantees when replica failures are concerned, we

resort to using only SAN-based analytical modeling for most accurate approximations.

To evaluate the expected response time metrics of arbitrary cluster configurations, we vary the
number of controller replicas that take part in the Raft session as per Table 3.1. The generalized
long-term software and hardware failure rates, as well as the hardware repair rates are taken from Liu
etal. [117]. As discussed in Section 3.3.2.1, to allow for granular worst-case response time analysis,
we model single and correlated failure injections with varying number of failures, where following a
failure, a replica is temporarily excluded from the cluster until recovered. To depict the benefits of

failure source differentiation and the proposed Watchdog Mechanism (WD), we distinguish between

Uibraft - Raft Distributed Consensus Protocol in Java: https://libraft.io
20pen vSwitch - Production Quality, Multilayer Open Virtual Switch: https://www.openvswitch.org/
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Figure 4.2: Comparison of experimentally observed and modeled Raft performance with clusters of various
sizes. Represented are the Empirical Distribution Functions (ECDFs) of per-cluster-configuration measurements.
Each measurement encompasses 1000 sequential write operations. The observed delay considers a fixed single-
hop packet latency of Sms in between the Raft leader and replicas, as well as a 1ms data store commit time
in the leader and replica majority. Client and application delays were not considered in this experiment. The
measurements were taken in a zero-failure state of the Raft cluster and should serve as an initial indicator of the
response time model fitness.

mixed and software-only failures, and vary the number of failure injections between 1 and {%J +1

(majority nodes down) controller failures.

The fact that the process of uniformization (ref. Section 3.3.1) may only be applied to exponentially
distributed transition rates makes our estimations slightly pessimistic. Thus at the cost of the generated
CTMC state size and required solving time, we approximate every deterministic message delay and

timeout and minimize the total distribution variance using a 20-stage Erlang distribution.

4.1.4 Evaluation and Results: Response Time Analysis

When a single random-role controller from the SDN cluster fails as a result of a hardware, process or
bundle failure (each being equally probable), deploying a larger number of controller replicas ensures
an overall decrease in the expected response time (see Fig. 4.3). This is related to the probability of a
leader being injected with a failure, hence necessitating a leader re-election to move forward the state.
The probability of a leader failure becomes increasingly lower when larger clusters are deployed (as

explained in Section 3.3.2.1).

Next, we evaluate the probability of meeting an event handling deadline when the majority of nodes
in the cluster have failed. The expected response times where mixed hardware and software failures, as
well as exclusively bundle-level failures may occur, are depicted with and without the WD enabled in
Fig. 4.4a and 4.4b, respectively. The WD enables faster recovery of replicas and hence faster repeated
processing of an event in the case of leader and follower majority failures. An SDN cluster equipped
with the WD on average processes the events faster and with a higher probability than the one without.
Especially when simultaneous hardware failures are improbable and software failures are typical, the

fast software recovery provides obvious response-time benefits (Fig. 4.4b).
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Figure 4.3: Varying probability of an event being successfully handled in a given time period ¢ for different
SDN controller cluster sizes |C|. The probability of the Raft leader failing is inversely proportional to the cluster
size.
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injections are equally probable. in the cluster.

Figure 4.4: Probability of receiving an event response during an observation window, assuming a simultaneous
occurrence of (a) Nr mixed and (b) N software-bundle only controller failures in a cluster comprised of |C]|
controllers. The failures are injected at rate Nr - 0.0333 (all N failures are thus expected to be injected by
t = 30ms).

Fig. 4.5 depicts the effect of the consecutive failures on the experienced response time in a 7-node
controller cluster. If the majority nodes remain available after each individual failure, the time to
respond is governed by the case where a cluster leader fails and a new leader election procedure is
automatically initiated. There is no noticeable difference in the convergence time regardless of the
(non-)usage of the WD in this particular case. The lower the maximum number of induced failures
induced, slightly shorter is the expected response time. This may be related to the fact that the follower
timeouts are exponentially distributed, hence a higher number of active nodes that time out after a

leader failure leads to an overall lower expected time to select a candidate and repair the cluster.

4.1.4.1 SAN Model Complexity and Solution Time

Compared to the manual modeling of Markov Chains, SANs allow for more compact modeling of
complex scenarios. Analytically however, both options need to solve the same CTMC and have to
deal with an exponential increase in model size which may result in inefficient or intractable analytical
solutions when complex models are concerned [81, ]. The model complexity dictates both the

amount of computational resources and the time required to solve the model.



4.1. Analytic Guarantees for Raft’s Response Time 47

1.0 T

0.6 H ; Np=3; WD = off
; Np=2; WD = off

; Np=1; WD = off

I
QA QQQQQQ

P(D<t)

0.4

0.2

0.0 - L I
10° 10* 102 103
Event response time t [ms]

Figure 4.5: Resulting response time assuming an occurrence of 1 < Ng < (I_%J + 1) controller failures in
a 7-node controller cluster. The response time is governed by the duration of the leader election procedure.
When the majority of controllers are unavailable, the usage of the WD (dashed) leads to important benefits w.r.t.
expected worst-case response time.

Fig. 4.6 depicts the state space sizes of the generated CTMCs in our response time analysis. The
generated state space is used by the transient solver to find the transient solutions for short-term
(NF lower than |C|) and long term (Nf considers up to |C| failures) numerical analysis. The model
complexity increases with the number of possible combinations the system may occupy. For short-term
response time analysis we limit the complexity of the model by considering only the injected correlated
failures - this is realistic as only a very short time period (1s < x < 2s) is considered (ref. Fig. 4.3 and
Fig. 4.4). For long-term analysis, additional system states, where more than just the majority of nodes
may fail could be of interest (consider Fig. 3.5). Fig. 4.6 shows the CTMC state space sizes for the
cluster configurations up to |C| = 19. We observe that, for some parametrizations, the compiled state
space size grows exponentially with the number of controller replicas. The number of possible failure
injections dictates the number of generated unique combinations. For the most accurate setting of the
Es =20 (20 Erlang stages, see Section 4.1.3) and cluster sizes of > 17 replicas, we have encountered
memory handling limitations in the flat state space generator in Mobius. Namely, if the solution should
cover for all theoretically possible system combinations, i.e., when failure of every single node should
be considered, the solution space eventually grows to an intractable amount of states for very large
cluster sizes. To cater for the scalability of our solution when analyzing large control planes, we

propose three options:

1. State space largeness avoidance by applying a scenario-based approach to the worst-case mod-
eling. For example, one could consider a limited number of maximum failure injections. By
limiting the number of maximum failure injections to Ng = L@J + 1, large-scale clusters can

be analyzed successfully (ref. Fig. 4.6).

2. State space largeness avoidance by trading solution accuracy, e.g., by manipulation of the Erlang

stages used for the approximation of the deterministic transitions.

3. Faster convergence of the transient solver by raising the error tolerance of the uniformization
(ref. Section 3.3.1).
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Figure 4.6: Size of the CTMC state space generated using the SAN models and parameters discussed in
Chapters 3 and 4. The lower the number of controller failures of interest (i.e., for Nr < |C|), the smaller the
resulting CTMC state space size. If the possibility of an eventual occurrence of failures in all nodes is assumed,
the state space grows correspondingly, reaching up to 107 possible state space combinations with controller
cluster size set to |C| = 13 and the maximum accuracy Es = 15. Striped bars represent the unsuccessful CTMC
compilations where the flat state space generator fails to compile the state space. However, by considering a
lower number of Erlang approximation stages Eg, |C| = 19 and more controller replicas can be handled with a
limited inaccuracy (ref. Fig. 4.7). Similarly, a focused assumption on the maximum number of possible failure
occurrences helps the scalability of the solution (where max(Ng) < |C]).

For completeness, we also evaluate the second option by varying the Erlang stage parametrization.
We take note of the effect on the overall result accuracy for the transient analysis of a 7-node cluster.
Fig. 4.7 depicts the inaccuracy of the latency bound introduced by lowering the number of Erlang stages
from Eg,, ,, =20 to Eg,,,,, € {5,10,15}. At E5 =5, the generated state space size is decreased by a
magnitude (see Fig. 4.6) and is hence, in addition to the first option, an effective method of deploying
our models in a scalable manner. From this study, we conclude that the state space generation process
is scalable as long as the accuracy and failure injection parameters are selected carefully for the use

case at hand.
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Figure 4.7: Inaccuracies stemming from a decreased number of Erlang stages Es used in the approximation of
deterministic transitions are negligible. Inaccurate approximation of a deterministic distribution lead to a higher
variance for the random variable describing the failure arrivals. Hence, for small Eg the solver estimates a more
relaxed (thus more pessimistic) latency bound.

We next consider the performance overhead of the state space generation in our approach. Fig. 4.8
shows how the scenario where max(Nr) = |C| with |C| = 19 and Eg = 5 results in a tolerable ~ 103

seconds solving period.
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Figure 4.8: Overhead of the CTMC compilation for varying cluster sizes |C|, failure injection counts max(Ng)
and Erlang parametrizations Eg. While very accurate and large-scale combinations may lead to intractable
solutions, feasible solutions can be presented even for the complex deployments of [C| = 19 controllers with
various degrees of accuracy and all max(Ng) combinations.

Fig. 4.9 depicts the computation time to solve the presented SANs. The duration of the solution
computation of SAN will vary depending on the model complexity (state space size), the definition
of the observed performance variable (reward function and the number and granularity of time
measurements), as well as the required accuracy and model stiffness (the range of the expected action
completion times) [120]. In the Mobius modeling tool, the accuracy of the transient solver indicates the
degree of accuracy that the user wishes in terms of the number of decimal places. The solver execution
times depicted in Fig. 4.9 were observed for the accuracy parameter set to 9 and an observation window
of 1s (1000 data points). The largest generated state space for the purpose of modeling the largest
cluster size necessarily leads to the longest solution computation times. For the analysis scenarios

described here, these computation times are feasible.
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Figure 4.9: Computation time of the instant of time [55] transient solutions for the state space sizes depicted
in Fig. 4.6. The solution covers the target observation interval of 1 second at millisecond resolution - hence
the transient solver has computed the solutions for 1000 time-points. The computations were executed on a
commodity hardware equipped with a modern Advanced Micro Devices (AMD) CPU and 32GB of DDR4
memory. The required computation overhead for the numerical solution is feasible for a short-term response
time study.

4.2 Upper Time Bounds on Distributed Failure Detection

In Section 3.4, we solved the issue of oscillating consensus leadership and unmet consensus by

disaggregating the process of distributed agreement on the failure event, from the underlying failure
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detection. We concluded that we require agreement among the active controller replicas on the status of

the observed cluster member, prior to reacting to the status update (i.e., by re-initiating leader election).

In the remainder of the chapter, we break down the design of the resulting framework into four base
components: signaling, dissemination, event agreement (ref. Section 3.4.4), and failure detection.
We introduce two exemplary instances of each entity and provide an analytical model for computation
of the worst-case period necessary to reach agreement on replica status. In the evaluation part, we
evaluate the developed framework in all possible coupling variants using varied parametrizations.
We then discuss their performance trade-offs and summarize the co-dependency effects using metrics
of event detection time and recovery and communication overhead. We confirm the correctness of
the analytical formulation for the worst-case agreement period on a replica’s status using empirical

measurements.

4.2.1 Related Work - On Deterministic Convergence Time in Face of Network
Partitions

Hayashibara et al. [80] introduce the ¢-based Failure Detector (¢-FD). While similar in performance
to other well-known failure detectors at the time [40, ], ¢-FD was shown to provide a greater
tolerance against large delay variance in wide-area networks. A minor variant of ¢-FD using a
threshold-based metric for higher tolerance against message loss was proposed in [166]. ODL [123]
uses Akka Remoting and Clustering 3 for remote replica operation execution as well as its failure
detection service. Akka implements the ¢-FD [80], hence we focus on the original ¢-FD variant in
this work as well. Amazon Dynamo [58] is another failure detector type that relies on randomized
pinging and distributed failure detection. It is not investigated here as it cannot guarantee the property

of strong completeness in bounded time.

Yang et al. [196] motivate the usage of a matrix-based approach for reaching agreement on
SDN controller failures. The authors base their evaluation on a binary round robin gossip variation,
originally proposed in [155]. We reproduce the same gossip variation in our evaluation as it allows
for deterministic estimation of the worst-case convergence time. In contrast to [196], however, we
also vary the coupling of other components of the event detection framework, evaluate the framework
in failure scenarios and extend the matrix-approach to support global event agreement and consistent
replica recovery. Katti et al. [101] introduce a variation of a list-based detector in order to decrease
the footprint of matrix-based agreement. They, however, do not provide for a method to converge on

replica recovery nor do they provide for analytical bounds on the expected system performance.

In [158], Van Renesse et al. propose one of the earliest failure detectors using gossip dissemination.
In [157], the authors propose a flow control mechanism for gossip-based anti-entropy reconciliation
to ensure fairness among the members actively gossiping the updates. Katti et al. [101] propose and

evaluate a list-based agreement algorithm with random-destination gossip dissemination technique.

3 Akka - toolkit for building highly concurrent, distributed, and resilient message-driven applications for Java and Scala -
https://akka.io/
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However, their approach cannot guarantee the upper bound of number of gossip rounds required to

converge the same update in all replicas.

Suh et al. [181, ] evaluate the Raft leader election time following ODL leader failures. The
authors do not consider data-plane (i.e., link / switch) failures or partition occurrence between the
cluster members. Similarly, only the built-in variant of ODL’s failure detection (with its non-gossip

dissemination) is considered in both works.

Implementations of consensus algorithms in networking hardware, e.g., those of Paxos [212, 57]
and Raft [200]) have recently started gaining traction. Dang et al. [212, 57] portray throughput, latency
and flexibility benefits of network-supported consensus execution at line speed. We expect to observe
similar advantages in event detection time if our framework was to be realized in network accelerators

and programmable P4 [46] switches but leave this topic for future investigation.

4.2.2 Reference Model of Decoupled Failure Detection

The abstract reference model depicted in Fig. 4.10 portrays the interactions among the proposed core

entities:

* Failure Detection (*-FD): Triggers the suspicion of a failed replica by means of local observation
- e.g., an active replica may suspect a remote replica as inactive following a missing acquisition

of replica’s heartbeats.

» Event Agreement (*-EA): Deduces the suspected replica as inactive or recovered following the

|6‘2|+1] active replicas. It uses

the underlying Failure Detection to update its local view of other replicas’ state.

collection and evaluation of matching confirmations from at least |

* Signaling (*-S): Dictates the semantics of the interaction between processes, e.g., the protocol
(ping-reply or periodic heartbeat exchange), and configurable properties (e.g., periodicity of view
exchange). Signaling ensures that the local view of one replica’s observations is periodically

advertised to all other reachable replicas.

* Dissemination (*-D): Dictates the communication spread (e.g., broadcast / unicast or relay using
gossiping). As depicted in Fig. 4.10, the Dissemination is leveraged for periodic signaling of
replica’s status view (by the Signaling entity), as well as for triggering asynchronous updates on

newly discovered failures (by the Failure Detection).

uses Failure
]| .
Detection

[Z2F
5]

@
=

- - uses Event
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Figure 4.10: The proposed event detection reference model.

[ Dissemination ]

A

uses




52 Chapter 4. On Deterministic Response Time in Fail-Stop Control Plane

We next identify two exemplary instances for each of the four entities and provide an analytic
expression for the worst-case delay, specific to that instance. The sum of the delays introduced by each
of the components denotes the predicted waiting period to reach agreement on an observed remote
replica’s status. Note that the worst-case convergence time can be determined only in scenarios where

all active replicas can communicate either directly or through relay replicas.

4.2.3 Modeling Dissemination and Signaling Delays

In our model: i) replicas learn about the status of other members (active or inactive) using local Failure
Detection; and ii) confirm those assumptions by collecting information from active remote members in
the Event Agreement module. Dissemination governs how the information containing replicas’ local
view of other cluster members’ state is exchanged. We exemplarily distinguish Round Robin Gossip
Dissemination (RRG-D) and Best Effort Broadcast Dissemination (BEB-D) dissemination.

4.2.3.1 Round Robin Gossip (RRG-D) Dissemination

In RRG-D, message transmissions occur periodically on a per-round basis. During each round, the
gossip sender selects the receiver based on the current round number. This ensures that in a fault-free
setup, given periodic heartbeat message exchange, each state view update is propagated to all cluster
members in a maximum of [logs(|C|)] subsequent rounds. The heartbeat destination identifier /D py;

is selected based on current round R; as:

IDpg = IDgre +2871 mod |C|: 1 < R; < [loga(IC))]

Non-Failure case: The worst case incurred by the gossip transmission between i and j in the
non-failure case corresponds to the sum of delays on the longest directional gossip path (but limited

by log>(|C|)) and the signaling interval T:

log>(|C)) loga(ICY) o
Tp(, /)= Y. (u+Ts):he | ]
=1 k=1

where set Wli’j contains the k-th largest element of delay set D/ C O (union of delays for all

links of all unidirectional gossip paths between i and j), determined using induction:

H ={aeD;’ 1a>bVbeD,,

‘b D = D i = pyid \ g
with D7 = D D = D)7 \H,

Failure case: For the failure case, we assume an availability of only one path between the replicas
i and j, hence the worst-case dissemination delay corresponds to the sum of all delays across all replica

pairs on the longest gossip path #; ; and the periodic signaling interval Ts:
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Tp(i,j) = Z (dkg+Ts) i diy €D
(k,l)efoi,j

4.2.3.2 Best Effort Broadcast (BEB-D) Dissemination

Heartbeats in BEB-D are propagated from source replica to all remaining cluster members concurrently
in a single round. In contrast to RRG-D, in the non-failure case messages must not be relayed, and
each message transmission incurs an overhead of O(|C| — 1) concurrent transmissions. The worst case
delivery time between replicas i and j in the non-failure case corresponds to the sum of the worst-case
uni-directional delay d; ; and the signaling period Ts. In the failure case, intermediate replicas must

relay the message, hence the worst-case equals the gossip variant:

di,j+Ts:dije€D if non-failure case
Io(i.j) = Z (drg+Ts) :dr €D fif failure case
(k,l)EPi,j

We leverage the unidirectional heartbeats and ping-replies as carriers for transmission of the Event

Agreement payloads.

4.2.3.3 Uni-Directional Heartbeat (UH-S) Signaling

With Uni-Directional Heartbeat Signaling (UH-S), communicating controllers advertise their state to
the cluster members in periodic intervals. The periodic messages are consumed by the failure detectors
(¢-FD and Timeout-based Failure Detector (T-FD), ref. Section 4.2.4) to update the liveness status
for an observed replica. The parametrizable interval zg denotes the per-destination round duration

between transmissions.

4.2.3.4 Ping-Reply (PR-S) Signaling

With Ping-Reply Signaling (PR-S) signaling, transmissions by the sender are followed by the destina-
tion’s reply message containing any concurrently applied updates to the destination’s Event Agreement

views (i.e., the local or global agreement matrix or the agreement list).

The imposed worst-case waiting time for both UH-S and PR-S equals the configurable waiting
period between transmissions Ts = ts.
4.2.4 Modeling Failure Detectors Delay

We next outline the worst-case waiting time for a successful local failure detection of an inactive replica
using the ¢-based Failure Detector (¢-FD) [80] and the Timeout-based Failure Detector (T-FD).
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4.24.1 @-Accrual Failure Detector (¢-FD)

To reliably detect a failure, the ¢-FD must detect a suspicion confidence value higher than the
configurable threshold ¢. The function ¢(Ar) is used for computation of the confidence value.

To guarantee the trigger, it must hence hold:

o(Ar) > ¢

where A7 represents the time difference between last observed heartbeat arrival and the local
system time. The accrual failure detection ¢ (At ) leverages the probability that a future heartbeat will
arrive later than Ay, given a window of observations of size ¢y containing the previous inter-arrival

times:

¢(Ar) = —logio(P,, (AT))

Assuming normally distributed inter-arrivals for previous inter-arrival observations, P}, ,(Ar) is
the complementary Cumulative Distribution Function (CDF) of a normal distribution with mean u and
standard deviation 0. We are particularly interested in the earliest time difference A? at which the
failure suspicion is triggered, i.e., the time difference for which it holds (p(AITT ) = ¢. From here we can

directly expand the expression to:

o(A}) = ¢

~logio(P), ,(A})) = ¢

—log10(1 = P.o (A7) = ¢
1-P, o (AF) =107

F

1—%(1 +erf(A\/T§':)) = 1079

Af -
er f(—L ”):1—2-10—¢’
2-0

where er f () represents the error function and er finv() is its inverse [69].

Resolving after A? evaluates to:
AE =N2- 0 -erfinv(1-=2-107%) + u 4.1)

Note, however, that the recalculation of ¢(-) executes in discrete intervals. Thus, to estimate the
worst-case waiting period after which ¢-FD triggers, we must also include the configurable recalculation

interval pg:

Trp = Af + ¢r
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4.2.4.2 Timeout-based Failure Detector (T-FD)

T-FD triggers a failure detection after a timeout period fr has expired, without incoming heartbeats
transmissions for the observed replica. Compared to the accrual ¢-FD detector, it is less reliable and
prone to false positives in the case of highly-varying network delays. The worst-case waiting period

introduced by T-FD corresponds to the longest tolerable period without incoming heartbeats:

Trp =11

where t7 is the configurable fixed timeout interval. In contrast to ¢-FD, its configuration parameter
is intuitive to select. Furthermore, its analytical solution does not require collection of current samples

for u and o estimation (ref. Eq. 4.1).

4.2.5 Modeling Event Agreement Delay

As discussed in Section 3.4.4, the Event Agreement component guarantees that all active replicas have
eventually reached the same conclusion regarding the status of the observed replica. We next formulate

the resulting delay in agreement, incurred by the two introduced instance types.

4.2.5.1 List-based Event Agreement (L-EA)

The induced worst-case delay in achieving the global agreement on the state of a monitored replica

can be expressed (after simplification) as:

Tc =21y -0(C) - (_IIl_a)éTD(i,j) +1)
i,j€

where max; jec Tp (i, j) corresponds to the worst-case dissemination time between any two active
replicas i and j and C is the computational overhead of list processing time in the source and destination

replicas (merger and update trigger).

4.2.5.2 Matrix-based Event Agreement (M-EA)

Assuming confirmation of a failure detection by each active replica, the worst-case duration for global
agreement equals the time taken to exchange the perceived failure updates and reach global and local

agreement on the target’s state:

Tc =4 - (max Tp(i, j) + O(C))
i,jeC

where max; jec Tp (i, j) corresponds to the worst-case dissemination time between any two active
replicas i and j and C is the computational overhead of matrix processing time in the source and

destination replicas (merger and update trigger). Two rounds (two unidirectional dissemination delays)
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are required to synchronize the update in the local agreement matrix between: i) the replica that
most-recently lost the connection to the failed replica; and ii) the most remote other active replica.
Correspondingly, global agreement matrix views are exchanged only after the local agreement is

reached, thus adding additional two delay rounds to T¢ (total of four).

4.2.5.3 Worst-Case Convergence Time

Upper bound event detection convergence time corresponds to the sum of the time taken to detect the

failure and time required to reach the global agreement across all active replicas:

Twc=Tc+Trp 4.2)

Tc and Trpp are both functions of Tp, thus signifying the importance of evaluation of the
performance impact in decoupled manner. In empirical evaluation in Section 4.2.6, we conclude
that the presented worst-case analysis is pessimistic and may be hardly reachable in practice. Hence,
we also highlight the importance of evaluation of the average case in experimental evaluation of

different combinations.

4.2.6 Evaluation and Results: Convergence Time of the Distributed Failure Detection

To evaluate the impact of different instances of the four components of our event detection framework,
we implement and inter-connect each combination as a set of loosely coupled Java modules. We vary

the configurations of particular instances as per Table 4.1 so to analyze the impact of parametrizations.

Parameter Intensity Unit Meaning Entity
Instance

IC| [4,6,8,10] N/A No. of controller replicas ALL

Im [2,3] N/A Confirmation multiplier L-EA
ts [100, 150, 200] [ms] Signaling interval UH-S, PR-S

tr [500, 750, 1000] [ms] Timeout threshold T-FD

() [10, 15,20] N/A Suspicion threshold ¢-FD

Window Size of Inter-arrival

ow [1000, 1500,2000] | N/A Time Observations ¢-FD

@R [100, 150, 200] [ms] ¢ Recalculation time ¢-FD
o(0) 1 [ms] | Processing overhead constant L-EA, M-EA

Table 4.1: Parameters used in evaluation of M-EA, L-EA, T-FD, ¢-FD, RRG-D, BEB-D, UH-S and PR-S.

We inject a failure in a randomly selected replica, and subsequently measure the time required
to reach the local and global agreement on the injected failure. After a fixed period, we recover the
failed replica so to measure the necessary time to reach the agreement on recovery. Here, we omit link

failures so to measure the raw event detection performance in average case.

We repeat the measurements 20 times for each of the 2% couplings, and for each parametrization

extract the following metrics:

1. empirically measured time to reach the local agreement on a remote replica’s failure;

2. empirically measured time to reach the global agreement on a remote replica’s failure and

recovery;,
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3. the average communication overhead per replica; and

4. analytical worst-case failure detection time for observed parametrization (per Eq. 4.2).

We have used iptables to inject communication link failures at runtime (i.e., by forcefully block-
ing communication between individual controllers) and cpuset to attach the processes to dedicated

CPU cores. Replica failures were enforced by sending SIGKILL signal to the targeted process.

4.2.6.1 Impact of Failure Detection Algorithm Selection

Fig. 4.11 portrays the performance of the adaptive ¢-FD and the timeout-based T-FD failure detectors.
We have evaluated ¢-FD with varying observation window sizes ¢w and suspicion thresholds ¢, but
did not observe important gaps compared to the presented cases. The depicted ¢-FD parametrization

corresponds to ¢r = 150ms, ¢ow = 1500, and ¢ = 15.

For T-FD, we varied the timeout threshold . We observe that for networks inducing transmission
delays with little variation, T-FD provides similar performance as ¢-FD, given a low 7 threshold
(i.e., the t7 = 500ms case). For more relaxed parametrizations of t7, active processes take longer to
reach agreement on the updated replica status. Hence, failure detection agreement time of T-FD is

proportional to t7. The performance of both ¢-FD and T-FD suffers for larger clusters.

We note that the advantage of ¢-FD lies in its adaptability for networks with large delay variations,
as it suppresses false positive detection better than T-FD does. The communication overhead, as well

as the time to reach agreement on replica’s recovery were not influenced by the failure detector.

Theoretical worst-case agreement time bounds for detecting replica failures (ref. Eq. 4.2) are
depicted as horizontal black lines for each corresponding configuration in the upper-right Fig. 4.11.
The measured empirical worst-case delay estimations have always stayed below this bound, thus

implying the correctness but also the pessimism of the analytic approach.

4.2.6.2 Impact of Event Agreement Method Selection

We next evaluate the matrix-based M-EA and the list-based L.-EA event agreement. The results are
depicted in Fig. 4.12. We vary all other parameters apart from those of Event Agreement instances

and aggregate the results in the box-plots, hence the relatively large variability in distributions.

M-EA has the advantage of faster agreement on a replica’s failure and recovery. The increase of /3,
multiplier from 2 to 3 showcases the importance of correct parametrization of the selected agreement
instance. With the higher multiplier, the probability of detecting false positives with L-EA decreases,
at expense of requiring a higher number of matching messages to confirm the status of an observed
replica. In contrast, M-EA does not have this drawback as its agreement requires a single confirmation

from other replicas.

Notably, we observe that L.-EA converges faster to the agreement with the higher number of
deployed controllers, but only if BEB-D is used as Dissemination method. M-EA’s performance

decreases with larger cluster sizes.
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Figure 4.11: Impact of selection of the Failure Detection method. T-FD’s performance is inversely proportional
to the timeout threshold fr, and given a low 77, it provides similar performance as ¢-FD accrual detector.
However, ¢-FD is better suited for networks with control channels of high variance latency.

The payload size of matrix view grows quadratically with controller cluster size. Compared to
L-EA, this makes M-EA less efficient in terms of communication overhead, as can be confirmed by

the per-controller loads depicted in Fig. 4.12.

4.2.6.3 Impact of Signaling and Dissemination Method Selection

We next vary the signaling methods and the corresponding heartbeat inter-arrival times. We have
observed no critical advantage of the PR-S over the periodic UH-S design. In fact, PR-S comes at the
expense of a relatively large communication overhead, as bidirectional confirmations are transmitted
on each transmitted heartbeat. For both PR-S and UH-S, we note that the heartbeat periodicity largely
impacts the required time to discover and reach agreement on the replica failure and recovery. The
highest sending rate (at 100ms frequency) results in the best performance for both above metrics, but

clearly comes at expense of the largest communication overhead.

Fig. 4.13 compares the implications of using either BEB-D or RRG-D as the Dissemination method.
BEB-D ensures faster agreement for inactive replica discovery, at expense of a larger bandwidth
utilization. This is due to the design of RRG-D that propagates the messages in a round-wise manner,
thus strictly guaranteeing the convergence time of replicas’ states only after the execution [log,(|C|)]
rounds (in the non-failure case case). With BEB-D, however, the time required to agree on replica

status scales better with the higher number of controllers.
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Figure 4.12: Impact of selection of the Event Agreement method. L-EA takes longer to converge than M-EA,
both for the replica failure and recovery agreement time. [-EA, however, offers a lower total communication
overhead, as well as a smaller computation and memory footprint. Its detection performance scales inversely
proportional with the /5, multiplier. None of the depicted combinations have resulted in false positives, hence
the lower values of /), are certainly practical and can be further tuned.

4.3 Chapter Summary and Outlook

We have shown that, assuming a balanced distribution of controllers in the network w.r.t. the C2C
delays, worst-case response time in a distributed cluster grows in inverse proportion to the control plane
size. Using the proposed analytical modeling, determining the best suited cluster parametrization for a
target network becomes possible without costly hardware setups for experimental evaluation or lengthy
simulation runs. Analytical modeling further provides for corner case coverage and tighter stochastic

guarantees than possible using simulations or experimental sampling.

Using transient solvers, we have proven the benefits of fast rejuvenation on the short-term response
time. The solutions to our models are computationally feasible for both clusters optimized for extremely
high availability (3-5 controllers), and complex clusters that may implemente.g., a sharding-based [182]

design for highly scalable operation (up to ~ 20 controllers).

In fact, assuming single-controller failures and a proper tuning of Raft parameters (i.e., setting low
candidate / follower timeouts), strict response time requirements of < 500ms for TSN control planes
can indeed be provably met by Raft-based SDN controller clusters. Scenarios requiring zero fail-over
time and Byzantine fault-tolerance, however, necessitate design extensions, as shown in later chapters
of this thesis.

In the second part of the chapter we have investigated the delay incurred in agreement on a failed

/ recovered replica’s status using our failure detection framework. The proposed framework considers
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Figure 4.13: Impact of selection of the Dissemination method. The agreement time of gossip-enabled RRG-D
lacks compared to the BEB-D broadcast-based dissemination. However, the gossip approach comes with the
benefit of a smaller communication overhead. BEB-D scales better with the higher number of cluster members,
due to the direct relation between the number of rounds required rounds to converge on an update with RRG-D
and the size of the cluster.

the possibility of limited knowledge of occurrence of network partitions in the controller replicas.
We have highlighted the impact of two instances of each sub-component of the model by means of
exhaustive parametrization and varied cluster sizes. We have shown that the isolated implementation
of each of the discussed components has a notable impact on the expected detection time and the
communication overhead of the overall solution. Finally, we have discussed the analytic formulation

for the worst-case failure detection time and have demonstrated its correctness by empirical validation.

Open points: We provide the response time metrics for a model that assumes an accumulated
distribution of Raft state updates in the latency- and throughput-optimized, batched mode. Extending
the proposed model to support a sequential distribution of updates at high scale is non-trivial using
SAN-based modeling, because of the added state size complexity. Supporting the queuing behavior
when handling client-generated events would require inclusion of additional formalisms e.g., from

Queuing Petri Nets and is considered as future work.

Likewise, we leave the investigation of possible benefits of hardware-accelerated (e.g., P4-based
[46]) distributed failure detection framework for future research. Exposing event detection as a global
service, as well as enabling faster convergence times (e.g., matrix- / list-based merge procedure
in hardware) could lead to a better performing detection and lowered overhead in the end-host

applications, compared to the current model where each application implements its event detection
service independently.



Chapter 5

Lowering Response Time in Fail-Stop
Control Plane

We distinguish two typically deployed models for synchronizing state across a distributed SDN control
plane. The Strong Consistency (SC) model [87, , ] requires that the distributed state across
cluster members is replicated and, following any single state-update at state leader, propagated using
mutual consensus to replicas. In contrast, the Eventual Consistency (EC) model [35, 36, ] omits the
consensus procedure and guarantees that at least one delivery invariant holds. However, the advantage
of non-blocking operations comes at the expense of sacrificing the total ordering of state-updates and

sometimes the system correctness.

In this chapter, we investigate the advantages and drawbacks of strong and eventually consistent
state replication on the performance and the resulting response time of the distributed control plane.
Specifically, we consider the impact of the deployed consistency model on scalability (i.e., scaling of
response time with control plane size) and correctness metrics of the control plane applications. We
evaluate the performance of SC and EC models, and make a case for the novel Adaptive Consistency
(AC) design. We show how, in contrast to the SC model, the proposed AC model offers additional ben-
efits w.r.t. request-handling throughput and response time, while guaranteeing correctness semantics,

that are unachievable with the EC paradigm.

The proposed analysis methods and designs were published in augmented form in [2, 10]. Addi-
tionally, interested readers are referred to our publication [12], which introduces SEER - a data-driven
approach to performance prediction and efficient leader election with goal of response time minimiza-

tion in SC SDN control plane. Due to space constraints, [12] is not discussed in this chapter.

5.1 Background on Different Consistency Models

With the concept of state replication, the SDN controller instances replicate their data store contents
to other members that take part in a logical controller cluster, using a state distribution protocol of
choice (e.g., Raft [3, 87]). When a failure of a controller is suspected, another replica from its cluster

is able to take over and continue to serve future application’s requests. The selection of the consistency

61
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model leveraged by the replication process affects the incurred synchronization overhead in terms of

the resulting packet load, the experienced commit response times and the processing order of commits.

Strong Consistency (SC): In SC, each consecutive operation that modifies the internal state
of the controller is serialized and confirmed by a quorum of replicas, before forwarding the state
and processing subsequent transactions. In the leader-based SC approaches (e.g., in Raft [87] and
Paxos [110]), all requests are serialized by a cluster leader, in order to provide for a consistent
data store view across all cluster followers. Thus, with SC, a large distributed system consisting of
multiple controller replicas, is effectively constrained into a monolithic system where each data store
modification incurs a minimum of two message rounds and a linear message complexity (in the case

of a stable leader) in order to synchronize the controller views [3, , 1.

In contrast to the correctness benefits of the serialization of state-updates, Raft and Paxos posses the
disadvantage of an added overhead in the expected response time and lower availability [3] compared
to using the EC primitives. Namely, a single data store update initiated at a follower replica requires
a round trip to the leader for confirmation; as well as reaching consensus among the majority of
replicas [181]. This leads to an added blocking period and an overhead in confirmation of transactions.
Furthermore, quorum-based consensus algorithms can tolerate a maximum of F' = [C/2 — 1] failures
in a cluster of C controllers. This limitation relates to the requirement of ensuring data consistency
in the case of network partitions, an invariant feasible only when a majority of nodes are involved in
confirming the transactions [68, ]. In the best case, the cluster operates at the speed of the leader,

and in the worst case, at the speed of the slowest follower [3].

Eventual Consistency (EC): In EC model [ 113, , ], state transitions may be delayed and out
out-of-order for an arbitrary period of time. Message updates are advertised in a single round and with
linear message complexity. From SDN controller perspective, each controller instance in EC is able to
autonomously service the client requests. The updates to the internal data store are thus non-blocking
and are executed without incurring an additional delay in SDN application’s processing time [181]. All
reads and writes are performed locally at the processing speed of the local replica. Hence, applications
written on top of the EC primitives proceed their operation without a penalty of confirmation time. The
state-updates in EC are propagated in the background. In ONOS, for example, state distribution across
the EC replicas occurs using an update-push distribution process and the anti-entropy, where replicas
continuously compare their local state and eventually converge the deltas. Furthermore, updates to
the states may be marked with local timestamps, hence allowing for global ordering of updates. EC
favors the performance at the expense of consistency, potentially leading to correctness issues if the
applications rely on the non-staleness of the local state for their correct operation [113]. Namely, the

missing state serialization can result in write conflicts and inefficient decision-making [113].

Adaptive Consistency (AC): AC, similar to EC, realizes the state synchronization as a non-
blocking task. However, after exceeding a configurable number of maximum concurrent per-replica
state-modifications, an AC system blocks further updates until all replicas have synchronized to a
common state [10]. If the system detects that the staleness constraints of an SDN application may
be violated by a concurrent state-modification, it blocks the future state modifications until the state

consistency across all replicas is re-established. Additionally, AC autonomously adapts the Consistency
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Level (CL) metric of the system. This adaptation advocates an asynchronous state synchronization
at a dynamically decided frequency across the controller cluster. Hence, the maximum number of
allowed concurrently executed per-replica transactions varies based on the current SDN application
performance observed at runtime. The adaptation mechanism thus optimizes the trade-off between

correctness and scalability of controller’s decision-making logic.

5.2 Related Work - On Impact of Applied Consistency Model on SDN

Performance

Levin et al. [113] evaluate the impact of an inconsistent global network view on controller-based load
balancer’s performance assuming flexible frequencies of synchronization periods. Their results suggest
that an inconsistency in the SDN control state view across multiple controller instances significantly
degrades the performance of the SDN applications agnostic to the underlying state distribution. In
contrast to our work, the authors generalize the synchronization procedure to a periodic task with
flexible periods. In the case of SC, we consider a continuous synchronization model where on-the-wire
transactions must be serialized in order to ensure a total ordering of decisions. In the EC case, we
assume non-periodic state synchronization, as this provides for a more realistic and better performance

and lower penalty of state staleness, especially for the case of higher request arrival rates.

In [33], the authors compare an adaptive approach to the state synchronization between the
controllers with an approach of using the non-adaptive controllers that synchronize state with a constant
synchronization period. The authors deploy an adaptation module to apply one of the preconfigured
fixed synchronization intervals, which makes the approach inflexible for frequent network changes (i.e.,
varying controller request loads and network congestions). In contrast, we define an adaptation function
which controls the new update admissions in order to preserve the worst-case staleness bounds. Our
work extends the conclusions on the practical applicability of AC by considering constant re-adaptation
of the Consistency Levels (CLs).

TACT middleware [198] enforces consistency bounds among the replicas of a distributed system.
To bound the level of inconsistency, TACT defines consistency measures, including: i) the order error,
which limits the number of tentative writes that can be outstanding at any replica; ii) the numerical
error, which bounds the difference between the value delivered to the client and the most consistent
value; iii) and staleness, which places a probabilistic real-time bound on the delay of propagating
the writes. A well-known arrival rate for the incoming requests is used to estimate the probabilistic

staleness bound.

We distinguish ourselves from TACT by introducing an admission control mechanism for serving
new state modifications at any randomly selected serving instance. Thus, we proactively place

deterministic bounds on the maximum number of allowed isolated local state-updates.

A corner case of the exceeded limit values for isolated Positive-Negative Counter (PN-Counter)

state-updates is related to the issue of conflicting over-reservations. Balegas et al. [35, 36] solve
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Figure 5.1: The presented internal controller model comprising data stores with varying degrees of state
consistency. The controller designer is allowed to select the appropriate data quality based on their application
correctness and throughput requirements.

this issue by implementing an escrow-based bounded counter Conflict-Free Replicated Data Types

(CRDT), so to guarantee that a value of a counter never exceeds some limit value.

We next provide the insights into the realization of our AC-enabled SDN controller.

5.3 Adaptive Consistency: Relaxing the Consistency Requirement

5.3.1 Design Overview

To guarantee a successful synchronization of the committed state-updates across all replicas, we assume
a system with enabled partial synchrony and an eventual synchronous communication model. Thus, to
make progress in SC and AC (during blocking period) systems, a guaranteed eventual delivery of each
state-update to all healthy replicas is assumed. We assume a fair and robust control channel, where

given a non-partitioned network, messages sent infinitely often are delivered infinitely often [150].

Fig. 5.1 presents our envisioned controller design for tolerating Fail-Stop failures. Each controller
executes a number of SDN applications (i.e., path-finding, load-balancing), and each controller instance
executes a copy of each application (ref. Fig. 5.1). SDN applications base their decisions on the current

content of either one or more in-memory data stores which leverage different consistency models.

The controller data store may be partitioned into a number of data-shards. For the SC model,
we analyze a single default data-shard replicated across each replica, and thus a single Raft session
responsible for distribution of all state-updates. EC maps, on the other hand, are data structures
whose synchronization is enforced in the background using gossiping / broadcast dissemination. In
ONOS [39], for example, EC maps are replicated to all controller instances that are members of a
common cluster. Finally, the replication of the AC data structures presented henceforth is handled on
a per data-state instance basis, so to allow for granular guarantees on the minimum synchronization

interval.
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Figure 5.2: High-level architecture of the AC framework. The Performance Inspection Block (PI) block is
responsible for the inspection of the negative effect of the state synchronization on the quality of decision-
making and the generation of a corresponding inefficiency ratio. The Online Consistency Adaptation Block
(OCA) block takes this variable as an input for the adaptation of the CL currently applied for the monitored state.

5.3.2 Relaxation of the Consistency Requirement

The AC framework allows for C.R.U.D. operations on the granular state instances (such as counters,
registers, maps etc.). The operations are eventually synchronized between the controller replicas.
However, in contrast to EC, that allows for enqueueing of an unbounded number of buffered unconfirmed
operations, the maximum number of enqueued manipulations in an AC framework is limited by the
size of an update distribution queue and a timeout-based automated distribution of the enqueued
updates. The maximum size of the state-update distribution queue and the maximum timeout duration
are governed by the currently applied CL. The maximum distribution queue size and the timeout are
maintained at the granularity of an observed data store state. Given an application "inefficiency" metric
and the optimization target, the AC framework decides on the optimal CL to be applied for upcoming

operations.
The high-level process flow of the AC framework is depicted in Fig. 5.2.

Application Design Phase: The application designer writes an SDN application built atop of the
AC framework and parametrizes the adaptation function. The developer must furthermore present
an inefficiency metric related to his application logic (e.g., the optimality of routing decisions [10]),
as well as parametrize the adaptation thresholds / efficiency targets. The specification parameters of
the adaptation target vary with the choice of the adaptation function. We discuss the threshold- and

Proportional, Integral, Derivative Control (PID)-based functions in Section 5.3.6.

Performance Inspection Block (PI) Phase: At time ¢;, the PI block triggers on an eventually
delivered state-update U, initiated by a remote SDN controller replica Cg. In the PI block, each
controller replica Cy, locally decides its own view of the real history of state-updates, by ordering the
updates based on the time-stamp of updates. Let f; denote the time when update U was initiated at

Cg. Then, after deciding the global order of updates, each replica Cy, evaluates the effect of being
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late-notified of the update U. To do so, it compares two histories: i) the set of results associated with
the actual actions taken during the period [fy7,f1]; ii) The set of results associated with the actions
that would have been taken during the period [#y, 1] if the update U had been serialized and known
to Cr. at ty. Thus, two sets of results are stored, the set of real (i.e., suboptimal) decisions, and the set

of ideal (i.e., optimal) decisions.

Online Consistency Adaptation Block (OCA) Phase: An inefficiency metric (i.e., an approxi-
mation factor), estimates the ratio between the suboptimal and optimal decision, and thus the cost of
eventual state-update delivery. The latest measured inefficiency is fed into the OCA. In order to decide
on the best-fitting CL for the observed state, the OCA considers the latest- and, optionally, the history
of previous inefficiency reports. The OCA then disseminates this decision to all cluster replicas. The
overhead of the OCA block is hence centralized at a single controller that collects the remote replica’s
inefficiency metrics and decides on the CL. PI and OCA blocks are pipelined for a particular state, but

are parallelized for updates on different state instances, thus enabling scalable consistency adaptation.

In the following sections, we present the mechanisms behind our prototype AC framework real-
ization, comprising: i) a CRDT-based in-memory data store; ii) a generalized SDN-based Application
LLoad Balancer (SDN-LB); iii) the corresponding PI block; iv) the OCA block comprising the threshold-

and PID-based adaptation functions; and v) the mechanism for cluster-wide state synchronization.

5.3.3 On Use of CRDT:s for State Modeling

Conflict-Free Replicated Data Types (CRDT) [174] are a novel approach to handling conflict-free
distributed updates on a set of eventually consistent data structures. With CRDTs, the isolated views
on a single CRDT instance in remote replicas eventually converge to the same value, independent of
the order of updates. Thus, CRDTs preserve the correctness invariant, even in the case of an increased
network latency and packet loss. Updates to a CRDT monotonically advance according to a partial

order, subsequently converging towards the least upper bound of the most recent value.

An example of a replicated counter datatype is a PN-Counter whose increment and decrement
manipulations commute. Our take on a PN-Counter realization is presented in Alg. 1. Our AC
implementation leverages CRDT registers and set structures as well. For brevity, however, we present

only the PN-Counter here, and refer to [174] for an overview of other data-types.

In AC, individual state-updates are synchronized across the controller replicas, and are stored in
a log-tree, together with their initiation time-stamp, for the purpose of later reference in the PI block.
The accepted updates to a CRDT-modeled state are synchronized across the controller replicas, while
rejections result in data store update failures and subsequent notifications to the requesting applications.
The admission control for new updates is based on the properties of the queue distribution (i.e., the
maximum queue size), governed by the currently applied CL associated with the target CRDT (ref.
Section 5.3.7).

Alg. 1 presents our PN-Counter realization. The respective notation used in Alg. 1 and Alg. 2 is
explained in Table 5.1. Upon a new client request to modify a particular data store object (realized as a

counter CRDT instance), the local controller executes the admission control (Lines 3-9). If the update
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is accepted, the controller MERGEs the update with its local CRDT (Lines 13-17). It then enqueues the
update for a cluster-wide distribution (ref. Section 5.3.7). On receiving the update initiated by a remote
controller, the local controller executes the MERGE function (Lines 22-28). Each CRDT additionally

implements the QUERY function, allowing to read its current state.

Parameter Description
CRr Remote controller replica
Cr Local controller replica
B; Client requesting a CRDT state-update
Ctry PN-Counter targeted for update
ngr Set of PN-Counters stored in Cy.’s AC data store
Uctr, Update request for state Ctry
B[Bj, Ctri] Update-log for client B; and state Ctry
U g'r':"’ ¢ Reported remote update request for state Ctry
U lc"fr‘:l Local update request for state Ctry
S cirl Set of previously logged updates for state Ctry
U(T) Timestamp of the state-update U at Cg
U(R) Client request that resulted in the update U
CLcir, Currently applied CL for counter Ctry
Sg""’ Set of previously stored inefficiency reports
Ty Upper adaptation trigger for the threshold metric
Tr Lower adaptation trigger for the threshold metric
w Window size of considered inefficiency observations
To Target oscillation value
Ig,Pg,Dyg Integral, proportional and differential gains
C LC'S“' Max. distribution queue size for the applied CL.
C L? g*’ Distribution timeout for the applied CL.
Qg e Distribution queue for the unacknowledged state-updates committed at the local replica
OCcir; List of local state-updates acknowledged by all remote replicas
C The set of remote controller replicas

Table 5.1: Notation used in Alg. 1, Alg. 2, Alg. 3, Alg. 4 and Alg. 5.

5.3.4 Performance Inspection Block

The adaptation of the CLs for a particular state is based on a provided application inefficiency metric.
The inefficiency metric is the approximation ratio between the series of observed and optimal results of
an SDN controller application’s decisions. The optimal result comprises the decisions the application
would have made if each update in the system had been serialized. The observed result is the one
the local replica has achieved based on its local state, without consideration of the status of other
replicas. For a replica to compute the optimal result, the knowledge about the content and timing of
the eventually delivered updates must be available. The timing characteristics are necessary for the

total ordering of the observed and eventually delivered state-updates.

The generalized calculation of the inefficiency metric is depicted in Alg. 2. In Lines 6-8 the PI
block identifies the previously executed operations on the observed state, in the period prior to initiation
of the remote update UCtr,:em”’e at the remote replica Cg. Thus, Line 8 yields an array of consistent
entries which correspond to a part of the serialized true history of updates Sy, . Lines 10-12 identify
the set of client requests that have resulted in potentially suboptimal decisions, made in the past by
the local replica Cr, without the consideration of the eventually delivered remote state-update. Lines
14-16 derive the application-specific optimal decisions, given the identified optimal history Sy, ., , the

serialized remote update U, Eet’r':”e and a set of client requests Ry, ..., » previously served in a suboptimal
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Algorithm 1 Distributed CRDT PN-Counter.

1: upon event client-update< B;,Ucyy, > do

2: if Crry € SCE_then
3: success = eval AddToDistributionQueue(Ucyy, )
4: if success == True then
5: B[Bj,Ctri] « B[Bj,Ctri] UUc,
6: merge(Uctr,)
7: notify(Bj, update-success < Ucyy, >)
8: else
9: noti fy(Bj, update-failed < Ucyy, >)
10: else
11: notify(B;, update-failed < Ucyy, >)
12:

13: function MerGE(Uc¢y, )
14: if Ucy, .operation == DECREMENT then

15: Decr|[Ctri] < Decr[Ctri] U Ucyy, .amount
16: else if Uc,,, .operation == INCREMENT then
17: Incr[Ctry] « Incr[Ctri] U Ucyy, .amount
18:

19: function QuErY(Ctry)
20: return(y ; Incr[Ctr]j — % j Decr[Ctri];)

21:

22: upon event remote-update< Cr, < By,Uc;y, >> do

23: if Crry ¢ SC-_then

24 noti fy(CR, update-failed < Ucty, >)
25: elseif Ctry € ngr then

26:  B[B,.Ctry] « B[B,.Ctrc] UUcs,
27: merge(Uctr,)

28: noti fy(CR, update-success < Ucyy, >)

manner. The method CompInefficiency() in Line 20 takes as an argument the consistent (optimal)
history of decisions Sy, ., , and the actual, potentially suboptimal, history of decisions Sy, ,....,- It then

returns the inefficiency (i.e., the approximation ratio) ¢ given the two series of decisions.

Let o® and oR denote the cost of suboptimal and optimal decisions for a request R, respec-

tively. The binary value of XR denotes an inefficient result, induced by the staleness (caused by

subopt
synchronization delay):
R 1 whenoR >R
X —
subopt — R R
0 wheno' <o,

u o

CompInefficiency() and AppLogic() functions are application-specific implementations. In
the next section, we present an exemplary CompInefficiency () realization of an SDN-LB [138]. Its
AppLogic() realization is assumed to optimally assign each incoming client request to the replicated
server instances based on its current local view of the server resource utilizations. We evaluate the

algorithm in Section 5.4.
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Algorithm 2 Inefficiency calculation for a distributed CRDT.

1: procedure HANDLE NEW COUNTER UPDATE
2: upon event update < CR, Uctrzemote > do

11:
12:
13:
14:
15:
16:

17:
18:

19:

20:
21:
22:

S A A

SUcnst = 0
SUinCnsr = 0

for all U'9c! e Scipy do

Ctry

if Uoel(T) < Ugemo'(T) then

Ctry

SU('nsr — SUcnsr U,

local
for all UC?;VZ € SC”,IEJ do
if Ulocal(T) >= Ugsmote(T) then

Ctri

RUincnsr « RUincnst U,

for all Ry € Ry,,,.,,,, dO

localOpt R
Ctry = AppLOglC(RU, SUcnst
SUcnst - SUcnst v UctrliocalOpt
remote
SU('nsr — SUcnst U UCl*rk
remote

SUincnst — SCl’r,Ej U UC[rk
¢ = Complnefficiency (Su,,,..ist» SUcns:)

reportinef f(¢)

local
Ctry

Ctry

local(R)

)

5.3.5 An Exemplary Inefficiency Metric for an Online SDN-LB

For a set of defined data store states S and a state-update U (t —n), timestamped at time ¢ —n, let T (t —n)

be the matrix of observations of the states encompassing the period [ — n .. t]. Then, T(z — n) is an

|S| X n matrix.

Let S(i) be the i-th vector of the observed state values at time instant ¢ — n + i, so that:

S(@) = (s1(0), $2(0)..sm (1)) : S(i) € T(1 = n) s.t. Nres (i) = |S(D)]

First, let Sy

incnst

contain the suboptimal (real) history of state-updates. Let Sy

accordingly hold

cnst

the computed ideal (optimal) history of state-updates (computed as per Lines 18-19 of Alg. 2). Then,

for each vector (time-point) i of observed state values Sy, ..., and Sy, we can compute the costs of

optimal and suboptimal decisions at time i, O'fi and a',f" respectively, using the standard deviation:

)

R; _

)? where s;(i) € Sy,,,, (i)

1 Nres (P)
— (s7(0) = pgr,
Nres(l) = J Scnst
1 Nyes (i)
— (s;(0) = pgr
Nres (l) Z / Sincnst

J=1

)2 where 5;(i) € Sy, (i)
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where

re?(l) S(])

Rp= 5.1
IJS res(l) ( )

represents the mean utilization of resources at time-offset i, and R; represents the client request at
time-offset i. After computing the costs of optimal- and suboptimal decisions, the average inefficiency

@ for the observation interval T (¢ — n) is defined as:

T
AR Uu

T

5.3.6 Online Consistency Adaptation Block

The OCA block is responsible for the collection of computed inefficiency values and their online
evaluation. The output of the OCA block is the adapted CL for the observed state instance. The
computed inefficiency value ¢ is input into the OCA block and the adaptation function reportIneff ()
is called, as depicted in Fig. 5.2 and Alg. 2, respectively. We next present two methodologies for

adapting the CL, given a historical set of inefficiency reports:

* Threshold-based CL adaptation: If the observed mean inefficiency over a window of inef-
ficiency observations of size W is below, above or in between the lower and upper thresholds,
the adaptation function decides to raise, lower or keep the currently applied CL, respectively.
Threshold-based CL adaptation is specified in Alg. 3.

* PID-based CL adaptation: In addition to the integral part, the PID-based feedback compen-
sation also considers proportional and differential parts of the recent inefficiency reports. Each
part can be assigned a corresponding weight, thus allowing to favor either a fast adaptation

response or long-term adaptation accuracy. Alg. 4 describes the procedure.

Algorithm 3 Threshold-based CL. Adaptation.

1: procedure HANDLE NEW INEFFICIENCY REPORT
2: function REPORTINEFF(¢))

Sgtrk - Sgtrk U¢
Skiv = 85 USG =W 1S ]

S
SR g (i)
|SRlv‘

Rl

HSgyy =

if HUSg;, = Ty then
raiseCL (CLcyr,)

elseif ug,, <7 then
lowerCL (CLcyy,)

YW
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Algorithm 4 PID-based CL. Adaptation.

1: procedure HANDLE NEW INEFFICIENCY REPORT

2:
3:
4:

Lo

10:

12:

function REPORTINEFF(¢)

Sitrk - Sitrk Ug

Prerm = Pg - (To = S§'™ [1S5""*|1)
Is§ " |
i=|Sg "k |-w
Dierm = Dg - [(SG™ [1SG" (1 = To) = (8" 1S5 | = 1] = To)]

Iterm = Ig - 2 (Sg”‘ki -To)

T :=Pterm + Iterm + Dterm
if T > T then
raiseCL (CLctr,)
else if 7 < T then
lowerCL (CLcyy,)

5.3.7 State Synchronization Strategies

To limit the amount of unseen updates for a particular state on a diverged controller replica, AC ensures

that a reliable distribution of a bounded set of updates has occurred before a new data store transaction

for the target state is allowed in the system. Each time a client requests a new state-update, we evaluate

the number of previously submitted unconfirmed state-updates on the local replica. If this number

is above the maximum queue size governed by the currently applied CL, the transaction is rejected.

Otherwise, the state-update is enqueued in a per-state First-In, First-Out (FIFO) queue. We distinguish

two abstractions of state-update distribution abstractions, with unique trade-offs in terms of response

time and the generated control plane load. Both abstractions ensure limited staleness by bounding the

maximum number of enqueued isolated updates per replica:

» Fast-Mode State Distribution The first procedure of Alg. 5 realizes this distribution abstraction.

If the actual occupancy of the state distribution queue is below the CIL-governed threshold, the
state-update is admitted for processing (Lines 3-6), otherwise it is dropped (Lines 7-8). Admitted
updates are prepared for the distribution to other cluster members. The unconfirmed updates in
the system are first enqueued in the distribution queue (Line 4). The distribution procedure then
serializes outstanding unconfirmed updates and distributes these to remote replicas (Line 5). The
sender replica then waits on the asynchronous confirmations for the individual updates. After
all active replicas have acknowledged the state-update(s), the sender removes the acknowledged

updates from the distribution queue.

Batched-Mode State Distribution The second procedure of Alg. 5 realizes this distribution
abstraction. The transmission of a series of unconfirmed updates on each new update has the
advantage of the lowered response time and reliability in the case where some of the previously
sent out packets are lost. Nevertheless, generation of a new frame for each new state-update may
cause unnecessary load if the response time is not the optimization criterion. For such scenarios,
we have realized a batching queue that collects a number of state-updates (Line 4), up to the
maximum amount defined by the applied CL for the particular state, and distributes these in a

batch to the peer replicas (Line 7). For infrequently updated state-instances, we introduce an
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asynchronous timer that triggers the state-update distribution whenever a non-empty queue is
not distributed for the duration of time specified by the applied CL (Lines 14-17).

Algorithm 5 Fast-Mode and Batched-Mode distribution of state-updates.

1: procedure FAST-MODE DISTRIBUTION
2: function EVALADDTODISTRIBUTIONQUEUE(U g’ tcrzl)
. . Ctre
3: if occupzed(Q‘CE"k) < CLQgrk then
4: enqueue(Qgtrk,UlC"t‘;Zl)
. . . E
5: distribute(C, QCtrk)
6: return True C
. . . E tri
7 else if accupzed(QC”k) > CLQS then
8: return False
9:
1: procedure BATCHED-MODE DISTRIBUTION
2: function EVALADDToODISTRIBUTIONQUEUE(U g’ tcrzl)
. . . C
3: if occupled(Qgtrk) < CLQgrk then
4: enqueue(Qgtrk,UlC"tcrzl)
. . Ctre
5: if occupled(Qgtrk) == CLQ?" then
6: Tctr, == null
7. distribute(C, QCtrk)
8: if Tcyy, == null then
9: TCtr, = init-timer(CLS)
10: return True C
11: else if occupied(Qgtrk) > CLQtSr" then
12: return False
13:
14: upon event expired < Tcyy, > do
15: Tctr, == null
16: if occupied(QIétrk) > 0 then
. . E
17: distribute(C, QCtrk)
1: procedure ON ACKNOWLEDGMENT OF DISTRIBUTION (FAST- AND BATCHED-MODE)
2: upon event acknowledged < QCcyy, > do
3:  forall Ulcofrfl € OCcyy, do
4: ngrk .remove(UlCi’t‘;Zl)

5.4 [Evaluation and Results: Comparison of AC, EC and SC in
Distributed SDN Control Plane

SDN Load Balancing: To present the trade-offs in deploying either SC, EC and AC in a multi-controller
testbed, we have implemented and evaluated a distributed load-balancer application (SDN-LB) as a
component of a modified ODL [123] distribution. The SDN-LB allows for the embedding of isolated
independent services via a Yet Another Next Generation (YANG)-modeled Representational State
Transfer (REST) interface, characterized by the type and cost (i.e., comprising a capacity requirement).
A data-plane SDN-LB has been investigated in the past in the context of the link-load distribution
scenarios [113, ]. However, we generalize the goals of the SDN-LB to support allocation of any

type of resources (i.e., bandwidth / CPU / memory) on the selected optimal service node, given a subset
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of feasible candidate nodes and their current utilizations and capacities as inputs. The algorithm then
decides to assign the service request on the node deemed as optimal w.r.t. total balance of resource
utilization. We adapt the algorithm defined in [138] to facilitate immediate scheduling, i.e., an online

resource mapping process.

SDN Path Computation: We evaluate the inefficiency of path finding computation in an AC setup,
on example of a cluster-aware path-finding SDN application. The projected inefliciency is a function
of number of controller replicas, the active CL, client traffic model and the network topology size.
The application utilizes a bandwidth-constrained Dijkstra implementation to identify and reserve paths
for uniformly selected source and destination pairs in a variable-size grid network. Due to the space
constraints, however, we do not include this contribution here, but instead refer the interested reader
to [10].

We model the state of the current reservations and the available resources as in-memory state
instances in our data store realizations. SDN-LB decisions are made based on the current value of
these states. Upon each successful embedding, the current node utilization is updated to include the
cost of the latest request. The controller is then in charge of disseminating the local reservation update

using the update-distribution and commit mechanism implemented by the underlying data store.

In the case of SC, every update in the distributed data store is serialized by the Raft leader. In EC
and AC, each new resource reservation necessitates an update to the respective CRDT PN-Counter (ref.
Alg. 1). Combined with the commutative increment / decrement operations, the PN-Counter ensures
eventual convergence in both models and thus represents a good data structure fit for resource tracking
realization. The updates to the PN-Counter in AC are queued and distributed across the cluster based
on the CL-timer and maximum queue-distribution thresholds, governed by the currently applied CL.
The adaptation function (ref. Section 5.3.6) adapts the CL, and thus manipulates the worst-case time
required to synchronize the counters. Thus, the adaptation affects the quality of the embedding when
using AC. The inefficiency metric provided as an input for the consistency adaptation ¢ maps to the
approximation ratio introduced in Section 5.3.5. In EC, state-updates are queued in a state-specific

FIFO distribution queue and are distributed without waiting.

Data Store Implementations: To empirically compare the effects of deploying the different
consistency models, we have implemented and integrated in ODL the three data stores:

¢ SC: The SC data store is realized using the unmodified Raft [87] implementation atop of Java
and Akka.io! concurrency framework included in the ODL’s Boron-SR4 distribution. We have
modeled the data-models required by the generic SDN-LB using YANG?2. We then synthesized
these models into REST APIs using ODL’s YANG Tools? compiler.

* AC: The AC implementation is based on the algorithms presented in Section 5.3.2. The
framework is implemented as a set of Java bundles, and has been integrated in ODL’s OSGi

! Akka Clustering and Remoting - https://akka.io/

2YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF) - https://tools.ietf.org/html/
rfc6020

3YANG Tools - https://wiki.opendaylight.org/view/YANG_Tools:Main
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environment as an in-memory data store in parallel to the SC. In AC, as above, we expose the
data-model for the SDN-LB application using the YANG and REST APIs. Additionally, the CL
adaptation as well as the distribution of the CRDT state-updates (Section 5.3.7) require a new
protocol definition. We have used Google Protobuf“ to describe the data structures and serialize

the on-the-wire transmissions.

* EC: In the AC realization, the update-distribution queue thresholds are derived from the speci-
fication of the currently applied CLs. In EC, however, the CLs hold no relevance for the state
distribution, hence the maximum queue sizes of the distributed state-updates are unbounded and

can grow infinitely for high request arrival rates.

On topology and parameter selection: We base our evaluation of the consistency models using an
in-band OF control plane and an emulated forwarding plane, consisting of a number of interconnected
OVS instances isolated in individual Docker containers. We have emulated the Internet2 as well as
a standard Fat-Tree data-center topology, controlled by a 5- and 4-controller cluster, respectively. To
reflect the delays incurred by the length of the optical links in the geographically scattered Internet2
topology, we assume a travel speed of light of 2 - 10%m /s in the optical fiber links. We derive the
link distances and hence the propagation delays from the publicly available geographical Internet2
data [225]. The links of the Fat-Tree topology were modeled to incur a variable propagation and
processing delays averaging 1ms. In the Internet Service Provider (ISP) topology we leveraged
a controller placement that targets the maximized robustness against the controller failures and a
minimization of the probability of occurrence of switch partitions, as per the optimal placement in [86,

J. The resulting controller placement is depicted in Fig. 5.3a. SDN controller replicas in the

data-center topology are assumed to run on the leaf-nodes, deployed as VMs [89] (Fig. 5.3b).

(a) Internet2 topology [86] (b) Fat-Tree topology [89]

Figure 5.3: Exemplary network topologies and controller placements used in the SC, AC and EC evaluation.
Elements in green and blue represent the forwarding and compute devices, respectively. Red elements are the
ODL instances placed as per [86, 89].

We model the arrival rates of the incoming service embedding requests using a N.E.D. [96]. To
emphasize the effects of the EC on the quality of decision-making in the SDN-LB, we distribute
the total request load non-uniformly across the replicas. The arrival rates and the per-replica load

weights are included in Table 5.2. The Docker- and OVS-based topology emulator, as well as the 5

4G00gle Protocol Buffers - https://developers.google.com/protocol-bufters/
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‘ Parameter Model Value ‘ Comment
‘ Number of Replicas SC, AC, EC [47,5%] ‘ Internet2* and Fat-Tree
CLs (Granularity) AC [1..10] Ref. Alg. 3 and 4
| CLYH AC [3..15] \ Ref. Alg. 5
cLye AC [100..1000] Ref. Alg 5
| Initially applied CI AC 3 \ N/A
Py AC 0.2 Ref. Alg. 4
| I AC 0.2 | Ref. Alg. 4
D, AC 0.1 Ref. Alg. 4
| To AC 2 \ Ref. Alg. 4
w AC 5 Ref. Alg.3 & 4
| T AC L5 \ Ref. Alg. 3
Ty AC 3.5 Ref. Alg. 3
‘ SDN — LByc SC, AC, EC 2 ‘ SDN-LB - No. service types
SDN — LBys SC, AC, EC 2 SDN-LB - No. servers
| SDN - LBc.,,, SC, AC, EC [500..600] | SDN-LB - Service cost
e e [1,1,2,1,5]* Req. load for Internet2* and
Cweights SC, AC, EC [1,2,2,5] qFat—Tree‘ topologies

Table 5.2: Parametrizations used in experimental study of different consistency models.

controller replicas, were deployed on a single commodity Personal Computer (PC) equipped with a
recent multi-core AMD CPU and 32 GB of Random Access Memory (RAM).

5.4.1 Response Time Impact of Consistency Model Selection

We define the control plane response time as the time duration required to accept, distribute and
confirm a single new state-update in the underlying distributed controller data store. Fig. 5.4 depicts
the box-plots for the measured commit times in the case of SC and AC models. AC (local) showcases
the time required to apply an update to the local replica and return a corresponding acknowledgment
at the requesting application and is in this regards equivalent to a single-replica and EC deployment
model. The AC (W=3) case corresponds to the time duration needed to converge the state-update
request at 3 of 5 replicas. Thus, in the case of failure or partitioning of a single replica, the remaining
replicas can converge on the latest state value, providing for equivalent failure tolerance capability as
the SC model.

The analogue case for the SC replicas is depicted in the two right-most box-plots. An SC cluster of
5 replicas similarly tolerates a maximum of 2 controller failures (due to the majority constraint imposed
by the CAP theorem [149]). Compared to the AC (W=3) case, the SC model offers the advantage of the
serialized data stores updates. This benefit, however, comes at a high cost of minimum, average and
worst case response time, especially when state-update requests are received at a follower. An incoming
state-update request at the leader leads to the faster commit confirmations, as one less uni-directional

packet-transmission delay from the followers to the leader is required.

The worst-case commit time in the AC (W=5) case is similar to the optimistic SC case. It results in
a commit time increase, due to the geographical separation of the controllers in the Internet2 topology.
The SC (Follower) case considers the update requests received at one of the followers that require
transmission and subsequent serialization at leader, as well as the majority consensus to commit the

update, leading to an increased resulting response time.
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Figure 5.4: The response time of the AC and SC data stores in Internet2. The best-case response time in AC
corresponds to the AC (local) case (a non-blocking update). Compared to SC configuration with 5 controllers, AC
(W=3) configuration depicts a better worst-case commit-time performance, while providing for same availability
in case of intermediate replica failures. The AC (W=3) and AC (W=5) blocking periods, however, only occur
when the state-update queue is filled and a distribution is necessary to guarantee the staleness bound. In contrast,
the throughput of the SC cluster suffers specifically in the case where updates are committed on the Raft nodes
assigned a follower role, thus confirming results of [181].

5.4.2 Correctness of Application Decision Making

Fig. 5.5 visualizes an exemplary adaptation process in the AC framework. In particular, blue, green
and cyan lines depict the CL applied for the SDN-LB-related PN-Counter instances on three different
controller replicas. Red and black lines correspond to the actual capacity assignments managed by
the SDN-LB instances on the different replicas. The resources are assigned on two different servers
providing for the utilizable capacity. In case of a strongly consistent SDN-LB (SC), the black and red
lines continuously overlap as the state of reservations is serialized and an optimal placement executes for
each incoming service embedding request. Fig. 5.5b highlights the CL adaptation at 905000 us, where
the imbalance (i.e., inefficiency) of the SDN-LB leads to an adaptation trigger and a steep decrease
of the utilized CL from 10 (most relaxed) to 0 (most strict). The CL hence adaptation modifies the
Circ and worst-case timeout CLS* | as per Table 5.2. With

os TO °
the strictness of the CLs, the SDN-LB resource assignment discrepancy decreases, but the overhead of

maximum available queue capacity CL

blocking time for new state-updates increases.

Fig. 5.6 depicts the measured inefficiencies in the SDN-LB’s assignment for the case of AC- and
EC models in Fat-Tree. AC uses the threshold-based adaptation of the CLs, and depicts a faster
convergence in the case of the Fast-Mode based AC update distribution, compared to EC. Indeed,
the Fast-Mode converges first to the worst-case inefficiency for all depicted request arrival rates. The
Batched-Mode shows a lower average inefficiency than the EC model in the case of the request arrival
rates of 2 ms. For less frequent 5 ms arrivals, Batched-Mode state-update distribution shows higher
mean inefficiency than the EC case. This is due to Batched-Mode collecting and distributing the

outstanding state-updates only after a queue-threshold is exceeded or a scheduled CIL-governed timer
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(a) PID-based CL adaptation (b) Threshold-based CI -adaptation

Figure 5.5: PID-based (a) and threshold-based (b) adaptation of CLs. The PID-based approach is more volatile
compared to a rather resistant threshold-based approach. As per Alg. 3 the threshold-based approach keeps the
current CL. unmodified, as long as the measured inefficiency stays in a specific range (i.e., between the specified
upper and lower thresholds). The PID-based approach, on the other hand, oscillates around the specified target
inefficiency value.
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Figure 5.6: ECDFs of reported inefficiencies for various deployed consistency models and request arrival rates
in the Fat-Tree topology (ref. Fig. 5.3b). High inefficiency values indicate a more unbalanced performance of
the distributed SODN-LB instances. Fast-Mode configurations result in the lowest worst-case inefficiency values.
For the Batched-Mode distribution, the system has a similar average inefficiency as the EC. This is related to the
delayed distribution of the state-updates, which is initiated only once the distribution queue is fully utilized. In
the case of less frequent request arrivals the distribution queue takes the longest to fill up.

has expired. However, the time duration taken to fill up the distribution queue for the Batched-Mode
is inversely proportional to the rate of update arrivals. Hence, compared to EC, the staleness caused

by slow request arrivals offsets the benefits of bounding the concurrent state-updates.

Fig. 5.7 portrays the comparison of threshold- and PID-based AC consistency adaptation, as
well as the EC consistency model in the case of the Internet2. Again, the usage of bounded state-
update distribution queues leads to a bounded worst-case inefficiency with both adaptation functions.
Interestingly, threshold-based adaptation depicts a lower average- and worst-case performance for
the estimated inefficiency, compared to PID model. This behavior is caused by the tendency of the
PID-model to relax the state synchronization frequency more often, thus leading to a slightly higher

inefficiency, at the benefit of higher transaction throughput.
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Figure 5.7: ECDFs of the reported inefficiencies for the Internet2 topology. The average- and the worst-case
inefficiencies of the EC model are larger than in the case of Fat-Tree. This is due to larger C2C network delays
in the geographically spaced Internet2. The AC model deployment does not suffer from this issue because
of the limited amount of incurable staleness, guaranteed by the maximum amount of unsynchronized updates.
Threshold-based adaptation model shows a better performance than PID-based adaptation.
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Figure 5.8: The measured mean inefficiency for the different CLgtSrk parametrizations for the most-relaxed CL.

The larger the maximum allowed state-update queue size, the larger the sojourn time of the locally admitted
state-updates without enforced data store synchronization. Thus, the inefficiency of the system scales with the
number of unseen state modifications.

Fig. 5.8 emphasizes the effect of the design of CL configurations on the average-case inefficiency.
The experienced worst-case inefficiency scales with the number of allowed isolated state-updates at
a single replica. Hence, careful parametrization of the CLL mappings to the maximum state-update
distribution queue sizes and the timer duration is necessary to ensure the right trade-off between

inefficiency and synchronization overhead.

5.4.3 Overhead of State Distribution

Table 5.3 portrays the incurred message load in the C2C communication for the transmission of state-
updates resulting from 1000 subsequent SDN-LLB mapping requests, distributed uniformly across all

instances. The portrayed result considers the average per-instance overhead in a cluster of 5 replicas.
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The AC’s Batched-Mode incurs the lowest message overhead due to its useful property of state-update
aggregation. The SC mode depicts a lower number of frames transmitted during the per-second
measurement intervals. However, the average frame size of the SC-transmitted messages is larger
compared to AC and EC deployments. The total time taken to serve 1000 SDN-LLB embeddings with
SC takes longer due to each write and read request requiring serialization. Lastly, AC’s distribution
time suffers compared to EC, since EC processes transactions as fast as possible and does not implement

the overhead of consistency adaptation.

‘ Consistency Model Distr. Time [s] Avg. PPS Avg. Packet Size [B] ‘ Avg. Load [B/s]
EC 25.12 3802 124.5 469k
SC 115.12 326.82 2612.6B ‘ 844.2k
AC (Batched-Mode) 39.501 3460 105.4 365k
[ AC (Fast-Mode) 40 3552 102.5 \ 372k

Table 5.3: Per-replica load when serving 1000 SDN-LB requests in a 5-controller cluster synchronized using
SC, AC or EC.

5.5 Chapter Summary and Outlook

This chapter presented the realization of an AC framework. On an example of a 5-controller SDN
cluster and two realistic network topologies, we highlighted its advantages w.r.t.: i) the control plane
response time compared to the SC approach; ii) the decision-making efficiency compared to the EC

approach; iii) the generated C2C load compared to both SC and EC.

We have introduced two distribution abstractions that enable the C2C state exchange, while
minimizing the response time and the generated average load. Furthermore, we have presented
two adaptation functions that adapt the system in a closed-loop manner, so that the target inefficiency

incurred by the eventuality of state delivery persists according to the SDN application’s expectations.

AC-based distributed SDN control plane paves the way for scalable control plane designs. Enabling
non-synchronized data plane configurations is especially relevant for systems that require fast response
(i.e., on-demand TSN stream establishment). By not relying on costly consensus on each resource
state update, end-clients profit from shortened request-handling time. If state synchronization conflicts

occur and correctness is endangered, our system adapts autonomously to a more appropriate CL.

Open points: Future iterations of our work should evaluate the AC framework in scenarios
comprising larger number of controllers. Large-scale demonstrations may further emphasize the
benefits over the alternative consistency approaches. Additionally, the introduced adaptation functions
take as input the SDN application-triggered inefficiency reports. The benefit of the consistency
adaptation, however, comes at the expense of an expanded model parametrization space and the
necessity of an SDN application re-design. Further attention should hence be put on simplifying
the related development efforts, e.g., by automating the generation of "good" parametrizations using

established parameter tuning methods [32, 1.






Chapter 6

Enabling Fault Tolerance in Byzantine
Fault Tolerant Control Plane

The Fail-Stop approaches discussed in previous chapters rely on the assumption of correct decision-
making in the controller replicas. Successful introduction of SDN in the critical industrial networks,
however, also requires catering to the issue of unreliable (e.g., buggy) and / or malicious controller
failures [179] (ref. Section 2.2.1). We identify the faults resulting in these types of failures as Byzantine
faults and classify the designs tolerating these as BFT approaches.

We henceforth propose MORPH, a distributed SDN control plane capable of tolerating Fail-Stop
and Byzantine failures, that distinguishes and localizes faulty controller instances and accordingly
dynamically reconfigures the control plane. Furthermore, we present an Integer Linear Program (ILP)
formulation of the corresponding C2S connection assignment problem that leverages the awareness of
the source of failure (i.e., Fail-Stop or Byzantine-induced), in order to optimize the number of active

controllers and minimize the C2C and C2S reconfiguration delays.

The proposed re-assignment executes dynamically after each successful failure identification.
2Fp + F4 + 1 controllers are required to tolerate Fj; Byzantine and F4 availability-induced failures.
On each successful detection of Fj; Byzantine controllers, the proposed design reconfigures the control

plane to require a single controller message to forward the system state.

We evaluate MORPH in an emulated testbed comprising up to 16 controller replicas and up to 34
switches, so to tolerate up to 5 unique Byzantine and additional 5 availability-induced controller failures
(atotal of 10 unique controller failures). We quantify and highlight the dynamic decrease in the packet
and CPU load and the response time after each successful failure detection. The demonstrated scenario

focuses on a resource-aware routing application replicated among MORPH controller instances.

The proposed approach relies on BFT assignment of sequence numbers for each incoming request.
The sequencing of the requests is done in order to guarantee serialization of request execution in
each controller replica. The sequencing procedure takes place during the C2C interaction prior to
computation of the outputs of requests. In this chapter, we provide the general design of a distributed
control plane capable of tolerating Byzantine failures, the distributed client request execution, request

output comparison in configuration targets, identification of Byzantine instances and subsequent control

81
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plane reconfiguration. We detail the particularities surrounding efficient C2C interactions required for

sequencing of client requests in the subsequent Chapter 7.

The proposed MORPH design and its analysis were published in augmented form in [1].

6.1 Related Work - On Enabling BFT in Context of SDN

Prior to introducing MORPH, we henceforth give a brief overview of existing research on enabling
BFT in context of SDN.

The prominent open-source SDN platforms such as ODL [123] and ONOS [39] support no means
of identifying Byzantine failures. Indeed, the single-leader Raft is susceptible to Byzantine failures.
The Raft leader processes and broadcasts any new data store updates to the followers before an update
may be considered committed. This introduces multiple attack vectors, e.g.: i) the adversary may
generate malicious state updates in each follower if the leader controller is in the possession of a
Byzantine adversary; ii) inconsistencies in the state view of master and followers if adversary takes
over the Raft follower [113]; iii) incorrectness issues, e.g., a continuous non-convergence of controller

cluster leadership [201].

The definition of the problem of unreliable SDN controller instances, including an initial solution
draft, was proposed in the security context in [115]. The authors discuss the requirement of a minimum
assignment of 3F+/ controllers to each switch at all times, so to tolerate a total number of F Byzantine
failures. 3F+1 matching messages are required during the agreement and 2F+1 during the execution
phase in order to reach the majority and consensus on the correct response after the comparison of the

computed configuration outputs [197].

BFT-SMaRt [41] proposes a strong consistent framework for supporting Byzantine- and Fail-Stop
failures. The authors abstract away the notion of a "failure" to consider controllers failed, if either
the controller replica crashes and never recovers or if the replica continues repeatedly crashing and
recovering. Their follow-up work [47] applies the Bft-SMaRt in order to improve the data store
replication performance in a strong consistent SDN. They evaluate the workload generated by real

SDN applications as they interact with the data store.

Both works do not consider the issue of C2C synchronization, where an adversary replica may
initiate malicious state synchronization procedure and thus commit malicious database changes in the
correct controllers. Furthermore, they do not cover for the aspects of an adaptive C2S connection
reassignment procedure nor do they distinguish and leverage the difference between Byzantine and

Fail-Stop failures.

A recent proposal for a BET-enabled SDN [128] advocates the usage of a total of 2F+1 instead
of 3F+1 controller instances. The authors propose the collection of F+/ PRIMARY controller
configuration messages at each switch (generated by their PRIMARY controllers), and a delayed
request to the remaining F SECONDARY instances if an inconsistency is detected in the switch. The

configuration message is flagged as correct only after a minimum of F+/ matching configurations are
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received in the switch. The authors do not consider the impact of source of failure nor the impact of

their proposed design on the correctness of the C2C state synchronization process.

6.2 MORPH: A Design Enabling Byzantine Fault Tolerant Operation

6.2.1 Terminology

We rely on the following terminology to introduce MORPH:

* A Byzantine controller is an active but unreliable controller instance. It may disguise itself as a
correct controller for an arbitrary period of time. Byzantine controllers may compute an incorrect
result as a consequence of e.g., a buggy internal state or an adversary takeover. Until suspected, all

Byzantine controllers are considered correct.

* A correct controller is an active controller instance which is not declared Byzantine and which

actively participates in the cluster.
* An incorrect controller is a controller that is either declared Byzantine or is unavailable.

e An unavailable controller is an inactive controller as a result of a hardware / software failure. It is
unknown if an unavailable controller was either correct or Byzantine at some point in time prior to

its failure.

6.2.2 System assumptions

We extend the typical SDN control plane with additional functional elements to enable a BE'T operation.
The control plane communication between the switches and controllers, i.e., S2C, C2S; and between
controllers, i.e., C2C, assumes an IBC channel [169]. Furthermore, all communication between its
elements (i.e., REASSIGNER, C-COMPARATOR and S-COMPARATOR) is assumed to be signed [148].
Thus i) message forging is assumed impossible and ii) message integrity is ensured in the data plane
during normal operation. In order to prevent a faulty replica from impersonating a correct replica,
correct replicas can authenticate each message using Message Authentication Code (MAC)-based

authentication [53, 65].

6.2.3 Overview of Goals of MORPH

MORPH accomplishes two major objectives, i) data plane protection from Byzantine controllers and
ii) re-adaptation to the optimal network configuration w.r.t. C2S connection assignments based on the

present number of correct and incorrect controllers:

* Data plane protection: Even if there are up to Fj; Byzantine controllers and F4 failed controllers
in the network, the data plane elements must never be incorrectly reconfigured or tampered with
by the incorrect controllers. We realize this protection by leveraging replicated computation of

control plane decisions and their transmission from multiple controllers to the target switches.
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Hence, each switch is connected to multiple controllers at the same time, and only accepts and
proceeds to commit the reconfiguration requests if a sufficient number of matching messages for
reaching the correct consensus was received. If we consider a scenario where Fj; Byzantine
controllers send their reconfiguration messages to switches, it becomes clear that we need at
least Fps + 1 matching reconfiguration messages to reach correct consensus and for the switches

to distinguish a correct reconfiguration request from an inconsistent message set.

For the detection of an unavailability-induced controller failure (i.e., a Fail-Stop failures), we
deploy the ¢-FD failure detector [79, 80] in switches that reliably identifies the failed, non-
Byzantine controllers [49]. Hence, in the case of F4 Fail-Stop controller failures, we only
require one additional backup instance (i.e., F'4 + 1) to achieve a correct control plane protection.
Therefore, in order to protect the data plane from Fj; Byzantine controllers and F4 failed
controllers, each switch has to be assigned at least 2F3; + F4 + 1 controllers. Granted, a switch
will accept the new reconfiguration request already after receiving Fj; + 1 matching messages

from the controllers.

Additionally, individual switch failures may cause packet loss and thus an unsuccessful deliv-
ery of controller messages. If a faulty switch on the control path starts dropping controllers’
messages, the next-in-line switches and dislocated controllers eventually start suspecting failed
connections to the unreachable controllers. The switches eventually raise an alarm at the
REASSIGNER. The REASSIGNER then accordingly marks the unreachable controllers as unavail-
able. F4 unavailable controllers are tolerated by the design. Thus, both failures coming from
unavailable controllers, as well as from the unavailable switches that forward the control packets

to / from unreachable controllers are accounted by F4.

* Adaptation to the optimal network configuration: After the detection of an incorrect controller,
the tamper-proof entity REASSIGNER recomputes C2S connection assignments in order to
achieve the optimal network configuration. The recomputed assignments are distributed to the
controllers and switches in order to reduce the reconfiguration delay and messaging overhead in
the control plane. The definition of the optimal configuration of a network and the reassignment

logic is elaborated in Section 6.3.2.

6.2.4 Architecture for Tolerating Byzantine Failures

The following elements are introduced in the MORPH system architecture depicted in Fig. 6.1:
Northbound Interface (NBI) and data plane clients: The SDN application clients requesting
for a particular controller service. NBI clients are aware of the controllers but not of their roles w.r.t.
switch assignment. Thus, NBI clients report their requests to all available controllers. The data plane
clients feed their requests to a well-defined controller group address. The data plane client requests
are then handled by the neighboring edge switch and are encapsulated as a PACKET-IN message (e.g.,
using OF [122]) and delivered only to the PRIMARY and SECONDARY controllers of that switch.

S-COMPARATOR: A switch mechanism that collects and compares the configuration outputs gener-
ated at each active PRIMARY or SECONDARY controller instance. On discovery of inconsistencies,
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the S-COMPARATOR reports the conflicting configurations to the REASSIGNER. We assume a tamper-
proof operation of the S-COMPARATOR (e.g., realized using the Intel Software Guard Extensions (SGX)
enclaves [211]). S-COMPARATOR cannot be implemented with current OF logic, but requires an addi-
tional software agent, responsible for comparison of arriving control messages. This requirement is,
however, not unique to MORPH and holds for any BFT-enabled system where switches take over the
comparison logic, including [128] and [115]. A running instance of S-COMPARATOR is assumed in
each active switch (refer to Fig. 6.1). Please note that the S-COMPARATOR does not necessarily imply
a user-space software agent relying on the switch’s general-purpose CPU. Advances in programmable
switching hardware [46] can enable hardware-accelerated implementations of the S-COMPARATOR. Our
take on a data plane accelerated S-COMPARATOR is discussed in the next chapter.

C-COMPARATOR: A controller mechanism that collects and compares the controller configuration
messages generated at each active controller replica. In the replica hosting stateful applications (ref.
Section 6.2.5), it withholds the propagation of switch configuration messages as long as the majority
of controller updates remains inconsistent. After collecting a majority of consistent messages, it
updates the underlying controller’s internal state configuration to reflect the configuration update (e.g.,
it updates the status of resource reservations). A running instance of C-COMPARATOR is assumed in

each active controller replica (ref. Fig. 6.1).

REASSIGNER: The REASSIGNER is in charge of detecting the incorrect controllers. It is furthermore
able to find an optimal C2S assignment so to exclude the incorrect controllers and report the updated
C2S list assignments at the controllers and switches. The REASSIGNER is triggered every time a
controller is suspected by an S-COMPARATOR. The trigger is executed independent of the root cause
of failure (i.e., the discovery of a Byzantine or unavailable controller). However, the detected root
cause of failure impacts the selection of controllers considered in the assignment. The proposed C2S
assignment solver is aware of the controllers’ capacities and the worst-case C2S and C2C delays, and
is hence able to take into account the worst-case bounds when executing an optimal assignment. We

detail the assignment procedure in Section 6.3.2.

Note: We cannot trust a single REASSIGNER instance to be correct. To make the REASSIGNER
resistant against Byzantine and availability failures, similarly to controllers, it must be implemented
as a group of replicas that carry out a BFT agreement step after each successful reassignment. For
brevity, in the rest of the paper, we assume a tamper-proof operation of the REASSTIGNER (e.g., realized

using the SGX enclaves [211]).

6.2.5 Distinguishing Application Types

We distinguish two SDN application types: State Independent Applications (SIAs) and State Dependent
Applications (SDAs). SIAs refer to all SDN applications which process client requests independent
of the actual network state. Hence, given a repeated client input, a correct SIA repeatedly generates a
constant, semantically equal response. A representative of SIA is the hop-based shortest path routing
where, assuming no transient topology changes, the shortest path between the hosts remains the same,

regardless of the current link and node utilization.
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Figure 6.1: MORPH architecture comprising the: i) SDN controllers that host the C-COMPARATOR; ii) switches
that host the S-COMPARATOR; iii) NBI and data plane clients; and iv) REASSIGNER element. REASSIGNER
is in charge of dynamically recomputing the C2S assignments after a reported controller failure discovery by
S-COMPARATOR.

In contrast to SIA, SDA refers to all applications which base their decision-making on the current
network state. Hence, if we consider typical load balancing routing, two identical requests (e .g., path
requests) could generate completely different responses (i.e., different routes) from the controller, so

to optimize for the total current resource utilization given the instantaneous network state.

6.2.6 Necessity of Controller-to-Controller Synchronization

Consensus across SDA instances: In aresource-based SDA, such as in a path reservation application,
the weight of each link may depend on existing reservations. There, a consistency issue may arise
if multiple clients concurrently request new embeddings. Due to propagation and processing delays,
different controller replicas may process the corresponding requests in a non-deterministic order and
thus produce inconsistent responses to switches. Thus, a C2C synchronization step is necessary to

agree on the correct message output.

MORPH realized this step after the execution of request. Namely, propagation of configuration
messages to switches is delayed until a sufficient number of matching controller messages is collected
among the controller replicas. In order to achieve the consensus: i) all PRIMARY and SECONDARY
controllers first compute a response immediately after receiving the client request; ii) they next store it
in an internal database and; iii) exchange their decisions using the any-to-any C2C channels. Finally, the
consensus is reached in the C-COMPARATOR when it receives at least | (Regp + Reqs) /2] + 1 identical
responses for a given request, where Reqp is the current number of required PRIMARY controllers

and Regqsg is the current number of required SECONDARY controller assignments per switch.
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Note: In Chapter 7, we investigate the response time advantages of controller replicas synchronizing
on the order of request execution prior to executing the requests. Thus, post-synchronization step

described here then becomes unnecessary.

Proxying mechanism in SDA and SIA instances: Both in the SDA and SIA routing applications,
the establishment of certain long paths is not achievable without C2C synchronization. For example,
a client could initiate a routing request via its neighboring edge switch S 4 to the set of S4’s assigned
PRIMARY and SECONDARY controllers. However, if the determined path contains a switch which is
not assigned to the same set of PRIMARY and SECONDARY controllers as with S 4, the configuration
of the flow rules by the computing controller would not be allowed. Therefore, when a controller
assigned the role of PRIMARY or SECONDARY controller for the target switch compares and validates

the new configuration on the C2C channel, it dispatches a response to the affected switches.

6.3 Detailed MORPH Design

Next we detail the system flow and the algorithms behind MORPH. In the second part, we formulate
the objectives and constraints for the ILP that dynamically reassigns the C2S connections at runtime,
as part of the REASSIGNER logic.

6.3.1 Algorithm Specification
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: handle-packet-in ()
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-
esignal (C, response-sync) '\
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Reqs = Reqs — 1
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either:
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controller-failed ():
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Figure 6.2: A simplified visual representation of MORPH’s workflow and the distributed algorithm execution.
The portrayed workflow depicts the steps of: ((1)-2)) controller-switch assignment; (@—@) client request
dissemination and handling in the PRIMARY and SECONDARY C-COMPARATOR instances; ((6)-(7), -)
dissemination and handling of PRIMARY and SECONDARY controller responses in the affected S-COMPARATOR

instances, respectively; (@—@, @—) dissemination and handling of Byzantine and / or Fail-Stop failures
in the REASSIGNER, respectively.
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The attached algorithms describe the operation of MORPH in more detail. A visual overview of

introduced algorithms is given in Fig. 6.2. We distinguish the following steps:

1. Given a list of controllers and switches, as well as the list of clients and their worst-case capacity
requirements, REASSIGNER executes the initial assignment of C2S connections. It considers the
unidirectional delay as well as the controller capacity constraint. As described in Section 6.3.2,
the REASSIGNER minimizes the total number of active controllers when assigning switches to

controllers. This process is embodied in Lines 1-2 of Alg. 6.

2. The C2S assignment lists are distributed to the SDN controllers and switches. Switches are thus
assigned their PRIMARY and SECONDARY controllers. From now on, any received configuration
message initiated by a remote controller is queued for the evaluation in the switch if and only if
the configuration message was initiated by a controller that belongs to either the PRIMARY or
SECONDARY controller set of that switch. Otherwise, the message is dropped.

3. An end-client sends off their request to the SDN controller, i.e., a request for a computation of
a constrained path, a load-balancing request etc. NBI clients send their requests directly to all
controllers, while data plane clients stay unaware of the location of the controllers, so to simplify
the client-side / user logic [165]. The data plane clients feed their requests directly into the network.
The next-hop edge switch then intercepts and proxies the request to its assigned PRIMARY and
SECONDARY controllers.

4. The PRIMARY and SECONDARY controllers of the switch which initiated the client request
compute the corresponding configuration response and decide to apply the computed response
configuration in the affected switches. We enable the selection of a flexible trade-off between
the switch configuration time overhead and the generated control plane load. Replicas assigned
to a switch are either of PRIMARY or SECONDARY role. Depending on the point in time the
SECONDARY replicas decide to forward the computed configuration responses to their switches,
the overhead in terms of response time and control plane load varies. Therefore, we define the

following two models:

* NON-SELECTIVE: Propagation of computed configurations from SECONDARY controllers
to switches initiates immediately after receiving the client request. In case of the SDA,
new configurations are sent to switches after reaching the majority consensus on the final

configuration message, as explained in Sec. 6.2.6.

e SELECTIVE model imposes an additional step of buffering the intermediate result (either
locally computed in the case of SIA or the majority result in the case of SDA) and forwarding
the result to the switch on-demand, whenever the switch requests additional configuration
messages from its SECONDARY controllers.

In the case of the SELECTIVE model, only the controllers which are the PRIMARY controllers of
the to-be-configured switches forward their request directly to the switch. In the case of the NON-
SELECTIVE model, the SECONDARY controllers also proactively forward their configuration
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messages to the switches. This differentiation is depicted in Lines 9-16 of the SIA-specific Alg. 7
and Lines 11-18 of the SDA-specific Alg. 8.

State Independent Application (SIA): The controllers forward the computed configuration messages
to the target switches if they are assigned either the PRIMARY or SECONDARY role for the target
switch. If the controller that computes the configuration is assigned neither role for the target
switch, the configuration result is forwarded to the switch only after a consensus is achieved on the
actual PRIMARY / SECONDARY controllers of the switch. For SIA, consensus is achieved after
collecting Reqp identical messages on the PRIMARY / SECONDARY instances. Regp denotes
the currently required number of assigned PRIMARY controllers per switch.

State Dependent Application (SDA ): In case of SDA, all correct controllers must first reach consensus
on their common internal state update. To this end, they deduce the majority configuration
message (in Lines 8-9 of Alg. 8). Majority configuration response is necessary in order to omit
the possibility of false positive detection, where correct controllers potentially become identified
as faulty instances, following a temporary controller state de-synchronization during runtime, as
discussed in Section 6.2.6. After determining the majority response, the controllers send the

configuration message to the switches (as in Lines 10-16 of Alg. 8).

5. The S-COMPARATORS collect the configuration requests and decide after Req p matching PRIMARY
messages to apply the configuration locally. In the SELECTIVE scenario where inconsistent mes-
sages among the Reqp PRIMARY messages are detected, the switches contact the SECONDARY
replicas to fetch additional Reggs responses - as depicted in Line 10 of Alg. 9. After receiving
Regq p consistent (equal) messages (Line 12-15 of Alg. 9), the switches apply the new configuration
(Line 15). Thus, the overhead of collection of Regp consistent messages dictates the worst-case

for applying new switch configurations.

6. After discovery of an inconsistency among the controller responses (Lines 9-10 of Alg. 9) or a failure
of an assigned controller (Line 24-25), the S-COMPARATORS wait until Reqp + Reqs messages are
collected, before addressing the REASSIGNER with the controller identifiers and the conflicting
messages (Line 20 of Alg. 9). If a replica has failed, the duration of the time the switch waits before
contacting the REASSIGNER corresponds to the worst-case failure detection period (dictated by the
underlying failure detector, e.g. the ¢-FD [80]). If a switch suspects that a its assigned replica has
failed, it notifies the REASSIGNER as per Line 25 of Alg. 9 and Line 13 of Alg. 6.

7. The REASSIGNER compares the inputs and deduces the majority of correct responses received for
the conflicting client request. If a Byzantine failure of a controller is suspected, both Regp and
Regs are decremented by one for each Byzantine replica. If a replica is marked as unavailable
(independent of the fault type), only the required number of SECONDARY controllers per-switch

Regqs is decremented by one. Lines 4-17 of Alg. 6 contain this differentiation.

8. Based on the updated Reqp and Regs controllers deduced during runtime, the REASSIGNER
computes the new optimal assignment and configures the switches and controllers with the new
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C2S assignment lists. Steps 3-7 repeat until all Fj; Byzantine and F4 unavailable controllers are

eventually identified.

By lowering the number of maximum required PRIMARY and SECONDARY controller assign-
ments per switch, the REASSIGNER minimizes the total control plane overhead in terms of the packet
exchange in both C2C and C2S channels, as well as the time required to confirm new controller and

switch state configurations.

Algorithm 6 REASSIGNER: Controller-switch assignment.

Notation:

S Set of available SDN switches

C Set of available SDN controllers

B Set of detected blacklisted SDN controllers

Ap Set of PRIMARY C2S assignments

As Set of SECONDARY C2S assignments

Reg p No. of required PRIMARY controllers per switch
Reggs No. of required SECONDARY controllers per switch
Fjy Maximum number of tolerated Byzantine failures

F 4 Maximum number of tolerated Fail-Stop failures

Initial variables:
Reqp =Fp + 1
Reqs = Fpa+Fpy

1: procedure CONTROLLER-SWITCH ASSIGNMENT
2: (Ap, As) = Assign-Controllers (S, C)

3:

4: upon event suspect-byzantine < Cp, > do

5: C—C\Cn

6: B — BUCp

7 Reqgp = Regp — 1

8: Reqg = Regg — 1

9: (Ap, As) = Assign-Controllers (S,C, Reqp, Reqs)
10: signal (S, new-assignment< Ap, As >)
11: signal (C, new-assignment< Ap, As, B >)
12:

13: upon event controller-failed < Cy > do

14: C<C\Cr

15: B — BUCn

16: Regs = Regs — 1

17: (Ap, As) := Assign-Controllers (S,C, Reqp, Reqs)
18: signal (S, new-assignment< Ap, As >)

19: signal (C, new-assignment< A, As, B >)

6.3.2 Optimized Controller-Switch Assignment

REASSIGNER assigns the controller roles to switches on a per-switch basis. It takes a list of controllers
and switches, their unidirectional delay and delay requirements, as well as the list of clients and the

client request arrival rates as input.

For brevity, we henceforth define a single objective for the assignment problem - the REASSIGNER
minimizes the number of active controllers, so to lower the total overhead of C2C communication, while

taking into consideration the maximum delay bound and available controller capacities when assigning
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Algorithm 7 C-COMPARATOR: Handling SIA requests in the SDN controller.

Notation:

P Client request (e.g., flow request) initiated at switch S¢

C The set of available SDN controllers

C; The local controller instance

C; The remote controller instance

Rp s; Configuration response intended for switch §;

Ap Set of primary C2S assignments

As Set of secondary C2S assignments

Ag, c; Connection assignment variable for C2S pair (S;, C;)

1: procedure HANDLE CLIENT REQUEST

2: upon event packet-in < Sc, P > do

3: Rp := handle-packet-in (P)

4. signal (C, response-sync< Ci, Rp >)

5:

6: upon event response-sync < Cr, Rp > do

7 if is-sia-consensus-reached(RF) or C; == C, then
8: for all S; € affected-switches(Rp) do

9: if mode == non-selective then

10: ifAS,-,Ci Eﬂp U Ay then

11: signal (S;,response < C;,Rp s, >)
12: else if mode == selective then

13: ifAS,-,Ci Eﬂp then

14: signal (S;,response < Ci,Rp s, >)
15: elseif Ag, ¢, € Ay then

16: store-secondary-response(Rp s;)
17:

18: upon event response-request < S;, P > do
19: signal (S;,response < C;,Rp s, >)

controllers to switches. The mentioned objective additionally allows for implicit load-balancing of

C2S connections, as long as all controllers are instantiated with an equal initial capacity.

Let Ag_ S, and A“Z. S denote the active assignment of a controller instance C; to the switch S; as a
is9] (XS]
PRIMARY / SECONDARY controller, respectively. Then U¢, denotes the active participation of the

controller C; in the system:

+ X AS . >0 VCieC
jES “SJ

Uc, = j€S S (6.1)
0 otherwise
The objective function can then be formalized as:
min »" U, (6.2)

CieC
In the following, we define the constraints of the corresponding ILP.
Minimum Assignment Constraint:

In order to tolerate Fj; Byzantine and F4 unavailability failures, initially at time ¢+ = O the
REASSIGNER assigns Reqp(0) = Fjs + 1 PRIMARY controllers, and Regs(0) = Fps + F4 SEC-
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Algorithm 8 C-COMPARATOR: Handling of SDA requests in the SDN controller.

1
2
3
4.
5:
6
7
8

9:

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:

Notation:

P Client request (e.g. flow request) initiated at switch S¢
C The set of available SDN controllers

C; The local controller instance

C; The remote controller instance

Rglgji Majority configuration for switch S;

RP Buffer containing controller responses for request P

Ap Set of primary C2S assignments

As Set of secondary C2S assignments

Ag, c; Connection assignment variable for C2S pair (S;, C;)

: procedure HANDLE CLIENT REQUEST
. upon event packet-in < Sc, P > do

Rp := handle-packet-in (P)
signal (C, response-sync< Ci, Rp >)

. upon event response-sync < C,Rp > do

RP — RPU < C,,Rp >
if is-sda-consensus-reached(RT) then
Rgaj :=majority-response(RY )
for all S; aﬂected—switches(RrIf“j )do
if mode == non-selective then
if ASi»Ci € .ﬂp U Ay then
signal (S;,response < Ci,Rr;fg{ >)
else if mode == selective then
if Ag, c, € Ap then
signal (Si,response < Ci, R
elseif Ag, c, € As then

maj

P.S; >)

store-secondary-response(R';as'( )
Elad

upon event response-request < S;, P > do
maj >)

signal (Si,response < Cj, Ry
L)

ONDARY controllers per each switch. The values Reqp and Reqgs are time-variant and are adapted

on every discovered Byzantine / Fail-Stop failure or a successful controller recovery:

> AL s, = Reqp(1),¥S; € S
C;eC

Z Asiasj

C;eC

(6.3)

v

Reqs(1),V¥S; €S

Unique Assignment Constraint: Each controller C; may either be assigned the role of a PRIMARY

or SECONDARY, at maximum once per switch §;:

Alys, tAc,s, SLVCi€C.S; €S (6.4)

Controller Capacity Constraint: Let Pc, denote the total available controller’s C; capacity. Let

Lcy, and Lg; denote the load stemming from the NBI client C Lk and the edge switch S, respectively.

The sum of the loads generated by the assigned switches at controller C; may not exceed the difference
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Algorithm 9 S-COMPARATOR: Processing of controller configuration messages in the switch.
Notation:
Reqp No. of required PRIMARY controllers per switch
Reggs No. of required SECONDARY controllers per switch
RP The set of received responses for client request P
ﬂls," Set of PRIMARY controllers assigned to switch §;
ﬂssi Set of SECONDARY controllers assigned to S;
Z The set of designated shufflers assigned to switch S;

1: procedure COMPARE AND APPLY CONTROLLER CONFIGURATIONS
2: upon event receive-response< Cj, RP > do

3: ‘RPeRPU<Cj,RP>

41 if C; € Ay then

5 if [RP| == Regp then

6: Rimajority = majority-responses(RP)

7 if |[Rimajority|l 2 Reqp then

8: apply (Rmujority)

9: else

10: signal(.?lfi, response-request < S;, P >)
11: elseif C; € .?(,S,"' U Af" then

12: if Regp < |RF| < Reqp + Regg then

13: Rmajority = majority—responses(‘RP)

14: if |[Rinajority|l 2 Reqp then

15: apply (Rmajority)

16: for all < C;, R; > R” do

17: if R; ¢ Rmajority then

18: Cinenst < Cinenst Y Ci

19: if C; # @ then

20: signal (Z, suspect-byzant < Cincenst >)
21: else

22: drop-response(RF)

23:

24: upon event controller-failed< C; > do
25: signal (Z, controller-failed < Cj >)

of the total available controller’s capacity and the sum of the constant loads stemming from the NBI

clients:

P S
Z A i’Sj . LSj + Z AC,‘,Sj . LSj S PC[. - Z LCLk’VCi € C (65)
SjGS SjES CLyeCL

Delay Bound Constraint: We assume well-defined worst-case upper bounds for the unidirectional
delays in C2S and C2C communication. Let dc, s; and dc; c; denote the guaranteed worst-case
experienced delay for the C2S pair (C;, ;) and C2C pair (C;, C;), respectively. Given a maximum
tolerable global upper bound delays D¢ s and D¢ ¢, we define the related constraints as:

APi’Sj ~dc,s; <Dc,s,YC; €C,5; €8
Agi’sj +dc,s;, < Dc,s,¥C; €C,S; €S (6.6)
dC[,Cj < Dc’c,VCi eC \ Cj,Cj eC \ C;
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Table 6.1: Notation used in specification of MORPH’s communication overhead.

Notation Property
Client-to-Switch (CLI2S) Communication channels between clients and switches

S2C Upstream communication channels between switches and controllers

c2C Controller-to-Controller communication channels

C2S Downstream communication channels between controllers and switches
m Total number of data plane clients in the network

Heli The average request rate of data plane clients

[Sciil The average number of affected switches by data plane client’s requests
|C| The total number of controllers, |C| > 2Fy + Fa + 1

fm.a The current number of failed controllers
E Equal to 1/0 if MORPH is in NON-SELECTIVE / SELECTIVE mode

6.3.3 Communication and Computation Complexity

We henceforth analyze the communication overhead imposed by MORPH framework when handling

data plane clients only (NBI clients excluded for brevity). Multiple communication channels are

present in the system:

* Client-to-Switch (CLI2S): Every request generated by a data plane client is first forwarded to

the corresponding edge switch, therefore, if the average request generation rate of m data plane

clients is p¢;, then m - oy, is the total request generation rate on CLI2S channels.

Switch-to-Controller (S2C): Upon receiving the request, the edge switch forwards it to its
PRIMARY and SECONDARY controllers, hence, the total message rate on the upstream
communication channels between switches and controllers is (Reqp + Reqs) - m - pcyi. In
the best-case, all faulty controllers were detected, hence the total number of PRIMARY and
SECONDARY controllers is reduced to Regp = 1 and Reqgs = 0, while in the worst-case
none of the faulty controllers failed yet, i.e., the inital values still hold Reqp = Fj; + 1 and

Rqu :FM +FA.

Controller-To-Controller (C2C): For every request received from the switches, its PRIMARY
and SECONDARY controllers calculate the corresponding response (i.e., a forwarding path) and
forward it to all of the other available (non-faulty) controllers in the network (i.e., |C| - far, a—1).
The total dynamic rate rate on the C2C channel is (|C| — far.a — 1) - (Regp + Reqs) - m - pcy;.
In the best-case, all failed controllers were detected, thus fas 4 = Fa + Fa, however, in the

worst-case, none of the controllers failed, i.e., fasr .4 = 0.

Controller-To-Switch (C2S): After the consensus is reached for the corresponding request, in
the case of NON-SELECTIVE mode all PRIMARY and SECONDARY controllers issue the
reconfiguration responses to all affected switches (E = 1), while in the SELECTIVE mode,
only PRIMARY controllers issue the responses (E = 0). If we consider that on average |S.;;|
switches are reconfigured based on the clients requests, the total number of responses issued by
controllers towards switches is |S¢;;| - (Reqp + E - Reqs) - m - uc;. In the best-case, all faulty
controllers were detected (Reqp = 1) and the working mode is SELECTIVE E = 0, thus only
|Scii| - m - uer; messages are needed. While in the worst-case, the initial case, Reqp = Fas + 1,
E=1,Reqs=Fy+Fa+1.
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Table 6.2: Exchanged number of messages on each communication channel.

Channel MORPH Best-Case MORPH Worst-Case MORPH No Fault-Tolerance [128]
CLI2S mpleli mpleli Mmplcli Mmpleli Ml
S2C (Regp + Regs)mpcii mpleli (2Fm + Fa+ Dmpcii mpteli (2(Fp + Fa) + Dmperi
c2C (Cl = fu.a = D(Reqp + Regs)mpucii | (ICl = Fp = Fa = Dmpeii | (IC| = 1)(2Fp + Fa + Dmpcii - -
€28 |Sciil(Reqp + EReqs)mpcii |Scuilmpcii ISctil (2Fam + Fa+ Dmpcr; [Sctilmpcti [Sctil 2(Fp + Fa) + Dmpci

The summary of the communication overhead is presented in Table 6.2, with corresponding notation
summarized in 6.1. Table 6.2 also presents the required number of messages when no fault-tolerance
is guaranteed, i.e., in the case of a single replica. We additionally present the communication overhead
specific to the design presented in a related work [128]. It can be observed that MORPH requires the
same or lower amount of messages on CLI2S, S2C, C2S channels depending on the current network
state. Furthermore, as mentioned in Section 6.1, C2C communication is not discussed in [128], thus
in contrast to MORPH, SDAs are not correctly handled there.

6.4 Evaluation and Results

We next present our evaluation methodology and showcase and discuss the observed MORPH’s

performance.

6.4.1 Evaluation Scenario

For our SDN application we have implemented a centralized resource-based path finding application,
based on Dijkstra’s algorithm [60]. We deploy an instance of the routing application in each controller
replica. In the case of SIAs, the weight of each link in the observed topology is set to a constant delay
value corresponding to the propagation delay. For the SDAs, we consider a load-balanced routing

approach where the cost of each link depends on the current load.

To validate MORPH in a realistic environment, we have emulated the Internet2 Network Infrastruc-
ture Topology !, as well as a standard Fat-Tree data-center topology. Both topologies were discussed
in Section 5.4. We have enabled a configuration of MORPH to support up to Fp; = 5 Byzantine
and F4 = 5 Fail-Stop controller failures. For example, to allow for a BFT operation, we deploy
2Fy + Fa + 1 = 16 controller replicas. We varied Fj; and F4 individually from 1 to 5, so to allow
for an evaluation of the overhead of added robustness against either failure type. The overhead of our
design scales with the arbitrary number of tolerated failures Fj; and F4 and is independent of the
number of deployed switches. Each SDN controller implements the logic to execute the routing task as
well as the C-COMPARATOR component that compares the C2C synchronization inputs and notifies the
switches of new path configurations. An S-COMPARATOR agent is hosted inside each switch instance,
and is enabled to listen for remote connections. All communication channels (ref. Fig. 6.1) are realized

using Transmission Control Protocol (TCP) with enabled Nagle’s algorithm [127].

The distributed control plane deploys an IBC channel. To realize the switching plane, a number

of interconnected OVS virtual switches were instantiated and isolated in individual Docker containers.

nternet2 Advanced Networking - https://www.internet2.edu/products-services/advanced-networking/
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Similar to Section 5.4, for Internet2 topology we derive the link distances and inject corresponding
propagation delays. The links of the Fat-Tree have the inherit processing and queuing delays. The
arrival rates of the service embedding requests were modeled using a N.E.D. [89]. In the Fat-Tree,
each leaf switch was connected to 2 client instances, bringing the total number of clients up to 16.

Internet2 deployed one client per switch.

Controller placement: In Internet2, we leverage a controller placement that allows for a high
robustness against the controller failures. We consider the exemplary placements introduced in [86].
Since the accompanying placement framework 2 was unable to solve the placement problem for a very
high number of controllers (i.e., up to 16 in our case), we have executed the problem by placing up to 5
controllers multiple times for the same topology, targeting different optimization objectives (including
response time, maximized coverage in the case of failures, load balancing etc.). We then ranked the
unique nodes based on their placement preference and have selected the highest-ranked 16 nodes to
host the MORPH controllers. The SDN controller replicas in the data-center topology were deployed

on the leaf nodes, similar as in Section 5.4.

Table 6.3: Parameters used in evaluation of MORPH implementation.

Parameter Intensity Unit Meaning
Fy [1,2,3,4,5] N/A Max. no. of Byzantine failures
Fa [1,2,3,4,5] N/A Max. no. of Fail-Stop failures
|C| [4,7,10, 13, 16] N/A No. of deployed controllers
1/4F,, [5, 10, 15, 20] [s] Byzantine failure rate
1/AF, [5, 10, 15, 20] [s] Fail-Stop failure rate
S [0, 1] N/A STA / SDA operation
E [0,1] N/A NON-SELECTIVE / SELECTIVE
T Internet2, Fat-Tree | N/A Topology type

To evaluate the effect of the number, ratio and order of the Byzantine and Fail-Stop failures, we
deploy a specialized fault injection component. The fault injection component generates the faults in
an arbitrary active replica. The replicas are faulted with uniform probability. The ratio of injections is
specified by bounding the maximum amount of individual failure types (ref. Table 6.3). The ordering
of the different failure type injections is governed by the parametrization of mean arrival times as
specified in Table 6.3. The intensity of failures follows the N.E.D. (similar to [3, D.

The OVS-based topology emulator, the REASSIGNER as well as up to /6 C-COMPARATOR and 34
S-COMPARATOR processes were deployed on a single commodity PC running a recent multi-core AMD
Ryzen CPU and 32 GB of DDR4 RAM. We have used Gurobi Optimizer 3 to solve the [LP formulated
in Section 6.3.2.

6.4.2 Overhead minimization by successful failure detection

Fig. 6.3 depicts the measured C2C and C2S delays, before, during and following the failure injection
process. Similarly, the packet load and total system CPU utilization are depicted for the same

measurement. Fig. 6.3 a) depicts the convergence time to the globally consistent state in the replicated

Zpareto Optimal Controller Placement (POCO) GitHub - https://github.com/Isinfo3/poco
3Gurobi Optimizer - http://www.gurobi.com/products/gurobi-optimizer
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Figure 6.3: Successful detection of injected Byzantine and Fail-Stop failures leads to an instantaneous decrease
in: a) the experienced C2C delay, both for the duration of the best- and worst-case state convergence time; b) the
switch reconfiguration delay; c) the measured C2C and C2S packet arrivals (measured at the ingress of a correct
controller and switch, respectively); and d) the total measured system CPU load. The depicted measurements
are taken in the Internet2 topology, based on 13 controllers and 34 switches. The particular sample shown here
depicts the case where 4 Byzantine and 2 Fail-Stop failures are identified in the depicted order (red and blue
vertical dashed lines, respectively).

controller database. The Best-Case considers the time required to replicate and commit a state update in
at least two controllers, while the Worst-Case considers the outcome where every controller converges
to the globally consistent state. We observe that the initial failure injections consistently decrease the
expected waiting time to achieve consensus and converge the state updates for the worst-case. The
detection of later injections (Injection 5 and 6) has a lesser effect. For those detections, the trade-off in
the added C2C delay overrides the benefits of the lower amount of controller confirmations required to
update the controller state on each instance. This is a consequence of the displacement of the remaining

active controllers in the Internet2 topology and hence the added C2C delay.

Fig. 6.3 b) depicts a drastic decrease in the response time required to handle client requests, i.e., to
reconfigure each switch on the identified path with the new flow rules. We observe that dynamically
decreasing the minimum number of controllers needed to reach consensus on the correct configuration
update, consistently lowers the expected time to reconfigure both the control and data plane. Thus,
MORPH increases the overall throughput of the SDN control plane, as additional service requests may

be served in the same amount of time.
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Figure 6.4: The type of the failure affects considerably the experienced C2C delay (depicted in Fig. 6.4
(a)). Indeed, the larger the number of detected Byzantine failures, the lower the instantaneous total number of
PRIMARY controller messages required to process and commit new controller state update. Interestingly, the
trend is observable for the switch configuration delay as well (depicted in Fig. 6.4 (b)), but not with the same
intensity. The depicted figures result from the measurements taken for the Internet2 topology comprised of
13 controllers and 34 switches. The observation period includes the time preceding, during and following the
successful failure injections.

Similarly, the exclusion of incorrect controllers from the message comparison procedure consis-
tently lowers the control plane load. The minimization of C2C synchronization load can be observed
from the change in the arrival slope in Fig. 6.3 ¢). The total CPU load is similarly decreased as both
controllers and switches must process a lower total amount of controller messages with each replica

exclusion. We have observed identical trends for the Fat-Tree.

Fig. 6.4 depicts the benefits of distinguishing the type of failure when reducing the number of
active controllers used in the consensus procedure. According to Alg. 6, two message exchanges less
are required to identify the correct message after detection of a Byzantine controller (Fs), while a
single message less is required after discovery of an unavailable controller (F4). Successful detection
of Byzantine controllers thus leads to a decreased C2S and C2C reconfiguration time, compared to
the discovery of the same amount of failures of a different type (or a combination of different faults).
The detection of an unavailability-imposed failure (F4) hence provides less information about the
failed controller being benign or Byzantine. In that case, the REASSIGNER is more conservative when

computing new C2S assignments.

6.4.3 Impact of SDN Application Statefulness

Fig. 6.5 depicts the consequence of the complexity of statefulness of the distributed SDN control plane
on the experienced C2C and C2S delays. Stateful SDA applications necessitate consensus, which
imposes an additional waiting time in the C2C synchronization. With consensus, the majority of
controller configurations must match before deciding on the configuration message to be delivered to
switch. After the consensus is reached, the controllers’ data stores converge to a consistent state in each
correct controller replica. The difference in the waiting time is not reflected in the data plane (switch)

as much as in the C2C communication, since the switch experiences a constant waiting time for the
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(C) Fat-Tree: Switch Reconfiguration De-
lay.

(b) Internet2: Switch Reconfiguration De-
lay.
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Figure 6.5: Depending on an SDN application’s requirement for access to the consistent controller data store,
controllers impose a varying C2C synchronization overhead. Specifically in the case of resource-reservation
applications, knowledge about the reserved and free resources is a requirement for the efficient client request
processing (i.e., slicing, path embedding, load-balancing algorithms that rely on resource reservations). S = 1
denotes the case for a stateful controller application, while S = 0 denotes applications which do not demand
causality in controller updates.
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Figure 6.6: Difference in the observed switch reconfiguration delay for NON-SELECTIVE and SELEC-
TIVE propagation of SECONDARY controller configurations in the [7..16] controller topology that tolerates
max(Fy +Fa) = [4..10] controller failures. Deployment of a large control plane induces a benefit in the average
configuration time with the NON-SELECTIVE model. In a topology comprising a smaller number of controllers,
the additional system workload related with the propagation of configurations on every SECONDARY controller
negatively affects the overall performance.

minimum amount of required replicas Req p, independent of the time it takes to reach consensus in the

C2C communication.

However, as depicted both in Fig. 6.5 and Fig. 6.6, the overhead in the controller state and switch
reconfiguration time is intensified by the maximum number of tolerated failures. The more failures the
system is designed to tolerate, the higher the amount of required comparisons across the PRIMARY
messages in order to forward the system state. We conclude that the experienced controller and switch

reconfiguration times scale with the number of tolerated controller failures.
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Figure 6.7: Decrease in the total execution time of the ILP solver for the C2S connection reassignment
procedure in the Internet2 topology. The time required for the REASSIGNER to reconfigure the control plane
scales inversely with the number of successfully identified controller faults. As the REASSIGNER tasks may
execute asynchronously, without negatively disturbing the system correctness or control plane availability, we
consider the deployment of MORPH in critical operation networks for practically feasible.

6.4.4 Impact of proactive propagation of switch configurations

Fig. 6.6 depicts the measurements taken in the Fat-Tree topology comprising 7 to 16 SDN controllers
and 20 switches. A trend reversal in the switch reconfiguration delay can be observed, where for
small-sized controller clusters (i.e., [4..10] controllers), the usage of the SELECTIVE mode (E = 1)
results in a lower overall configuration delay. For large-scale control planes ([13..16] controllers), the
trend is reversed and the NON-SELECTIVE mode (E = 0) becomes faster. We assume that the trend
reversal is linked to the fact that in the average case where no failures are detected, SELECTIVE mode
is more efficient than the NON-SELECTIVE one, since no additional packet overhead / CPU load is
generated during the message processing, both in the control and data plane. In the large-scale control
plane, the controller placement has a dominant role, so that the decrease in the C2S distance dominates
the additional load related to the higher number of controller instances. For client requests where some
controllers send incorrect configurations to the switches, or fail-silently and thus do not deliver any new
configuration messages, the switch is able to deduce the correct majority only after experiencing an
additional round-trip to collect additional configuration responses from the SECONDARY controllers.
The NON-SELECTIVE model is intuitively faster in its worst-case, as it propagates every controller
response directly to the switch after the computation of the configuration response, independent of
the controller’s role as PRIMARY or SECONDARY. Thus, no additional S2C round-trip delays are
experienced when the received messages at the switch are inconsistent. Similarly, the switch is capable
of collecting the Reqp consistent messages faster on average, since SECONDARY controllers may

potentially deliver new configurations faster than the assigned PRIMARY instances.



6.5. Chapter Summary 101

6.4.5 Controller-Switch Reassignment Time

The ILP solver is executed once after the initial system deployment (to compute the initial S2C
assignments) and once after each controller failure detection. Fig. 6.7 depicts a constant decrease in
the execution time of the ILLP as new faults are injected and failures are observed at the REASSIGNER.
Indeed, the exclusion of incorrect controllers from the parameter space decreases the total running time
of the ILP solver. Nevertheless, even in a large-scale formulation that assumes the assignment of 16
controller replicas to 34 switches, the REASSIGNER requires only up to ~ 540ms to compute the optimal
assignment w.r.t. delay and bandwidth constraints. Hence, MORPH supports the real-time switch
reassignment and is thus deployable in online operation as well. For higher-scaled networks we do not
foresee any limitations in the reassignment procedure related to the viability of our solution. Namely,
when an inconsistency in the PRIMARY configuration messages is detected in the S-COMPARATOR,
the switch initially ignores the inconsistent messages and continues to autonomously contact the
SECONDARY replicas to request additional confirmation messages. Thus, the correctness of the
system is never endangered and the REASSIGNER may proceed with its reassignment optimization
procedure asynchronously in the background. MORPH is hence suitable for operation in critical

networks where minimal downtime is a necessary prerequisite (i.e., in industrial control networks).

6.5 Chapter Summary

MORPH allows for distinguishing Byzantine from Fail-Stop controller failures at runtime, as well as

for subsequent dynamic optimization of cluster membership.

Following a Byzantine or Fail-Stop controller failure, MORPH autonomously adapts the system
configuration to minimize the distributed control plane overhead. By experimental validation, we have
shown that MORPH achieves a performance improvement in both average- and worst-case system
response time by minimizing the amount of required replicas when deducing new configurations.
Thus, the worst-case waiting periods required to confirm new controller state updates and switch

configurations are substantially reduced over time.

Furthermore, by excluding faulty controllers, the average packet and CPU loads incurred by the
generation and transfer of controller messages to the switches are reduced over time. We have shown
that the [LP formulation for QoS-constrained reassignment of C2S relationships may execute online,
for both medium- and large-scale control planes comprising up to 16 controller replicas. The time
required to adapt the system configuration scales proportionally with the number of successfully
detected faulted controllers. Apart from the minimal additional CPU load related to the dynamic
reassignment of controller connections, average- and worst-case computational and communication

overheads are lower than those of comparable BET SDN designs.

Enabling BFT generally results in a relatively high response time and communication load footprint
in the normal case, i.e., where no faults are exposed. In the critical infrastructure networks, the trade-
off of correctness and performance loss may, however, be acceptable [179, ]. Nevertheless,

the following Chapter 7 discusses the optimizations introduced to MORPH [1] in our subsequent
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publications [6, 7, 1 1], that minimize the overhead of initial sequence ordering delay and control plane
load.



Chapter 7

Lowering Response Time and Control
Plane Overhead of the BFT Control Plane

Chapter 6 has discussed the importance of deploying BET designs for achieving consensus on outputs
of distributed controllers where a subset of replicas is Byzantine faulty. Realizing a BFT control
plane, however, comes at a cost of additional replicas and increased response time and communication

overhead penalties.

In the first half of this chapter, we make a point how an optimal separation of the controller cluster
into sufficiently-sized Agreement and Execution (A&E) groups can lead to higher throughput and de-
creased control plane response times, compared to single-domain operation. Assuming heterogeneous
resource availability, in the proposed approach, faster replicas are leveraged in the intersection of
different A&E groups, while slower replicas run at their assigned speed without negatively influencing
the faster replicas. We additionally introduce novel sequencing protocols to optimize the agreement

step required for ordering of request updates in the BFT environment.

In the second part of the chapter, we investigate the benefits of offloading the procedure of controller
outputs comparison, required for correct BET operation, to carefully selected network switches. By
minimizing the distance between the processing nodes and controller clusters / individual controller
instances, we decrease the network load imposed by BFT operation. We coin the proposed extensions
to MORPH as P4-Enabled BET Control Plane (PABFT). PABFT’s P4-enabled pipeline [46] is in charge
of controller packet collection, correct packet identification and its forwarding to the destination nodes,
thus minimizing accesses to the switches’ software control plane and effectively outperforming the

existing software-based solutions.

The designs presented henceforth were successfully validated and evaluated in small- and large-
scale SDN control planes. The proposed optimizations to MORPH design and their analysis were
published and demonstrated in [6, 7, 11].

103
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7.1 Control Plane Partitioning into Multiple Agreement Groups

In order to support stateful controller-based applications (i.e., resource-constrained routing, stateful
SDN-LB etc.), the replicas synchronize on the order of the state updates. Traditional BFT designs [53,

], as well as MORPH, require active participation of all replicas in the administrative domain.
They leverage an RSM approach to handle the client requests, where a specific majority of controller
instances must come to the agreement about the order of the client requests, prior to executing these.
Namely, distributed replicas reach consensus on the output of the computation in order to ensure the

causality of decisions. We identify two associated overheads:

* Execution overhead: In existing BFT designs [53, ], in order to preserve causality, non-
faulty replicas always participate in all system operations. In the absence of faults, more replicas
execute the decision-making requests than required to make progress, thus strongly limiting the
execution throughput of the system. In environments where resources assigned to replicas vary
(e.g., heterogeneous field-, edge-, cloud-devices) and / or can easily be scaled (e.g., using system

virtualization), this leads to an under-utilization of fast replicas.

* Agreement overhead: Similarly, in existing BFT implementations [53, ], replicas must
reach a successful agreement on the order of execution of incoming client requests, or reach
consensus on the update (as with MORPH, ref Sec. 6.2.6), prior to committing the resulting
state updates. The agreement phase hence increases the total processing time. In this paper,
we make a claim that the serialization of requests is a mean fo an end and that the causality of
configurations on individual external devices (i.e., switches) is a sufficient constraint to ensure

the consistency of views among correct controller replicas.

Minimizing the execution overhead: In the approach proposed here, we optimally separate the
controller cluster into sufficiently-sized A&E groups, thus enabling higher throughput and decreased
control plane response times. Assuming heterogeneous resource availability, faster replicas are
leveraged at the intersections of A&E groups, while slower replicas continue to run at their assigned
speed without causing negative impact on faster replicas (in the average case). To identify A&E groups,
we extend the ILP formulation for C2S assignment procedure presented in Section 6.3.2. The solver
identifies the A&E groups for each deployed switch element at runtime, while maximizing the overlap
of the members of different groups. The formulation considers the execution capacity of individual
controllers, as well as the S2C delays as its constraints. The solver continues to execute at runtime,

thus optimizing the assignment upon each discovered Byzantine orx Fail-Stop failure.

Minimizing the agreement overhead: We adopt the classical Practical BET (PBFT) approach [53]
to realize a distributed sequencer in order to minimize the fail-over time in the case of a leader failure.
We additionally introduce a group-based variant of this protocol, that leverages the partitioning of
the total controller set into multiple A&E groups to decrease the response time. In addition to
two agreement-based designs, we introduce an opportunistic sequencing protocol design. With the
opportunistic approach, successful handling of a client request implies reaching a consensus on a

consistent device reconfiguration while preserving the causality of decisions, subsequent to the actual
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request handling. We achieve the causality and agreement by reaching consensus: i) on the controller
state at the time of application execution; ii) on the actual computed output result (to guarantee the

consistency of decisions).

We have analyzed the overheads of switch reconfiguration time, the communication overhead and
the request acceptances rates for each proposed sequencing protocol. We have executed the evaluation
for emulated OVS-based Internet2 and Fat-Tree topologies with varied number of tolerated Byzantine

failures.

7.1.1 Related Work - On Sequence and Value Agreement in BFT Designs

Agreement-based approaches have focused on the optimization of sequencing procedure by minimizing
the number of replicas that actively participate in sequence proposals [61, ]. REBFT [61] keeps
only a subset (2F + 1 of a total of 3F + 1) replicas active during normal case operation. It activates
the passive replicas only after a detected replica fault. Such approaches rely on a trusted counter
implementation to prevent equivocation, the capability of a Byzantine replicas to send conflicting
proposals to other members. Since we do not assume a centralized proposer, we prevent equivocation
by deciding new sequence numbers individually, without the overhead of a trusted counter nor passive

replica activation delay.

Opportunistic BET protocols have been investigated in [105, ]. However, these approaches
conclude about the consensus of the computed decisions based on the comparison of the instantaneous
outputs and assume a stateless operation. In the contrast, in Opportunistic A Posteriori BET (OBFT) we
leverage the agreement procedure that relies on external outputs, i.e., stateful per-switch configurations

that are inherent to network management scenarios.

Omada [65] is a sequencing-based BFT design that assigns replicas with either agreement or exe-
cution roles and parallelizes the agreement phase. It highlights the benefit of selecting a configuration
with the lowest number of agreement groups. Contrary to our work, the authors assume a centralized
sequencer per agreement group. Distinguishing causality property per configuration target is not dis-
cussed nor leveraged in their protocol. Similarly, Omada does not provide an insight into opportunistic

approaches to execution handling.

7.1.2 BFT State Synchronization Protocols

In Section 6.2.5, we distinguished SIA from SDA SDN applications. In the remainder of the chapter,
we solely consider the global SDA operations where client requests result in stateful write operations
to the replicated data store. The subsequent client request executions must consider the preceding
writes for their correctness. The value of the write operation is determined by an execution of a multi-
phase BFT protocol. We henceforth distinguish accepting and rejecting BFT protocol executions.
Rejecting executions are caused by replicas that interrupt the run due to a missing consensus in one
of the protocol phases (e.g., caused by conflicting sequence number proposals, inconsistent execution
outputs or packet loss). We assume that clients re-transmit the requests until a successful execution

has been acknowledged by the controllers.
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Distribution of state updates assumes an eventually synchronous model [126], where different
replicas possess different views of the current configuration state for a limited time duration. Eventually,
given an appropriately long quiescent period, all correct replicas converge to the same state. We assume
that a bounded number of controllers may exhibit Byzantine behavior and / or Fail-Stop failures,

respectively.

The proposed sequencing protocols guarantee the following properties:

* Uniform Agreement: When a correct replica commits a particular internal state / switch update

(i.e., computes a particular response), all correct replicas eventually commit the same update.

» Liveness: All correct replicas eventually finalize the processing of each client request. The

resulting run is declared accepting or rejecting.

* Causality: The updates to the controller data store and the per-switch configuration updates are
executed in a causally dependent order. The controller’s decision to reconfigure a switch take

into account all preceding configurations of that switch.

We assume an assignment of a total of 2F s + F4 + 1 controllers per A&E group in order to tolerate
an upper bound of individual F; Byzantine and F 4 Fail-Stop controller failures in that particular A&E
group. We next introduce the three BET protocols: the agreement-based Modified PBET (MPBFT)
and Serialized A Priori BFT (SBFT) protocols, and the opportunistic OBFT (ref. Table 7.1), used in

the sequence number generation on each new client request.

Table 7.1: Overview of presented BFT protocols.

Algorithm Name ‘ Type Number of Rounds
MPBFT Modified PBET Agreement-based 2
SBFT Serialized A Priori BFT ‘ Agreement-based 3
OBFT Opportunistic A Posteriori BET Opportunistic 2

7.1.2.1 Pre-Serialization Model MPBFT (Agreement-based)

MPBFT imposes exactly one A&E group for the whole administrative domain, with each active replica
tasked with sequencing task and the execution of an agreed command. The workflow of MPBFT is
visualized in Fig. 7.1. A request-initiating client initially invokes its application request to all active
replicas (REQUEST phase). For each incoming client request, each replica assigns a unique sequence
number and distributes the proposed sequence number to other replicas (PREPARE phase). The replicas
compare the sequence number proposals. If the correct majority of proposals are matching (i.e., the
same sequence number is proposed by the majority of correct replicas), successful global agreement
has been reached. At the begin of the COMMIT phase, each correct replicas executes the client request.
The execution output is subsequently broadcasted by each replica to the remainder of the cluster and
the collected output responses are once again compared in all replicas. Each controller replica deduces
the correct majority response and eventually commits the output to its local data store (i.e., a store of
reservations) and finally reports the agreed output to the target clients (REPLY phase). After collecting

Far + 1 consistent output messages, the farget clients (e.g., switches) apply the new configuration.



7.1. Control Plane Partitioning into Multiple Agreement Groups 107

MPBFT is a variation of PBEFT [53] that requires no leader and is thus tolerant to individual
node failures. Compared to PBFT, we shorten the protocol execution by one round. Whereas PBFT
proposes a PRE-PREPARE round, MPBFT skips this round by leveraging a client-initiated atomic
multicast execution and a distributed sequencer. Namely, each new client request is multicasted to
each replica of the system. The replicas propose a new sequence number for the request by incrementing
the current counter as per Alg. 10. The sequence numbers for new client requests are assigned based on
the current state of a local atomic counter. Following an arrival of a new request, the replicas yield the
lowest unallocated sequence number and propose this value to the remaining replicas. After collecting
sufficient matching PREPARE messages, all correct replicas decide to accept the sequence number
contained in the correct majority proposal as the final sequence number for this request. Table 7.3

summarizes the exact amounts of required matching messages to progress the protocol execution.

If correct majority vote is not achieved during the agreement process on either the sequence
number or the computed output, the replicas respond with a rejection. If sufficient rejection messages
are collected, the current execution is canceled and the run is declared rejecting. Concurrent client
requests can lead to assignment of equal sequence numbers to different requests at different replicas,

thus resulting in rejecting runs.

The execution capacity of MPBFT is limited by the slowest replica in the system. Consider the
scenario Fjy = 1, F4 = 0 depicted in Fig. 7.1. Each controller C; is able to service request workload up
to a capacity of P; per observation interval. The portrayed system is thus able to service computations
up to max(};—1._n Ai) < min(P;), or 500 requests / interval (imposed by the capacity of C4 and C5).
Thus, Client 1 (with processing requirement of 4; = 500) and Client 2 (1, = 400) cannot be serviced
concurrently. One can alternatively portray the depicted rates as continuous execution workloads.
While active participation of C4 and C5 in the system is unnecessary to tolerate a single Byzantine
fault, they are included in sequencing and execution steps and are necessary to progress the system

state. MPBFT’s communication overhead is quadratic (ref. Table 7.4).

With alternative protocol designs SBFT and OBFT, we next leverage the additional execution

capacity by partitioning the control plane into multiple A&E groups.

7.1.2.2 Pre-Serialization Model SBFT (Agreement-based)

With SBFT, agreement and execution processes are administered by multiple A&E groups. We assign
for each request-initiating client (e.g., an NBI application or an end-point) an A&E group according
to the algorithm in Section 7.1.3. To tolerate Fj; Byzantine and F4 Fail-Stop failures in the scope of a
single A&E group, each group must comprise 2Fys + F4 + 1 replicas. Multiple execution groups can

process the client requests concurrently.

SBFT’s design is depicted in Fig. 7.2. Compared to MPBEFT, SBFT introduces the PRE-PREPARE
step, where replicas belonging to the A&E group propose and subsequently notify the remaining replicas
of the assigned sequence number. In an accepting run, the group replicas collect the responses in the
PREPARE phase and reach consensus by collecting [%] matching sequence number proposals.

Finally, the replicas of the A&E group execute the request in the COMMIT phase and broadcast the
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Algorithm 10 Logical Sequencer: Ordering of client requests.

Notation:

Mp Client request (e.g., flow request)

M Replica message (sequence number proposal) initiated at a remote controller
C Set of available SDN controller replicas

Ry p Unique client request identifier

Rimap pings Mapping of client request identifiers to unique sequence numbers
Satomic Atomic sequencer that yields the current sequence number

1: upon event on-client-request < Mp, Ry p > do
2: ..

3: proposed_seq_no = propose_seq_no(Rip)

4: .

5:

6: upon event on-new-replica-sync-update < Mc, Ryp > do
T ..

8: switch PHASE do

9: case MPBFT-PREPARE:

10: propose_seq_no(Ryp)

11:  case SBFT-PRE-PREPARE:

12: propose_seq_no(R;p)

13: .

14:

15: function PROPOSE_SEQ_NO(R;p)

16: if Rjp € Rmuppings then

17: return Rmappings [R1D]

18: else

19: while S;romic € Rmappings-values() do
20: Satomic = Satomic +1
21: Rmappings [Rip] = Satomic
22: return Rmap pings[RID]

response to all remaining replicas. If Fj; + 1 matching outputs are received, the replicas update the
internal state and notify the target clients of the final result in REPLY phase. The communication
overhead of SBFT is bounded O(3|A||C|), and grows linearly for a fixed A&E group size.

Causality: To ensure that the causality property holds in MPBFT and SBFT, the controllers execute
the sequenced request in order agreed during PREPARE. The replicas execute the COMMIT phase only if
the outputs (i.e., the added reservations) for the preceding requests were seen by the executing replica.
Thus, prior to handling subsequent requests, the status of each preceding run (accepting / rejecting)

must be determined first.

7.1.2.3 Post-Negotiation Model OBFT (Opportunistic)

OBFT is a speculative take on SBFT, where request executions run prior to reaching consensus on the
computed output values. A global sequencer is not used in OBFT and thus PRE-PREPARE and PREPARE
phases are omitted. Instead, each replica maintains the hashes of current switch configurations, as
well as a state array containing the hashes of the configurations of the switches at the time of request
executions (Time Of Request (TOR) hashes). Following the output computation in the COMMIT phase,
the replicas come to consensus about the updated switch state in the PRE-REPLY phase. This workflow

is depicted in Fig. 7.3.
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. REPLY |

Client 1 (1; = 500) i . ﬁ
C1 (P = 500) 3 ‘ 3
C2 (P, = 800) |
C3 (P5 = 900) |
C4 (P4 =500) : :
C5 (P5 = 500)

Client 2 (1, = 400)

Figure 7.1: MPBFT: In REQUEST phase, the clients initiate new executions. During PREPARE, controller
replicas agree on the execution order by reaching consensus on the assigned sequence number for the clients’
requests. Each replica executes the request in the COMMIT phase. During REPLY, target clients are notified of
reconfigurations. Client 2’s requests cannot be serviced as a result of a limited processing capacity of the control
plane.

PRE-
REQUEST
QUES PREPARE PREPARE COMMIT REPLY
!

Client 1 (1; = 500)

C1 (P; = 500)
C2 (P, = 800)
C3 (P5 = 900)
C4 (P4 = 500)
C5 (Ps = 500)

Client 2 (1, = 400)

Figure 7.2: SBFT: Compared to MPBFT, SBFT allows for more efficient allocation of execution resources,
since execution is separated into multiple A&E groups. The separation, however, comes with an overhead of a
PRE-PREPARE step, where replicas of a serving A&E initiate a global agreement by transmitting their proposed
sequence number to all other replicas. Thus, potential conflicts across different A&E groups are detected in the
PREPARE, prior to COMMIT step.

In contrast to MPBFT and SBFT, in their COMMIT phase, the replicas of an A&E group compute the
outputs, and in addition to the computed response outputs, they individually broadcast the hash arrays
denoting their view of the target clients’ configurations. If and only if the following three constraints

are met, the run is accepting:

* Acceptance Constraint 1 (COMMIT): Each accepting replica that is not part of the serving
A&E group evaluates its actual current local view of the switch states against the individual

configuration proposals, and: i) iff Fps + 1 matching output values have been computed by the
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executing A&E replicas; and b) the current local view of switch configuration hashes is matching
with that of the individual executing A&E replicas; at beginning of PRE-REPLY they respond to

the executing replica with an accepting status. Otherwise, they respond with an rejecting status.

* Acceptance Constraint 2 (COMMIT): Similarly, the executing replicas of the A&E group compare
the proposed hash array with their local TOR hashes for individual target clients (i.e., target
switches) and respond to all A&E replicas of acceptance or rejection, at the beginning of
PRE-REPLY .

* Acceptance Constraint 3 (PRE-REPLY): If sufficient (ref. Table 7.3) positive confirmations have
been collected at the end of PRE-REPLY phase, each replica internally commits the output
proposed by the correct majority of the A&E group. The A&E group replicas then notify the
configuration targets of the agreed output (REPLY phase).

OBFT’s communication overhead is quadratic and grows with |C]|.

, REQUEST COMMIT PRE-REPLY, REPLY
!

Client 1 (4; = 500)

C1 (P, = 500)
C2 (P, = 800)
C3 (P3 = 900)
C4 (P4 = 500)
C5 (Ps = 500)

Client 2 (1, = 400)

Figure 7.3: OBFT: An opportunistic BFT protocol variation, where A&E group members execute their clients’
requests prior to the distribution of reference state configurations based on which the computations were
executed. The internal controller state and the target clients are updated only if the consensus on the reference
state configurations could be reached for the correct majority of global controller instances (ref. Table 7.3).

7.1.3 Enhancing MORPH’s Controller-to-Switch Assignment Model

In our design, each request-initiating client (e.g., an NBI client or a switch itself) is assigned either an
existing or a new unique A&E group (if a particular A&E combination of replicas does not exist yet).

The replicas of different A&E groups are allowed to overlap.

The following extended C2S assignment dictates the per-switch A&E groups (i.e., sets of replicas),
comprising replicas allowed and required of contacting target switches when reconfigurations must be
applied as the output of client requests. The following ILP formulation of the assignment problem

maximizes the total overlap between the members of all active A&E groups, so to minimize the
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Algorithm 11 Hash comparison in the OBFT-COMMIT phase.

Notation:

R;p Unique client request identifier

HV Current configuration hashes for the switches

HVC[Rrp] Switches’ config. hashes prior request computation (TOR)
find-path() An exemplary SDN application logic operation

consensus() Returns consensus message according to the number of minimum required confirmations (ref. Table 7.3)

mng A COMMIT message for round R;p
MI%D Set of buffered COMMIT messages for Ry p

: procedure HANDLE NEW CLIENT REQUEST

. upon event on-received-client-request (CLR,,) do
R = find-path(CLR, , .routing_request)

for all SW € R do

current-hash[SW] = hash(SW.state)

C
MR

broadcast-to-cluster-members( mng )

.hash, mgw .path = current-hash, R

: procedure HANDLE INCOMING COMMIT MESSAGE
: upon event new-replica-sync-message(ml%D) do

SPV® QUL

11: Pg’ D= consensus(MgID, <val, state-hash-array>)

12: on-init-obft-pre-reply( Pg’ b inline-with-replica-view(PgI D))
13:

14: function INLINE—WITH—REPLICA—VIEW(PgI Dy

15: for all SW € Pg’ P path do

16: if HV[SW] == PX!P hash[SW] then

17: pass ()

18: else if HVC[R;p][SW] == PP hash[SW] then

19: pass ()

20: else return (REJECT)

21: return (ACCEPT)

Table 7.2: Notation used in Tables 7.3, 7.4 and 7.5.

Symbol Meaning
C Set of active controllers in the system
Fuy Number of tolerated Byzantine failures in a single A&E group
Req(1) Time-variant number of replicas [!] that must be assigned to each switch
S Set of switches in the system
Pc, Total available controller C;’s capacity.
Lcr,, Ls; Request processing load stemming from the NBI client C Ly and edge switch S, respectively.
Dc,s Maximum tolerable delay for C2S communication.
A Controller replicas belonging to a single A&E group
[Magrl Sum of the tolerated Byzantine failures and the majority of correct replicas per A&E group: [M]
[Mgion| Sum of the tolerated Byzantine replicas and the majority of all correct active replicas: [M]
CMP Computation overhead of executing the packet comparison
E Computation overhead of executing SDN application

synchronization delay during the consensus steps of the presented BFT protocol. The proposed

re-assignment mechanism, the new objective function and the constraints extend the MORPH’s

formulation [1]. We do not repeat descriptions of each constraint in detail here, but refer the reader to

the summary in Table 7.5. The optimization is executed at system startup and dynamically at runtime,

on each detected controller failure or new client addition (incl. new switches after topology extensions).
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Table 7.3: Number of matching messages required to reach consensus in the respective protocol phase (worst-
case).

Algorithm | PRE-PREPARE | PREPARE | COMMIT PRE-REPLY REPLY
MPBFT N/A [Mgion| [y 4= 1 N/A Fy+1
SBFT (Mg, | [Mgiop| | Far+1 N/A Fu+1
OBFT N/A N/A Mg, | [M100| Fy+1

Table 7.4: Computational and communication overhead of the introduced BFT protocols.

Algorithm Computational Overhead Communication Overhead
MPBFT O(2|C|CMP + |C|E) olclic))
SBFT O(CMP(2|C| + |A|) + |A|E) o3lAllc))
OBFT O(2|C|CMP + |A|E) o(lA|(cl+ 1) +[c|(c] = 1))

For each switch S; we can derive a bitstring Rg, comprised of ones for replicas actively assigned

to S; and zeros for the unassigned replicas. We then formalize the objective function:

min

Sj €S S; GS,S,'#:SJ‘

HD(Rs;, Rs;) (7.1)
where HD(Rs,, Rs,) denotes the Hamming distance between the assignment bit-strings for §; and
S;. Combined with the adapted minimum assignment constraint depicted in Table 7.5, we ensure the

building of minimum-sized A&E groups that fulfill the capacity and delay constraints of the clients.

Note: A wary reader may notice that, for simplification, we do not distinguish between MORPH’s
PRIMARY and SECONDARY replicas in Table 7.5. Note, however, that with the extended objective

presented here, we remain compatible with all optimizations introduced in Section 6.3.

Table 7.5: Constraints used in building the A&E groups.

Constraint Formulation
Minimum Assignment CZC Ac,.s; == Req(1),VS; € S
i€
AC,-,S,- < 1,VC; € C,Sj €S
Z ACi,S,' © LS,- < PC,- = Z LCLk,VCi eC
SjeS : : CLreCL
ACi,Sj . dC,-,S,- < Dc;s,VCi € C, Sj €S

Unique Assignment
Bounded Capacity

Delay Bounds

7.1.4 Evaluation and Results

To evaluate the different BET protocols, we realized a centralized path computation application that
executes in each of the SDN replicas. The routing algorithm leverages Constrained Shortest Path
Forwarding (CSPF) to choose the optimal path w.r.t. bandwidth resource consumption weight. The
BFT protocol executions take the source-destination pair and the required bandwidth as an input for
the service request. Subsequently, the BET protocol execution executes the application logic (path
computation) in the COMMIT phase and, in case of an accepting run, reconfigures the switches on
the agreed path in the REPLY phase. On each successful embedding, the weights of the links on the

computed path are increased by the flow’s requested bandwidth.

To evaluate the designs of all three protocols, we consider the following performance metrics: i)

time required to apply a new switch reconfiguration, measured from the time of a client request arrival
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until the confirmation of the last switch reconfiguration; ii) the acceptance rate for the new arrivals; iii)

the total communication overhead.

Once again, we validate our claims in Internet2 and Fat-Tree topologies, encompassing 34 and 20
switches, respectively. C2S and C2C communication is realized using the IBC channel. Parameter
settings for network delay emulation are as described in Sections 5.4 and 6.4.1. A single client was
placed at each switch of the Internet2 topology, while two clients were placed at each leaf-switch of

the Fat-Tree topology. The arrivals for incoming service requests are modeled using N.E.D. [89].

To generate the hashes for per-switch configuration state (ref. Section 7.1.2.3), we used Python’s
hashlib implementation and the Secure Hash Algorithm (SHA-256), defined in FIPS 180-2 [220]. We
used Gurobi to solve the ILLP formulated in Section 7.1.3. The measurements were executed on a
commodity PC equipped with AMD Ryzen 1600 CPU and 32 GB RAM.

7.1.4.1 Total Response Time for Reconfigurations of Internal Controller and Switch State

Fig. 7.4a and Fig. 7.4b depict the accumulated response time starting with the reception of a client
request at a controller replica until modification of the last reconfigured switch on the computed path.
The total number of active controllers was fixed to |C| = 10 and the measurement was executed for
A&E group sizes varying between |A| = 3 and |A| = 7 replicas (for F4 = 0 Fail-Stop, and Fj; = 1 and
Fyr = 3 Byzantine failures, respectively). Rejecting executions were not considered. Both Fat-Tree
and Internet2 topologies depict the benefit of opportunistic execution and a lower number of phases in

OBFT in all scenarios.

In Fig. 7.4a and Fig. 7.4b, we vary the total number of deployed controllers. All three protocols
provide for similar performance for controller constellations where the A&E group size approximately
equals the total number of active replicas (i.e., all replicas in the same A&E group). After provisioning
additional replicas (case for |C| = [7..13]), MPBFT’s performance decreases compared to SBFT and
OBFT. This is due to MPBFT requiring interactions between all replicas for successful request handling,
whereas SBFT and OBFT continue to operate at the level of a constant A&E group size. OBFT offers
best performance in both topologies. This is due to SBFT and MPBFT requiring additional rounds to
handle request sequencing, in contrast to OBFT, which ensures causality property holds even in the case
of unordered executions. Additionally, MPBFT’s performance suffers due to commands’ execution on
each controller replica. On average, MPBFT’s agreement requires consideration of a larger number
of replicas than SBFT and OBFT. Internet2 topology depicts a lower discrepancy between SBFT
and OBFT and highlights the benefit of sequencing in geographically distributed scenarios where
network delays cause a longer asynchronous period and thus a higher probability of execution overlaps
(confirmed by Fig. 7.5). The maximum path lengths are higher for Internet2 topology, thus resulting
in a higher number of overlapping reservations that cause execution rejections / stalling period in
opportunistic OBFT.
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Figure 7.4: The accumulated control plane response time for varied numbers of active controller replicas
|C| = [4..13], Fa = 0 and an A&E group size of |A| = 3. While OBFT portrays the lowest reconfiguration
delays, its performance is similar to SBFT and MPBFT for small control planes, slightly better compared to
SBFT and largely dominant compared to MPBFT for larger topology sizes.

7.1.4.2 Acceptance rates for arriving requests

In Fig. 7.5 we vary the per-client arrival rates A for incoming client requests. With 1 = 4, on average,
64 w are processed by the cluster in Internet2 topology. Opportunistic execution of OBFT and
its late hash comparison tends to result more often in rejecting runs, compared to SBFT that serializes
all requests prior to their processing. MPBFT results in a relatively high percentage of rejections,
due to a higher chance of conflicting sequence number handouts that may occur concurrently since all

replicas are involved in proposals during PREPARE phase.

7.1.4.3 Communication overhead

Fig. 7.6 depicts the relation between communication overhead and number of active controllers.
C2S communication overhead increases with the number of replicas that execute the request and
communicate their result to the target switches. Following a response computation in MPBFT, each
replica distributes the newly computed configurations to switches, hence the linear overhead increase.
Since the size of the A&E group remains unchanged throughout all depicted scenarios, SBFT and
OBFT have a constant low C2S overhead. The C2C overhead scales with the number of active replicas
in the A&E group. For MPBFT and OBFT, this increase is quadratic. For SBFT, the C2C overhead
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Figure 7.5: Acceptance rates for incoming client requests in Fat-Tree and F; = 1,|C| = 4. SBFT tends to
execute a higher number of successful runs compared to: i) MPBFT, due to its larger number of active replicas
involved in sequencing process and ii) OBFT, due to its opportunistic design, where consistency of outputs is
agreed upon, only after execution has finished.

increase is linear. It should be noted that the linear evolution holds only for constant A&E group sizes,
i.e., for fixed Fjs and Fjy.
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Figure 7.6: Signaling overhead [pps] when serving 16 ““/““** for a varied number of controllers |C| = [4..13]
and a fixed A&E group size | A| = 3. SBFT possesses the lowest overhead and linear growth, followed by OBFT
and MPBFT, that have a quadratic growth scaling with |C]|.

Additional notes: While SBFT and MPBET ensure a single execution and validation of inputs for
client requests (i.e., each client sequence number is mapped to a unique request), OBFT executes client
requests speculatively, prior to reaching consensus. Thus, Byzantine clients may attempt affecting the
order of execution, or generate execution contentions. Metering mechanisms for misbehaving clients

and their exclusion could cater for this case. They are, however, not in the scope of this work.
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7.2 Control Plane Acceleration by Offloading Tasks to the Data Plane

Apart from our publications [1] and [7], BFT has been investigated in the context of distributed SDN
control plane in [115, ]. The related state-of-the-art designs assume the deployment of SDN
controllers as a set of RSMs, where clients submit inputs to the controllers, that process them in
isolation and subsequently send the computed outputs to the target destination (i.e., reconfiguration
messages to destination switches). They assume trusted platform execution and a mechanism in the
destination switch, capable of comparison of controller messages and deduction of the correct message.
Namely, after receiving Fjs + 1 matching payloads, the observed message is regarded as correct and

the containing configuration is applied.
The presented models are suboptimal in a few regards.

First, they assume the collection and processing of controller messages exclusively in the receiver
nodes (configuration targets). Propagation of each controller message carries a large load footprint in
large-scale IBC SDNs, due to replication of control channels for each replica. Second, they neglect the
incurred performance overhead of message comparison procedure in the target switches. The existing
BFT designs [1, 7, , ] all realize the packet comparison procedure solely in software. The
non-deterministic / varied latency imposed by the switch CPU (i.e., the slow path [77]) may, however,
be limiting in use cases that place requirements on bounded control plane response time, such as for
the industrial TSN or 5G scenarios [229]. This motivates a hardware-accelerated BFT design that

minimizes or even bounds the processing delays.

In the remainder of the chapter, we investigate the benefits of offloading the procedure of comparison
of controller outputs, required for the correct BET operation, to carefully optimally selected network
switches. By minimizing the distance between the processing nodes and controller clusters / individual
replicas, we decrease the network load imposed by BEFT operation. PABFT’s P4-enabled pipeline is in
charge of controller packet collection, correct packet identification and its forwarding to the destination
nodes, thus minimizing accesses to the switches’ software control plane and effectively outperforming

the software-based solutions.

7.2.1 Related Work - On Data Plane-Accelerated BFT

In the context of centralized network control, BET is still a relatively novel area of research. Reference
solutions [115, ], assume the comparison of configuration messages, transmitted by the controller
replicas, in the switch destined as the configuration target. With PABFT, we investigate the flexibility
advantages of message processing in any node capable of message collection and processing, thus
allowing for a footprint minimization. [128] and [1] discuss the strategy for minimization of number

of matching messages required to deduce correct controller decisions, which we adopt in PABFT.

Recently, Dang et al. [57] have portrayed the benefits of offloading coordination services for
reaching consensus to the data plane, on the example of a Paxos implementation in P4 language. With
PABFT, we investigate if a similar claim can be transferred to BFT algorithms in SDN context. In the

same spirit, in [200], end-hosts partially offload the log replication and log commit operations of Raft



7.2. Control Plane Acceleration by Offloading Tasks to the Data Plane 117

to neighboring P4 devices, thus accelerating the overall commit time. In the context of in-network
computation, Sapio et al. [ 164] discuss the benefit of data aggregation offloading to constrained network

devices for the purpose of data reduction and minimization of workers’ computation time.

7.2.2 P4BFT: Enhancing the MORPH model

We coin the approach presented henceforth as PABET. PABET allows for collection of controllers’
packets and their comparison in processing nodes, as well as for relaying of deduced correct packets
to the destinations. It selects the optimal processing nodes at per-destination-switch granularity. The
proposed objective minimizes the control plane load and reconfiguration time, while considering
constraints related to the switches’ processing capacity and the upper-bound reconfiguration delay. It
executes in software, e.g., in P4 switch behavioral model (bmv21), or in physical environments, e.g.,
in Netronome SmartNICs2. Correctness, processing time and deployment flexibility of PABFT are

validated in both environments.

Apart from system model assumptions presented in Section 6.2, we henceforth consider flexible
function execution on the networking switches for the purpose of BFT system operation. The flexibility
of in-network function execution is bounded by the limitation of the data plane programming interface
(i.e., the P46 [40] language specification in the case of PABFT). The C2S and C2C communication is

realized using an IBC channel [169].

In PABFT, controllers calculate their decisions in isolation from each other, and transmit them to the
destination switch. Control packets are intercepted by the processing nodes (i.e., processing switches)
responsible for decisions destined for the target switch. In order to collect and compare control
packets, we assume packet header fields that include the client_request_id, controller_id,
destination_switch_id (e.g., MAC / IP address), the payload (controller-decided configuration)
and the optional signature field (denoting if a packet has already been processed by a processing

node). Clients must include the client_request_id field in their controller requests.

Apart from distinguishing correct from Byzantine / incorrect messages, PABFT allows for identi-
fication and exclusion of faulty controller replicas. In addition to clients, network controllers, and the
REASSIGNER (as per Section 6.2.4), PABFT’s architectural model also assumes that a subset of avail-
able switches is P4-enabled. Depending on the output of REASSIGNER’s optimization step, a P4 switch
may be assigned the processing node role, i.e., become in charge of comparing outputs computed by
different controllers, destined for itself or other configuration targets. A processing node compares
messages sent out by different controller replicas and distinguishes the correct ones. On identifica-
tion of a faulty replica, it declares the faulty replica to the REASSIGNER. In PABFT, REASSIGNER is

responsible for two tasks:

* Task I: It dynamically reassigns the C2S connections based on the events collected from the

detection mechanism of the switches. Namely, it excludes faulty replicas from the assignment

P4 Software Switch - https:/github.com/p4lang/behavioral-model
2Netronome Agilio®CX 2x10GbE SmartNIC Product Brief - https://www.netronome.com/media/documents/PB_Agilio_
CX_2x10GbE.pdf


https://github.com/p4lang/behavioral-model
https://www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE.pdf
https://www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE.pdf
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procedure upon the faulty replica detection. It furthermore ensures that a minimum number of
required controllers, necessary to tolerate a F4 Fail-Stop and Fj; Byzantine failures, is loaded

and associated with each switch. This task is also discussed in Section 6.3.2.

* Task 2: It maps a processing node, in charge of controller messages’ comparison, to each des-
tination switch. Based on the result of this optimization, switches gain the responsibility of
control packets processing. The output of the optimization procedure is the Processing Table,
necessary to identify the switches responsible for comparison of controller messages. Addi-
tionally, REASSIGNER computes the Forwarding Tables, necessary for forwarding of controller
messages to processing nodes and reconfiguration targets. Given the number of controllers and
the user-configurable parameter of maximum tolerated Byzantine failures Fj;, REASSIGNER
reports to processing nodes the number of necessary matching messages that must be collected

prior to marking a controller message as correct.

7.2.3 Identification of Optimal Processing Nodes

The extended optimization methodology presented henceforth allows for minimization of the experi-
enced switch reconfiguration delay, as well as the decrease of the total network load introduced by the
exchanged controller packets. Note that the presented optimization is orthogonal to MORPH’s C2S
assignment presented in Section 6.3.2 and Section 7.1.3. When a switch is assigned the processing
node role for itself or another target switch, it collects the control packets destined for the target switch
and deduces the correct payload on-the-fly, it next forwards a single packet copy containing the correct
controller message to the destination switch. Consider Fig. 7.7a). If control packet comparison is
done only at the target switch (as in prior works), a request for S4 creates a total footprint of F¢c = 13
packets in the data plane (the sum of Cluster 1 and Cluster 2 utilizations of 4 and 9, respectively). In
contrast, if the processing is executed in S3 as depicted in Fig. 7.7b), the total experienced footprint
can be decreased to Fc = 11. Therefore, in order to minimize the total control plane footprint, we
identify an optimal processing node for each target switch, based on a given topology, placement of
controllers and the processing nodes’ capacity constraints. If we additionally extend the optimization to
a multi-objective formulation by considering the delay metric, the total traversed critical path between
the controller furthest away from the configuration target would equal Fp = 3 in the worst case (ref.
Fig. 7.7¢)), i.e., 3 hops assuming a delay weight of 1 per hop. Additionally, this assignment also has

the minimized communication overhead of Fc = 11.

Table 7.6: Parameters used in P4ABFT’s model.

Symbol Description
V:{$1,82,....,S.},n€Z* Set of all switch nodes in the topology.
C:{C,Ca....,Crt,n € Z* Set of all controllers connected to the topology.

D :{d;jx Vi, j k eV} Set of delay values for path from i to &, passing through ;.
H 2 {hij,Vi,j €V} Set of number of hops for shortest path from i to ;.
Q: {q:,VieV} Set of switches’ processing capacity.
cice Set of controllers connected to the node j.
McvV Set of switches connected to at least one controller.
T Maximum tolerated delay value.
x(i, k) Binary variable that equals 1 if i is a processing node for k.
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Figure 7.7: For brevity we depict the control flows destined only for configuration target S4. The orange
and red blocks represent an exemplary cluster separation of 5 controllers into groups of 2 and 3 controllers,
respectively. The green dashed block highlights the processing node responsible for comparing the controller
messages destined for S4. Figure (a) presents the unoptimized case as per [1, , ], where S4 collects and
processes control messages destined for itself, thus resulting in a control plane load of F¢- = 13 and a delay on
critical path (marked with blue labels) of Fp = 3 hops (assuming edge weights of 1). By optimizing for the
total communication overhead, the total Fc can be decreased to 11, as portrayed in Figure (b). Contrary to (a),
in (b) processing of packets destined for S4 is offloaded to the processing node S3. However, additional delay is
incurred by the traversal of path S1-S2-S3-S2-S4 for the control messages sourced in Cluster 1. Multi-objective
optimization according to PABFT, that aims to minimize both the communication overhead and control plane
delay instead selects S2 as the optimal processing node (ref. Figure (c)), thus minimizing both F¢ and Fp.

We describe the processing node mapping problem using an [P formulation. Table 7.6 summarizes

the notation used.

Communication overhead minimization objective minimizes the global imposed communication
footprint in the control plane. Each controller replica generates an individual message sent to the
processing node Z, that subsequently collects all remaining necessary messages and forwards a resulting

single correct message to the configuration target &:

Mp=min > 3 (1-hig-x(@ k) + > 1CT] - hy ;- x(i, k) (7.2)
keVieV JeM

Configuration delay minimization objective minimizes the worst-case delay imposed on the
critical path used for forwarding configuration messages from a replica associated with node j, to the

potential processing node i and finally to the configuration target node k:
Mp = min Z Z x(i, k) - max (dj.i) (7.3)

. VieM
keVieV
Bi-objective optimization minimizes the weighted sum of the two objectives, w; and w, being
the associated weights:

min wy - Mg +wy - Mp (74)

Processing capacity constraint: Sum of messages requiring processing on i, for each configuration

target k assigned to i, must be kept at or below i’s processing capacity ¢;:

Subject to: Z x(i,k)-|Cl < qi, VieV (7.5)
keV

Maximum delay constraint: For each configuration target k, the delay imposed by the controller

packet forwarding to node i, responsible for collection and packet comparison procedure and forwarding
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of the correct message to the target node k, does not exceed an upper bound 7

Subject to: Y x(i,k) - max (d;;x) <T, VkeV (7.6)

4 VjeM

ieV
Single assignment constraint: For each configuration target k, there exists exactly one processing
node i:
Subject to: Z x(i,k)y=1, VkeV (7.7)
i€V

Note: The assignment of C2S connections for the purpose of control and reconfiguration is reused

from Section 6.3.2 and Section 7.1.3 and is thus not detailed here.

7.2.4 P4 Switch and REASSIGNER Control Flow

Processing node (Data Plane): Switches declared to process controller messages for a particular target
(i.e., for itself, or for another switch) initially collect the control payloads stemming from different
controllers. Each processing node maintains counters for the number of observed and matching packets
for a particular (re-)configuration request identifier. After sufficient matching packets are collected
for a particular payload (more specifically, hash of the payload), the processing node signs a message
using its private key and forwards one copy of the correct packet to its own control plane for required
software processing (i.e., identification of the correct message and potentially Byzantine controllers),
and the second copy on the port leading to the configuration target. To distinguish processed from

unprocessed packets in destination switches, processing nodes refer to the trailing signature field.

Processing node (Control Plane): After determining the correct packet, the processing node
identifies any incorrect controller replicas (i.e., replicas whose output hashes diverge from the deduced
correct hash) and subsequently notifies the REASSIGNER of the discrepancy. Alternatively, the switch
applies the configuration message if it is the configuration target itself. The switch then proceeds to

clear its registers associated with the processed message hash so to free the memory for future requests.

REASSIGNER control flow: Atnetwork bootstrapping time, or on occurrence of any of the following
events: i) a detected Byzantine controller; ii) a failed controller replica; or iii) a switch/link failure;
REASSIGNER reconfigures the processing and forwarding tables of the switches, as well as the number

of required matching messages to detect the correct message.

7.2.5 P4 Tables Design

Switches maintain 7ables and Registers that define the method of processing incoming packets.
REASSIGNER populates the switches’ Tables and Registers so that the selection of processing nodes for
controller messages is optimal w.r.t. a set of given constraints, i.e., so that the total message overhead
or control plane latency experienced in control plane is minimized (according to the optimization
procedure in Section 7.2.3). The REASSIGNER thus modifies the elements whenever a controller is
identified as incorrect and is hence excluded from consideration, resulting in a different optimization
result. PABFT leverages four P4 tables:
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Table 7.7: Hash table layout of a PABFT’s processing node.

| Msg Hash Request ID 1 Request ID K
ho b’g’l bl T by b’gl e b’é"N
|- be, | e b, | | b | ke béi,
hry béf“ bch chM bC‘.FM bch b(l:FM

1. Processing Table: It holds identifiers of the switches whose packets must be processed by
the switch hosting this table. Incoming packets are matched based on the destination switch’s
identifier. In the case of a table hit, the hosting switch processes the packets as a processing

node. Alternatively, the packet is matched against the Process-Forwarding Table.

2. Process-Forwarding Table: Declares which egress port the packets should be sent out on for
further processing. If an unprocessed control packet is not to be processed locally, the switch will
forward the packet towards the correct processing node, based on forwarding entries maintained
in this table.

3. L2-Forwarding Table: After the processing node has processed the incoming control packets
destined for the destination switch, the last step is forwarding the correctly deduced packet
towards it. Information on how to reach the destination switches is maintained in this table.
Contrary to forwarding to a processing node, the difference here is that the packet is now

forwarded to the destination switch.

4. Hash Table with Associated Registers: Processing a set of controller packets for a particular
request identifier requires evaluating and counting the number of occurrences of packets con-
taining the matching payload. To uniquely identify the decision of the controller, a hash value
is generated on the payload during processing. The counting of incoming packets is done by
updating the corresponding binary values in the register vectors, with respective layout depicted
in Table 7.7.

On each arriving unprocessed packet, the processing node computes a previously seen or i-th
initially observed hash h:eq”e‘"—id over the acquired payload. Subsequently, it sets the binary flag to 1,
for source controller controller_id in the i-th register row at column [client_request_id- |C| +
controller_id]. |C| represents the total number of deployed replicas. Each time a client request is
fully processed, the binary entries associated with the corresponding client_request_id are reset
to zero. To detect a Byzantine controller, the replica identifiers associated with hashes distinguished

as incorrect, are reported to the REASSIGNER.

Note: To tolerate Fy; Byzantine failures, a maximum of Fjs + 1 unique hashes for a single request

identifier may be detected, hence the corresponding Fjs + 1 pre-allocated table rows in Table 7.7.

7.2.6 Evaluation & Results

We next evaluate the following metrics using PABFT and state-of-the-art [1, , ] designs: i)
control plane load; ii) imposed processing delay in the software and hardware P4ABFT nodes; iii) E2E

switch reconfiguration delay; and iv) ILP solution time. We execute the measurements for random
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controller placements and diverse data plane topologies: i) random topologies with fixed average node
degree; ii) reference Internet2 [217]; and iii) data-center Fat-Tree (k = 4). We also vary and depict
the impact of number of switches, controller instances, and disjoint controller clusters. To compute
C2S paths and paths between processing and destination switches, REASSIGNER leverages the CSPF
algorithm. For brevity, as an input to the optimization procedure in REASSIGNER, we assume edge
weights of 1. The objective function used in processing node selection is Eq. 7.4, parametrized with
(wi,wa) = (1,1).

PABFT implementation is a combination of P4 ;¢ and P4 Runtime code, compiled for software and
physical execution on P4 software switch bmv2 (master check-out, December 2018) and a Netronome
Agilio SmartNIC device with the corresponding firmware compiled using Software Development
Kit (SDK) 6.1-Preview, respectively. Apache Thrift and gRPC Remote Procedure Calls (gRPC)
are used for population of registers and table entries in bmv2, respectively. Thrift is used for both
table and registers population for the Netronome SmartNIC, due to the current SDK release not fully
supporting the P4 Runtime. Hypertext Transfer Protocol (HTTP) REST is used in exchange between
P4 switch control plane and the REASSIGNER. The REASSIGNER and controllers are implemented in
Python.

7.2.6.1 Communication Overhead Advantage

Fig. 7.8 depicts the packet load improvement in PABFT over MORPH and other reference solutions [ 1 15,

] for randomly generated topologies with average node degree of 4. The footprint improvement
PABFT

. C
is defined as 1 — “pSoA

each destination swi%ch of the network topology as per Section 7.2.3 and Fig. 7.7. PABFT outperforms

where F¢ denotes the sum of packet footprint for control flows destined to

the state of the art as each of the presented works assumes an uninterrupted control flow from each
controller to the destination switches. P4ABFT, on the other hand, aggregates control packets in the
processing nodes that, subsequently to collecting the control packets, forward a single correct message

towards the destination, thus decreasing the control plane load.

Fig. 7.9 (a) and (b) portray the footprint improvement scaling with the number of controllers and
disjoint clusters. PABFT’s footprint efficiency generally benefits from the higher number of replicas.
Controller clusters, on the other hand, aggregate replicas behind the same edge switch. Thus, with
the higher number of disjoint clusters, the degree of aggregation and the total footprint improvement

decreases.

7.2.6.2 Processing and Reconfiguration Delay

Fig. 7.10 depicts the processing delay incurred in the processing node for a single client request. The
delay corresponds to the P4 pipeline execution time spent on identification of a correct controller
message, comprising the i) hash computation over controller messages; ii) incrementing the counters
for the computed hash; iii) signing the correct packet and; iv) propagating it to the correct egress
port. When using the P4-enabled SmartNIC, PABFT decreases the processing time compared to bmv2

software target by two orders of magnitude.
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Figure 7.8: Packet load improvement of PABFT over the reference works [, s ] for 5000 randomly
generated network topologies per scenario, with 7 controllers distributed into 3 disjoint and randomly placed
clusters. In addition to the 100% coverage where each node may be considered a PABFT processing node, we
include scenarios where only the random [ 1, 25%, 50%, 75%] nodes of all available nodes in the infrastructure
are PABFT-enabled. Thus, even in the topologies with limited programmable data plane resources, i.e., in
brownfield-scenarios involving OF / NETCONF + YANG non-P4 configuration targets, P4ABFT offers substantial
advantages over existing state of the art.
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Figure 7.9: The impact of (a) controllers and; (b) disjoint controller clusters on the control plane load footprint
in Internet2 and Fat-Tree (k = 4) topologies for 5000 randomized controller placements each. (a) randomizes the
placement but fixes the number of disjoint clusters to 3; (b) randomizes the number of disjoint clusters between
[1,7,13,17] but fixes the number of controllers to 17. The resulting footprint improvement scales with the
number of controllers but is inversely proportional to the number of disjoint clusters.

Fig. 7.11 depicts the total reconfiguration delay imposed in state of the art and PABFT designs for
(wi,wz) = (1, 1) (ref. Eq. 7.4). It considers the time difference between issuing a switch reconfigura-
tion request, until the correct controller message is determined and applied in the destination. Related
works process the reconfiguration messages stemming from controller replicas in the destination target,
their control flows traversing shortest paths in all cases. On average, PABFT’s reconfiguration delay is

comparable with related works, the overall control plane footprint being substantially improved.
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Figure 7.10: The ECDFs of processing delays imposed in a PABFT’s processing node for a scenario including
5 controller replicas. 3 correct packets and thus 3 P4 pipeline executions are necessary to confirm the payload
correctness when tolerating 2 Byzantine controllers.
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Figure 7.11: ECDFs of time taken to configure randomly selected switches in state-of-the-art and PABFT
environments for Internet2 topology, 10 random controller placements for 5 replicas and 1700 individual requests
per placement. State-of-the-art works collect, compare and apply the controllers’ reconfiguration messages in
the destination switch thus effectively minimizing the reconfiguration delay at all times. PABEFT, on the other
hand, may occasionally favor footprint minimization over the incurred reconfiguration delay and thus impose
a longer critical path, leading to slower reconfigurations. On average, however, PABFT imposes comparable
reconfiguration delays at a much higher footprint improvement (depicted blue), mean being 38%, best and worst
cases at 60% and 19.3%, respectively, for evaluated placements.

7.2.6.3 Impact of Optimization Objectives

Fig. 7.12 depicts the Pareto frontier of optimal processing node assignments w.r.t. the objectives
presented in Section 7.2.3: the total control plane footprint (minimized as per Eq. 7.2) and the
reconfiguration delay (minimized as per Eq. 7.3). From the total solution space, depending on the
weights prioritization in Eq. 7.4, either (26.0, 3.0) or (28.0, 2.0) solutions can be considered optimal.
Comparable works implicitly minimize the incurred reconfiguration delay but fail to consider the

control plane load. Hence, they prefer the (30.0, 2.0) solution (encircled red).

7.2.6.4 ILP Solution Time - Impact of Topology And Controller Clusters

The solution time for the optimization procedure considering random topologies with average network
degree of 4 and a fixed number of randomly placed controllers is depicted in Fig. 7.13 (a). The
solution time scales with number of switches, peaking at 420ms for large 128-switch topologies. The
reassignment procedure is executed in few rare events: during network bootstrapping, on Byzantine /

unavailable controller detection and following a switch / link failure. Thus, we consider the observed
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Figure 7.12: Pareto Frontier of PABFT’s solution space for the topology presented in Fig. 7.7. The compa-
rable works tend to minimize the incurred reconfiguration delay, but ignore the imposed control plane load.
[1, , ] hence select (30.0,2.0) as the optimal solution (encircled in red) while PABFT selects (26.0, 3.0)
or (28.0,2.0) thus minimizing the total overhead as per Eq. 7.4.
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Figure 7.13: (a) depicts the impact of network topology size on the ILP solution time for random topologies.
(b) depicts the impact of controller number and cluster disjointness in the case of Internet2 topology. The results
are averaged over 5000 per-scenario iterations. The higher the cluster aggregation of controllers, the lower the
ILP solution time. "Fixed Clusters" considers the worst-case, where each controller is randomly placed, but
disjointly w.r.t. the other controller instances. Clearly, the ILP solution time scales with the amount of deployed
switches and controllers. We used Gurobi 8.1 optimization framework configured to execute multiple solvers on
multiple threads simultaneously, and have chosen the ones that finish first.

solution time short and viable for online mapping. Fig. 7.13 (b) depicts the [LP solution time scaling
with the number of active controllers. The lower the number of active controllers, the shorter the
solution time. In "Fixed Clusters" case, each controller is placed in its disjoint cluster (worst-case
for the optimization). The "Random Clusters" case considers a typical clustering scenario, where a
maximum of [1..3] clusters are deployed, each comprising a uniform number of controller instances.

The higher the cluster aggregation, the lower the ILP solution time.

7.3 Chapter Summary and Outlook

In the first part of the chapter, we have proposed and implemented two agreement-based and an oppor-
tunistic BET protocol for the purpose of client request sequencing and state synchronization, and have
analyzed their overheads in an emulated environment using emulated well-known production topolo-
gies. The evaluated KPIs include the switch reconfiguration times, the request acceptance rates and the

communication overhead. We have shown how our opportunistic BET approach leverages agreement
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of switch state at the time of request computation to ensure the causality during request reconfiguration.
It offers considerably lower response time compared to the sequencing-based approaches. However,
this benefit comes at the expense of a lower acceptance rate and quadratic communication overhead.
For those metrics, the A&E group-based sequencing approach SBFT presents a better alternative. Both
approaches, however, result in a higher throughput compared to the state-of-the-art MPBET, which
adapts the well-established PBFT protocol.

In the second part of the chapter, we introduced PABFT - a switch control- / data-plane co-design,
capable of Byzantine controller identification while simultaneously minimizing the control plane
footprint. By merging the control channels in P4-enabled processing nodes, the use of PABFT results
in a lowered control plane footprint, compared to basic MORPH design as well as the state-of-the-art
works. In a hardware-based data plane, by offloading packet processing from general purpose CPU to
the data-plane Network Processing Unit (NPU), it additionally leads to a decrease in request processing
time. Given the low solution time, the presented [L.P formulation for processing node identification is

viable for online execution.

Outlook: While we focused on an SDN scenario here, future works should consider the conceptual
transfer of PABET’s in-network offloading and acceleration to other application domains, including
stateful web applications and critical industrial control systems that rely on BFT operation [62, ,

» 227].



Chapter 8

On Deployment Complexity of
Distributed Control Plane

Initial SDN deployments (e.g., in data-centers and Wide Area Networks (WANs) [73]) have relied on
Out-Of-Band Network Control (OOBC) with which control traffic is exchanged between switches and
the SDN controller(s) using dedicated links and switch management ports. Bootstrapping with OOBC
is trivial, due to controllers being capable of controlling the switches without requiring connectivity
over any other switches. Successful adoption of SDN in critical industrial environments will, however,
require [n-Band Network Control (IBC). The OOBC model is inapplicable due to its associated Capital
Expenses (CAPEX) and installation efforts [ 38, 82, 176]. For example, deploying an additional physical
management network in machine tool manufacturing or drive technology networks is immensely
expensive, due to associated cabling costs for the shielding required for RF / EMI noise suppression.
Similarly, avionics and automotive networks benefit greatly from decreased cabling weight [82].
Existing designs for seamlessly enabling [BC, however, cater only for single-controller operation,
assume proprietary switch modifications, and / or require a high number of manual configuration steps,

making them non-resilient to failures and hard to deploy.

To address these concerns and ease the deployments of the presented distributed SDN control plane
designs, we introduce two nearly completely automated bootstrapping schemes for a multi-controller
IBC resilient to link, switch, and controller failures. One assumes hybrid OF / legacy switches with
deployed (Rapid) Spanning Tree Protocol ((R)STP) and the second uses an incremental approach that
circumvents (R)STP. We implement both schemes as ODL extensions, and qualitatively evaluate their
performance with respect to: the time required to converge the bootstrapping procedure; the time
required to dynamically extend the network; and the resulting flow table occupancy. The proposed
schemes enable fast bootstrapping of a robust, IBC industrial networks with support for seamless
redundancy of control flows and network extensions, while ensuring interoperability with off-the-shelf

switches.

The first of the two presented schemes was demonstrated successfully in an operational industrial
network with critical fail-safe requirements [9]. Both schemes were evaluated in emulated small- and
large-scale industrial topologies. The designs of the two schemes were published in augmented form

in our publication [5].

127
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8.1 Motivation for In-Band Bootstrapping of a Reliable Distributed

Control Plane

With IBC, control traffic is forwarded along the same links used for the data plane traffic. This makes
IBC networks the preferable solution from the cost and operational perspectives. However, their
implementation is challenging. For example, current ODL [123] and ONOS [39] releases provide no
mechanisms to support or automate the IBC bootstrapping, nor do they allow for protection of control
plane traffic against arbitrary link and node failures, both which are of critical importance in industrial

networks [204].

Summarized, the bootstrapping of a reliable softwarized industrial network must address the

following challenges:

(1) Establishing robust S2C and C2C communication using IBC and an initially unconfigured
control plane: In industrial networks, OOBC imposes a requirement for ruggedized wiring immune to
EMI and heavy electrical surges typical for electric utility substations, factory floors and traffic control
cabinets, further raising the costs. Hence, IBC is the preferable way of controlling SDN switches.
In contrast to OOBC, IBC requires a more complex initial setup, due to: i) unpredictable data plane
traffic that could impact the control plane responsiveness; ii) data plane failures which may impact the
availability of the control plane; iii) establishing deterministic control plane flows in a non-configured

data plane is non-trivial, and typically requires manual configuration.

(2) Preserving the control plane stability in case of arbitrary number of link, switch and/or
controller failures: To protect against controller’s SPOF, state-of-the-art controllers deploy and
replicate their state across multiple replicas in SC, EC or AC manner (ref. Chapter 5) [3, , 1.
ODL [123] and ONOS [39] leverage the SC model relying on Raft [87].

Ensuring consistent topology and switch state views relies on C2C communication, thus making
it crucial for bootstrapping procedure to enable robust control channels by design. The physical
dislocation of controllers additionally imposes transmission of the synchronization traffic using IBC
flows. ODL’s southbound module (OpenFlowPlugin) requires a prior C2C channel establishment and a
successful consensus round even for a "trivial" population of OF rules during bootstrapping. Similarly,
the per-switch controller’s role (i.e., "backup” or "master") must be decided using consensus among
the contending controllers. Hence the configuration of switches for multi-controller support and the

support for controller state synchronization must be targeted in tandem.

Enabling a resilient distributed control plane thus requires the bootstrapping processes to ensure

resilience in case of following failures:

* Failures of F out of 2F + 1 controllers in the case of a Fail-Stop control plane (as per Chapter 3):

No managed switches may be left unmanaged due to individual replica failures;

* Failures of up to Fjy and F4 out of 2F; + F4 + 1 controllers in the case of a BET control plane

(as per Chapter 6);
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* Assuming k + 1 disjoint paths between each two controllers, failure of k switches / links must

not result in control plane partitioning [68, 1.

(3) Support for node and link extensions of the previously reliably bootstrapped 1B C network:
Dynamic network topology changes, i.e., attachment of new end-devices (host discovery) and packet
forwarding devices to existing managed networks should be natively supported by the proposed
designs. In particular, dynamic plugging and unplugging of machine networks (i.e., network cells) in
industrial backbones, reconfiguration of modular machine network assemblies and addition / removal

of production line networks are typical Industry 4.0 use cases [213, 1.

(4) Minimization of manual per-device preconfiguration: Involved configuration effort should
be minimized - Configuration of controller lists (comprising [P address / port number pairs) and switch
identities should be automated so to enable agile device deployment / network extensions (e.g., for
VNF on-boarding). To this end, controllers or external Dynamic Host Configuration Protocol (DHCP)
servers should be charged with providing switches with management IP addresses and thus automated

identity binding.

In the remainder of the chapter, we tackle the challenge of bootstrapping a reliable IBC softwarized

network while satisfying challenges (1)—(4):

* We propose two novel automated bootstrapping schemes targeting reliable IBC networks with

multi-controller support and solving the above-mentioned challenges.

* We evaluate the proposed designs in realistic industrial topologies with varying sizes and
controller placements w.r.t. (i) the time required to converge the bootstrapping procedure,
(ii) the time required to dynamically extend the network, and (iii) the flow table occupancy. We
limit our evaluation to the two schemes proposed in this paper, due to the unavailability and / or

ambiguity of closed-source state-of-the-art solutions.

* We discuss implementation aspects relevant for the successful introduction of the designs in

networks equipped with off-the-shelf OF agents.

8.2 Related Work - On In-Band Bootstrapping of Distributed Control
Plane

The few automated IBC bootstrapping approaches to date address the above mentioned challenges
partially or in isolation of each other. For instance, they neglect the SPOF issue [175—177], do not
guarantee reliable control connections [167, ], omit the practical constraint of controllers’ state syn-
chronization prior to switch reconfigurations [51, s ], or assume functional extensions of switch
components, e.g., the DHCP client or OF agent [38, 176, 177]. This limits their applicability in existing
infrastructures. Most concerning, the reproducibility of state-of-the-art proposals in real environments

is limited, due to unclear preconfiguration assumptions or closed-source implementations.
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Design Auto. Switch Management | Auto. Controller Resilience of Control Multi-Controller (R)STP Not No Proprietary
IP Provisioning List Provisioni Flows Support Required Switch Ex i

Sharma etal. [175-177] v v v | X (reactive) X v X
Schiff et al. 1[167-169] X X / 1 X (timeout) v/ v/ \ v
Schiff et al. I [50] v (timeout/reactive) v v v
Heise et al. [82] X X v (proactive replication) X X ‘ v
Canini et al. [51] X X v (reactive) v v
Suetal. [180] X v v (reactive) X ‘ v
Bentstuen et al. [38] v v X X v X
Hybrid Switch Scheme (HSS) v v v (proactive replication) 4 X ‘ v
Hop-by-Hop Scheme (HHS) v v v (proactive replication) v v v

Table 8.1: Comparison of our HSS and HHS bootstrapping designs with existing schemes.

Sharma et al. [175—177] were first to propose an automatic bootstrapping scheme and evaluate its
performance for various IBC topologies. [175, ] highlight the advantages of a proactive protection
scheme (using fast-failover groups [29]), allowing the controller to proactively compute duplicate paths
for control plane flows. On a successful failure discovery, the detecting switch automatically re-routes
the incoming traffic over the assigned backup port, without needing to involve the controller in loop. In
all three works, Sharma et al. assume proprietary modifications to the DHCP client hosted in switches
with the goal of provisioning the controller lists. Distributed control plane was not considered by these

works.

Schiff et al. [168] present a design of a self-organizing multi-controller control plane that relies
exclusively on OF. Contrary to the Hybrid Switch Scheme (HSS) and Hop-by-Hop Scheme (HHS)
schemes presented here, the authors do not consider the necessity of controller state synchronization
prior to switch reconfigurations. In [167], the authors extend their approach to include a timeout-based
fault-tolerance approach where rules corresponding to failed paths eventually time out, thus preventing
permanent switch cut-offs. Instead, we propose constant duplication of control flows incurring zero-
packet-loss in case of failures. Follow-up works [50, 51] propose a timeout-free approach to ensure
resilience against data plane failures, based on assumption of a controller-initiated switch discovery
and OF equal role [122] controller association with switches. Similar to above works, we compute and
iteratively expand the spanning tree so to enable loop-less forwarding of control traffic and discovery

of newly added switches to an already bootstrapped network.

[169] proposes atomic transactions for coordinated concurrent switch configurations by multiple
controllers. The approach is orthogonal to our work but we additionally assume the requirement for

distributed consensus [3, 87], as imposed by ODL [123] and ONOS [39] implementations.

Heise et al. [82] propose the usage of network calculus, i.e., rate- and burst-policed control traffic
for providing upper bound guarantees for bootstrapping convergence time. They leverage fast-failover
groups to implement the restoration of control flows in face of failures. Their bootstrapping concept
assumes (R)STP in switches and no multi-controller support. Bentstuen et al. [38] propose an approach
that relies on intent-based control flow definitions targeting ONOS [39], so to simplify the management
of control flows in a single-controller environment. The authors also stumble upon a number of practical
issues related to IBC bootstrapping and ultimately fall back to modification of the OVS’s source code.

To support the existing OF implementations, we considered workarounds for these limitations.

FASIC[180] minimizes congestions in single-controller IBC control plane by means of a centralized

control port load monitoring. Control port is switched to a more fitting port on exceeded threshold
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or in case of link failures. The authors deduce that their fail-over approach results in non-negligible
packet loss, related to OF’s back-off interval in the case of repeated unsuccessful connection attempts.
We consider this aspect in the design of the (R)STP timer in the HSS approach. In [72], authors
propose a method for re-routing IBC control flows based on observed controller load and IBC channel
congestion. To this end, the authors leverage control flow shifting and splitting. Both methods are
orthogonal and compatible with HSS and HHS.

8.3 Background and Terminology

8.3.1 General Model

A failed controller replica is an inactive, unreachable replica. Apart from individualized identity
configuration, each replica is an exact clone and thus implements the OF southbound logic and is
capable of executing the bootstrapping procedure. Updates to a replica’s distributed data store are
synchronized among all reachable and active replicas using Raft. Thus, the described bootstrapping

procedure is tolerant against Fail-Stop failures only.

Note: Tolerating Byzantine failures is currently unsupported and is considered as future work.

Switches are operated in OF Master-Slave mode [228], where any controller replica may become
the Master of a switch. Forwarding table modification messages initiated by a Slave controller are
proxied through the switch’s Master. All switches are controlled in IBC manner, using OF v1.3+ [228].
To enable the (optional) automated identity (IP address) and controller list assignment, each switch
deploys a DHCP client and a Secure Shell (SSH) server. The controllers accordingly execute DHCP
server instances for automated [P address roll-out. For purpose of automated authentication, prior
to bootstrapping step, switches and controllers may have their certificates or symmetric keys on-
boarded so to enable Public Key Infrastructure (PKI)-, or Message Authentication Code (MAC)-based
authentication [59, 65], respectively. Depending on the target scheme, the switches either all support
(R)STP or they do not (i.e., they have it disabled). Moreover, each switch is capable of forwarding
traffic via traditional MAC learning (using NORMAL-mode forwarding). We assume an Internet Protocol

v4 (IPv4)-enabled infrastructure.

A k link / switch fault resilience model requires an adequate underlying topology, where k + 1
disjoint paths can be found for any C2S / C2C pair. For simplification, we relax this condition and
model a link failure between an SDN controller and the switch directly attached to it as a controller
failure. We duplicate traffic on disjoint paths for each communication pair. Higher layer protocols are
then tasked with duplicate elimination, i.e., we rely on TCP at transport layer. This is feasible, since
both OF and C2C synchronization in ODL transmit TCP traffic. A generalized solution should instead
deploy robust duplicate frame elimination measures (e.g., as per TSN 802.1CB [154]).

8.3.2 Secure and Standalone Modes

In Standalone mode, a switch forwards packets autonomously - i.e., it behaves like a non-managed

MAC learning forwarder. Namely, it contains one generic OF rule that matches all traffic and forwards



132 Chapter 8. On Deployment Complexity of Distributed Control Plane

it to the reserved NORMAL (ref. [122]) port. After establishing a connection to a controller, the NORMAL

rule is automatically removed.

In Secure mode, it is non-existent. Following an established controller connection in Secure mode,
the flow table remains unmodified, and the forwarding behavior continues according to controller-
added rules. In case of an empty flow table and non-configured controller lists, the switch in Secure
mode drops all arriving traffic. Depending on the scheme, switches must support either Secure and

Standalone mode or Secure mode only.

8.3.3 In-band Mode

With In-band mode, a switch is initialized with generic rules that ensure controller-destined traffic is

forwarded according to the MAC learning table (i.e., using the NORMAL port).

In switches basing their OF implementation on the OVS agent, the In-band rules have a priority
higher than any flow rules that may be configured by the controller. There, In-band mode automatically
preconfigures the rules for forwarding: i) Address Resolution Protocol (ARP) requests and DHCP
Discover messages generated by the switch; and ii) ARP replies and DHCP Offer messages destined
for the switch. For each controller, rules matching following traffic are added: i) ARP replies destined
for controller’s MAC address; ii) ARP requests generated with controller’s MAC address as source; iii)
ARP replies containing controller’s IP address as target; iv) ARP requests containing controller’s [P
address as source; v) traffic destined for controller’s IP / TCP port pair; and vi) traffic with controller’s

[P and TCP port as source.

8.4 HSS - (R)STP-based Automated Distributed Control Plane
Bootstrapping

We first introduce the HSS bootstrapping scheme that heavily relies on existence of (R)STP, Standalone,
In-band modes, and NORMAL forwarding. HSS leverages (R)STP to establish an acyclic graph and
thus remedy the potential storm issues stemming from traffic broadcasts (e.g., from ARP and DHCP
requests). Fig. 8.1 summarizes the workflow of HSS. InPhase 1laandPhase 1b, controllers establish
the C2C communication over the spanning tree computed by the network. In Phase 1c, switches are
provided dedicated management [P addresses and controllers’ [P / port pairs. In Phase 2a, controllers
establish the control over the connected switches, install a set of initial rules and eventually disable
(R)STP in switches so to enable blocked ports. Explicit resilient flow rules are embedded in Phase
2b, so to fulfill the fault-tolerance requirements. To support network extensions at runtime (Phase 3,
not depicted), a virtual spanning tree is maintained in controllers and enforced for discovery traffic,
allowing for safe forwarding of (broadcast) traffic initiated by newly attached nodes, even after disabling
(R)STP.

HSS requires the following assumptions to hold at startup: i) Controllers are aware of [P addresses

of other controllers, or are capable of resolving these using standardized Domain Name System (DNS)
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queries; ii) Switches are initialized in Standalone mode with (R)STP and In-band mode enabled; iii)

’ ]'

Switches are provisioned with controllers’ public certificates or symmetric MAC keys [

Phase 1a/ Inter-contyoller synchronization and leader election
Phase b | < LEADER | <~ FOLLOWER | <~ FOLLOWER
DHCP: Switch Ip
Phase 1c §SH: Controllers” IP:port
OF: Handshake Inter—con'trol'ler
i OF: Initial rules synchronization
is done concurrently
Phase 2a with the
WAIT STP bootstrapping
1 SSH: Disable (R): procedure
OF: Resilient rules
Phase 2b

Figure 8.1: HSS - Message sequence diagram of the bootstrapping procedure as described in Section 8.4.

8.4.1 Phase 1: Network Startup and Initial Address Distribution

8.4.1.1 Phase 1la - In-Band Flow Rules

Switches boot with In-band flow rules set up, enabled to bidirectionally forward traffic between switches
and controllers. The traffic matching In-band flow rules is forwarded using the reserved NORMAL OF
port. After a switch establishes a connection with the controller, due to enabled Standalone mode, the
switch automatically deletes any rules which are of a priority lower than the In-band rules. Without
enabling the In-band mode, this behavior would lead to switch flow tables becoming empty, and
thus traffic drops, including the controller-initiated OF traffic. Instead, In-band mode rules (ref.

Section 8.3.3) ensure the incoming traffic is forwarded even after a successful initial C2S connection.

8.4.1.2 Phase 1b - Controller Synchronization

The switches initially boot with Standalone mode and (R)STP enabled. Prior to taking the switch
ownership, the controllers elect a leader and establish an active Raft cluster using the established

spanning tree thus enabling synchronization.

8.4.1.3 Phase 1c - Distribution of Switch and Controller Connection Identifiers

As mentioned before, a fully-automated address distribution to the switches’ management interfaces is
an optional feature of our schemes. To this end, a DHCP server instance, e.g., realized as a replicated
application of the controller, distributes the [Pv4 addresses to switches on an First-Come-First-Serve
(FCES) basis. To omit potential address conflicts, the Raft leader replica is charged with address
leasing using an automatically derived list of free addresses given the reserved controller IP addresses.
Follower replicas on the other hand, ignore DHCP requests, as long as the current leader is active. In

case of duplicate DHCP requests, DHCP server replies only to the first request [176].
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The leader then establishes management session with provisioned switches (using SSH / Open
vSwitch Database Protocol (OVSDB)). Since in this phase all switches forward control traffic according
to the NORMAL data-path (Standalone mode) the connection establishment succeeds. The leader next

proceeds to provision the switches with redundant controllers’ IP addresses and TCP ports.

8.4.2 Phase 2: Enabling a Functional and Resilient Control Plane

The goal of Phase 2 is to provide the discovered switches with rules necessary to enable a resilient
control plane. Phase 2 is divided into two sub-steps: Phase 2a - initial control plane rules are
installed to allow communication with adjacent switches; and Phase 2b - resilient control plane rules
are installed. To avoid broadcast storms, (R)STP remains functional until all initially booted switches
are discovered. (R)STP is disabled in Phase 2b and, after all links were discovered, Raft leader

computes and embeds resilient paths.

8.4.2.1 Phase 2a - Initial OpenFlow Flow Rules

For each connected switch the leader controller installs the rules depicted in Table 8.2. The matching
semantics correspond to OF fields defined in [228]. The leader next disables the In-band mode flow
rules using the SSH / OVSDB management channel. This is done in order to enable full control over
control plane traffic forwarding based on initial rules. Otherwise, e.g., in OVS, the switches would
continue to forward OF, ARP and DHCP traffic according to In-band mode imposed rules, since they

have the highest available priority.

On rule semantics (Table 8.2): DHCP and SSH rules enable a continued successful execution
of Phase 1 for switches adjacent to the configured switch. ARP rules prevent the ARP table cache
timeouts. Link Layer Discovery Protocol (LLDP) rules allow the controllers to discover topology
updates. An additional per-controller ARP rule is required for controller’s placement discovery. To

this end, controllers periodically generate probe packets.

Purpose ‘ Packet Type ‘ Matching Action
Dynamic switch [P address N udp, udp_src=68
DHCP

configuration ¢ udp, udp_src=67 Stant] o TR

tep, tep_sre=22
Remote switch configuration ‘ SSH ‘ tzg ‘Zg ; 022 Send to NORMAL

) tep, tep_src=6653
€25 OF interaction OF ey top_ 506653 Send to NORMAL

5 tpa=control plane IP prefi

Switch IP resolution ‘ ARP ‘ AP, ATp_Ipameonito prane L pre iy Send to NORMAL

arp, arp_spa=control plane IP prefix
Topology discovery LLDP eth_type=0x88cc Send to CONTROLLER
arp, arp_tpa=cl IP
arp, arp_spa=cl IP

Controller IP resolution ARP Send to NORMAL

arp, arp_tpa=cN IP
arp, arp_spa=cN IP
Controller Self-Discovery ARP arp, arp_tpa=arbitrary IP Send to CONTROLLER
ip, ip_src=cl IP, ip_dst=c2 IP
ip, ip_src=c2 IP, ip_dst=c1 IP

(C2C synchronization ICcp ip, ip_ste=cX 1P, ip_dst=cY TP Send to NORMAL
ip, ip_src=cY IP, ip_dst=cX IP
Network Extension (NEXT): Dynamic in_port=TREE port, udp, udp_src=68
DHCP a
switch P address configuration ¢ in_port=TREE port, udp, udp_src=67 SendoihSgRLE o
R . . - in_port=TREE port, tcp, tcp_src=22

NEXT: Remote switch configuration SSH ‘ in_port=TREE port, tcp, tcp_dst=22 Send to other TREE ports

S —— . . in_port=TREE port, tcp, tcp_dst=6633
NEXT: C2S OF interaction OF in_port=TREE port, tcp, tcp_stc=6633 Send to other TREE ports
NEXT: Any ARP traffic | ARP | in_port=TREE port, arp Send to other TREE ports

NEXT: Network extension discovery DHCP in_port=INACTIVE port, udp, udp_src=68 Send to CONTROLLER

Table 8.2: HSS - Initial and NEXT flow rules installed on switches throughout Phase 2.
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8.4.2.2 Phase 2b - Enabling Control Plane Resilience

After the initial rules embedding, the leader controller disables (R)STP on each switch in order to fully
discover the underlying topology. To ensure the topology is entirely discovered, the leader controller
waits for a predefined period (ref. Section 8.6.2) and eventually computes and installs the resilient
rules. Resilient control flows are installed for each S2C and C2C pair as per Section 8.4.4. Finally, the

controller removes the initial Phase 2a rules (except for LLDP and ARP).
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(a) S2C resilient paths (b) C2C resilient paths

Figure 8.2: Exemplary resilient path output for k = 1 for: (a) S2C paths between S4 and all controllers; and (b)
all C2C pairs.

After finalizing Phase 2b, the control plane is resilient according to Section 8.1 requirements.
Data plane failures are covered using the disjoint paths. Leader controller failures are covered by

deploying multiple backup replicas.

8.4.3 Phase 3: Dynamic Network Extensions

To enable dynamic network extensions at runtime, the managed switches which are direct neighbors of
the newly booted switches must forward the control plane traffic between the newly connected switches
and controllers. In particular, DHCP, SSH, OF and ARP traffic forwarding must be enabled so that
newly added switches can be bootstrapped. Since HSS disables (R)STP prior to executing Phase 2b,
the rules that should match above mentioned traffic may not rely on MAC-learning based NORMAL
forwarding, due to potential broadcast storms. Instead, the leader controller maintains a virtual tree
topology, used to compute and install the NEXT rules that broadcast the control plane traffic to and
from newly attached switches on the tree links only. Due to generic match semantics, NEXT rules are

installed with a lower priority than Phase 2b rules.

A special discovery rule matches packets arriving on inactive ports (i.e., the last rule of Table 8.2).
An inactive port is a port without an active neighbor, i.e., initially unconnected to another switch. If a
new switch is connected to an already bootstrapped network, the discovery rule will forward its DHCP
Discover message to controllers, encapsulated as a PACKET-IN message. The PACKET-IN contains the
information about the ingress port the message arrived on, i.e., corresponding to the previously inactive
port. The leader replicas processes the PACKET-IN by extracting the newly attached switch’s MAC
address, and adding the previously inactive port to the existing tree. If the new switch is connected to
the existing network with multiple links, only the first activated port is used. Fig. 8.3 illustrates this

scenario.
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Inactive Ports

(@) Initial virtual spanning tree. (b) Addition of a switch with 2 links. (¢) Resulting virtual spanning tree.

Figure 8.3: Exemplary network extension with one switch and two links. c) depicts the resulting tree.

8.4.4 Control / Data Plane Failure Handling

Impact of Data Plane Failures on Control Plane Flows: To tolerate switch node / link failures, Phase
2b identifies k + 1 resilient paths for each C2C and C2S connection pair, necessary to tolerate k
arbitrary data plane failures. To this end, the leader controller executes k + 1 subsequent Dijkstra runs
per connection pair. After each run, the link metrics of the found path are multiplied by a factor of
1000. Thus, through this iterative metric adaptation, k + 1 maximally disjoint paths are effectively
computed (as in 45.3.3 of 802.1Q-2018 [216]). The leader controller then maps and installs these
paths. Exemplary resilient paths for k£ = 1 are depicted in Fig. 8.2.

Resilient flow rules are created for ARP, OF and SSH flows. OF and SSH use TCP at transport
layer, that takes care of duplicate packet elimination. Duplicate ARP requests and replies, on the other
hand, are delivered duplicated to sink nodes, which does not negatively impact the correctness. Thus,
with the "seamless" replication mechanism, individual data plane failures never lead to packet loss,
as long as disjoint alternative paths exist. In [135, 136], the resulting global C2C traffic generated by
topology state exchange was shown to grow quadratically with the number of controllers and linearly
with the number of network elements. For moderate control plane sizes (3-9 controllers), the imposed
control plane load was determined close to negligible - ~ 6.7 Mbps of per-replica load in a 5-replica
cluster [2]. Hence, we propose a form of conditional traffic policing for misbehaving redundant S2C

and C2C flows but do not investigate this issue further.

Impact of Data Plane Failures on NEXT Tree: Failures of individual data plane elements must
result in adaptation of the NEXT tree. The approach we followed in Section 8.4.3 assumes initial tree
computation and embedding, following by the controllers computing an alternative tree for each possible
data plane failure in the previously embedded tree. When a link in the underlying topology fails that is
mapped to the currently active tree, the leader controller refreshes the rules with those of an alternative
tree, proactively computed for that particular link / node change. During the transition period, no new
switches can be admitted, but since data plane failures are rare events, we consider the additional delay

in network extension, incurred by reactive tree re-embedding, a negligible disadvantage.
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Handling Control Plane Failures: If the leader replica fails, the remaining controllers elect a new
leader using the distributed leader election procedure, thus incurring a short interruption period where
no client requests relying on consensus can be handled by the controllers [3]. If a follower replica fails,
current leader and the operation of the system remain unaffected. The resilient control plane remains

operational as long as the controller majority remains active.

Note: Tolerating transitional faults during Phases 1-2 is currently unsupported and is considered

as future work.

8.5 HHS - Hop-by-Hop Iterative Automated Distributed Control Plane
Bootstrapping

The Hop-by-Hop Scheme (HHS) model realizes an iterative approach to switch discovery. In contrast
to HSS, it alleviates the need for (R)STP and thus the (R)STP expiration timer (ref. Section 8.6.2). As
before, a number of minimum constraints must hold at network startup: i) Controllers are aware of [P
addresses of other participants, or are capable of discovering them using standardized DNS queries; ii)
Switches are initialized in Secure mode without (R)STP and with disabled In-band mode; iii) Switches

are provisioned with controllers’ public certificates (PKI) or symmetric MAC keys [59, 65].

Fig. 8.4 depicts the abstract sequence diagram of HHS. In Secure mode, a switch relies on the
initial generic (non-customized) flow table rules, available at boot time. By leveraging these, in
Phase 1la and Phase 1b, the controllers establish bilateral connections. In Phase 1c, switches
are assigned management [P addresses and controller lists. Using the generic rules, the switches
adjacent to controller establish their OF sessions. Appropriately in Phase 2a, the leader rolls out the
control plane flow rules to these switches. The provisioned rules realize the spanning tree forwarding
functionality, used for iterative propagation of next hop switch’s control traffic to the controller. With
each newly discovered network element, HHS iteratively updates the tree. In Phase 2b, the leader
computes and installs resilient paths for all control plane flows, whenever such paths become feasible.
The attachment of new switches to an already bootstrapped network is possible by gradually expanding

the spanning tree.

HOP 1 HOP 0

6 0 L L 1 T

Inter-contyoller synchronization and leader election Phase 1a/Phase 1b
_ <- LEADER <- FOLLOWER | <- FOLLOWER |
DHCP: Switch 1p
:SH: Controllers” IP:port
:Sl/’ Phase 1c
OF: Handshake Inter-controller
OF: Initial tree TUIES synchronization .
— is done concurrently
SHCP: Switch TP~~~ 1
QHCP: Switch TP~ with the
SSH; Controllers’ IPzport bootstrapping Phase 2a
- S procedure
- |OF Handshake ~
OF: Initial free Tules ~ - - - - -
- =00 Resilient rules LPhase zb

Figure 8.4: HHS - Message sequence diagram of the bootstrapping procedure as described in Section 8.5.
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8.5.1 Phase 1: Network Startup and Initial Address Distribution
8.5.1.1 Phase 1la - Preconfigured Flow Rules

HHS assumes a set of initially preconfigured generic OF rules, necessary: i) to allow an initial con-
nection with the controllers while in Secure mode; ii) to prevent broadcast storms in non-bootstrapped

parts of a network.

In contrast to HSS, which bootstraps individual switches concurrently in FCES manner, HHS
bootstraps the network iteratively hop-by-hop, starting from switches adjacent to the leader controller.
The non-customized generic rules (ref. Table 8.3) allow receiving traffic addressed to the switch itself,
i.e., dropping any other traffic, except for the traffic generated by the switch itself. Traffic initiated by
a switch is flooded on all its ports. This traffic should only be allowed to reach the leader controller,
and is therefore, dropped by any neighboring switches. These rules thus prevent the occurrence of
broadcast storms (special case being the C2C flow rules, ref. Section 8.5.1.2). Furthermore, they allow

the controller to configure the switches connected directly to it.

Purpose ‘ Packet Type Matching Action
Dynamic switch IP address DHCP in_port=LOCAL, eth_src=switch_mac, udp, udp_src=68 Send to ALL
configuration C udp, udp_src=67 Send to LOCAL
. N . - in_port=LOCAL, eth_src=switch_mac, tcp, tcp_src=22 Send to ALL
Remote switch configuration ‘ SSH eth_dst=switch_mac, tcp, tep_dst=22 Send to LOCAL
e ) ) : in_port=LOCAL, eth_src=switch_mac, tcp, tcp_dst=6633 Send to ALL
C25 OF interaction OF eth_dst=switch_mac, tcp, tcp_src=6633 Send to LOCAL
o S in_port=LOCAL, eth_src=switch_mac, arp, arp_op=1 Send to ALL
52C 1P Resolution ‘ ARP eth_dst=switch_mac, arp, arp_op=2 Send to LOCAL
(C2S IP Resolution ARP in_port=LOCAL, eth_src=switch_mac, arp, arp_op=2 Send to ALL
y . arp, arp_op=1
C2S / Controller IP Resolution ‘ ARP arp, arp_op=2 Send to ALL
tep, t =2550
C2C Synchronization TCP ig (zg:(sjr;:% 50 Send to NORMAL

Table 8.3: HHS - Preconfigured OF rules.

8.5.1.2 Phase 1b - Controller Synchronization

Excluding (R)STP implies we should avoid forwarding C2C synchronization traffic using NORMAL port
so to avoid broadcast storms. However, Secure mode implies that this traffic must be handled with
additional initial preconfigured rules that match and forward this traffic type (ref. last four rules of
Table 8.3), prior to establishing OF connection with controller. Thus, it is impossible to come up with
the generic set of preconfigured flow rules that do not leverage the ALL or NORMAL ports. Using either,
however, initially results in broadcast storms. Therefore, apart from the preconfigured flow rules, we

deploy a mechanism to cope with broadcast storms for C2C traffic (ref. Section 8.6.6).

8.5.1.3 Phase 1c - Distribution of Switch and Controller Connection Identifiers

The leader controller assigns the [P addresses initially only to its direct neighbor switches, and
subsequently provisions them with controller lists. In order for the switches located two hops away
from leader to receive their IP addresses, the generic preconfigured rules in the direct neighbor switches

must first be extended with a new set of rules in Phase 2a.
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8.5.2 Phase 2 - Enabling a Functional and Resilient Control Plane

In contrast to HSS, which computes the resilient control plane flows after disabling (R)STP, HHS tries
to compute and deploy resilient flow rules whenever feasible. Namely, it installs the resilient flow
rules as soon as there exist k + 1 disjoint paths for a single S2C communication pair. If the current
discovered topology does not allow for identifying all required paths, flow rules are provisioned for a
single path only. Whenever there is a change in topology, the leader retries computing the remaining

disjoint paths.

8.5.2.1 Phase 2a - Initial OpenFlow Flow Rules

In this sub-step, leader provides the direct neighbor switches with rules that allow for the next-hop
switches to communicate with all controllers (ref. Table 8.4). These rules have a lower priority than the
resilient rules computed in Phase 2b. Since (R)STP is unavailable, broadcast storms must be avoided.
Thus, in addition to the base topology discovered by LLLDP- and ARP-probing, HHS maintains a virtual

spanning tree.

The tree topology is updated and enforced upon switches on every topology change using Table 8.4
rules. Packets used in topology and controller discovery are sent directly to CONTROLLER port as
PACKET-INs. In OVS, packets forwarded to CONTROLLER port leverage the NORMAL data-path, which
initially may seem problematic. However, due to not relying on Standalone operation, MAC-learning
tables are empty and every packet is flooded instead. The flooded traffic cannot create broadcast storms
as it can only reach two types of switches: i) those with TREE rules installed and, ii) those with generic
preconfigured rules, which drop all traffic except their own. The discovery traffic is hence broadcasted
only in the tree, since the PACKET-INs match the OF type.

\ Purpose Packet Type Matching ‘ Action
(NEXT) Dynamic switch IP address . in_port=TREE port, udp, udp_src=67
S DHCP in port=TREE port, udp, udp. src=68 Send to other TREE ports
R . . - in_port=TREE port, tcp, tcp_dst=22
‘ (NEXT) Remote switch configuration SSH in_port=TREE port, tcp, (cp_src=22 Send to other TREE ports
T (REYR . s in_port=TREE port, tcp, tcp_src=6633 .
(NEXT) C2S OF interaction OF in_port=TREE port, tcp, tcp_dst=6633 Send to other TREE ports
‘ (NEXT) Any ARP traffic ARP in_port=TREE port, arp ‘ Send to other TREE ports
Topology Discovery LLDP eth_type=0x88cc Send to CONTROLLER
‘ Controller self-discovery ARP arp, arp_tpa=arbitrary IP ‘ Send to CONTROLLER
(NEXT) Network extension discovery DHCP in_port=INACTIVE port, udp, udp_src=68 Send to CONTROLLER

Table 8.4: HHS - Initial and NEXT flow rules installed on switches in Phase 2a.

8.5.3 Phase 2b: Enabling a Resilient Control Plane

To compute resilient paths, same as in Section 8.4.2.2, we deploy Dijkstra’s algorithm. HHS does not
assume visibility of entire topology to compute per-switch resilient paths. Instead, resilient paths are
installed iteratively, whenever disjoint paths become available. This results in a quicker control plane

resilience, as confirmed by the experimental results in Section 8.7.

8.5.4 Phase 3: Dynamic Network Extensions

To support dynamic network extensions, HHS adopts the same idea as HSS. Main difference to HSS is

that HHS enforces the virtual tree topology together with remaining initial flows, i.e., the spanning tree
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is (re-)enforced iteratively during the bootstrapping procedure itself. Compared to the rules installed
in Phase 2, a single discovery rule per inactive switch port must be additionally installed, in order
for new switches to successfully register with controllers (ref. last rule of Table 8.4). Whenever an

element of the tree fails, HHS refreshes the rules with the alternative tree (ref. Section 8.4.4).

8.6 Selected Design and Evaluation Aspects

We next discuss selected design and evaluation aspects of the two automated bootstrapping schemes.

8.6.1 Flow Table Occupancy

Both bootstrapping schemes enforce a non-negligible number of forwarding rules. The exact Flow Table
Occupancy (FTO) can be pre-determined only for loop-free topologies. In non-loop-free topologies,
the FTO varies depending on the outputs of the used tree computation and routing algorithm. However,
the lower and the upper bound FTO can always be calculated from derived expressions. For brevity,

we next provide only the upper FTO bounds for both schemes.

HSS: An HSS-bootstrapped switch has its FTO upper-bounded by Fggs rules:

Fuss <n-4+(+3-|C))+i-7T+m-j-6+k

IChT. ; - ®.1)
ne[0,('5)]:i € [1,Drreelsm € [0,]CI15j € [0,|S| - 1];k €N

where |C| denotes the number of deployed controllers, Dt .. is the maximum node degree of the

computed spanning tree, and |S| is the number of switches.

The 4 fixed rules of Table 8.2 are TCP and ARP rules that allow for controller synchronization. The
5 fixed rules are composed of: ARP, SSH, OF rules for forwarding incoming traffic from controllers to
the LOCAL port; and 2 discovery rules (LLDP, ARP). 3 flow rules (ARP, SSH, OF) are embedded per
controller so to forward local traffic toward the respective controller (ref. Table 8.2). Index i denotes
the degree of a switch in the virtual spanning tree used for network extensions. The 7 fixed rules are
the NEXT discovery rules. Index j denotes how many resilient paths that start / end in a particular
controller traverse a switch. Index m denotes the number of controller replicas. The 6 fixed rules are
the resilient flow rules (ARP, SSH, OF) used for traffic relaying, in directions to / from other switches.

k denotes the number of inactive ports, imposing a discovery rule per port.

HHS: HHS’s FTO is upper-bounded by Frgs:
Fuus <13+n-4+(5+3-|C))+i-7T+m-j-6+k (8.2)

HHS’s flow table has the same composition as HSS, except for the additional 13 preconfigured
rules (ref. Table 8.3).

8.6.2 (R)STP Timer Parametrization

HSS assumes that in Phase 2a all available switches are discovered and are provided with necessary

flow rules. Hence, in Phase 2b the leader controller proceeds to disable (R)STP on all switches, so to
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enable the blocked ports and populate the network topology view. Safe expiration timer Trs7 p after
which to disable (R)STP can be estimated as:

R HS HS , 7FO
Trstp 2 Tpyep + Tpuce * Tcuy + Tor + TrsTp
where TR

DHCP

DHCP clients; ngc p is the delay imposed by a successful DHCP handshake; T¢,,, is the time

required to deliver the controllers’ IP address list; 7| gg comprises the OF session establishment time

FO
TRSTP

required for (R)STP to recover from potential network failures during bootstrapping. Worst-case time

represents the transmission interval of DHCP Discover packets by the switches’

and time required to install and confirm the initial flows (ref. Phase 2a); and is the time
necessary to recover the spanning tree after switch / link failures with Spanning Tree Protocol (STP)
may reach up to 50s [209]. In corner cases, the recovery time for Rapid Spanning Tree Protocol
(RSTP) may increase up to 120s (ref. Count-to-Infinity problem [66]). In experiments conducted
in [66], however, the worst-case (R)STP recovery time in a 16-switch topology peaked at 50s. If a
new switch sends a DHCP Discover message before the timer expiration, HSS preempts the timer. On
a successful expiration, HSS disables (R)STP on the switches as per Phase 2b. Parameters used in

evaluation were deduced empirically (ref. Table 8.5).

R HS HS FO
Parameter | T, p | Tppep | Towa | Top | Trerp
Value s Ls s 2s | 50s [66]

Table 8.5: Parametrization of the (R)STP timer in HSS.

8.6.3 Network Topology Discovery

ODL’s OpenFlowPlugin relies on LLDP flow rules to learn the network topology. The controllers
periodically output OF PACKET-OUT messages with encapsulated LLDP Data Units (LLDPDUs) on
each switch’s port. Neighbor switches then receive and forward these packets back to their Master.
Thus, controllers learn about the topology adjacency. By default, OpenFlowPlugin transmits the
LLDPDUs each 5s. If no probes are received for 3 consecutive periods, the link originating in that
port is considered unavailable and is removed from the data store. To facilitate faster discovery of
switches, we increase the rate of LLLDPDU transmissions to 1s. Since the additional control plane load

is generated only on unused ports, this optimization imposes no overhead.

8.6.4 Controller Placement Discovery

ODL’s hosttracker discovers hosts and populates the data store after observing ARP, IPv4, or Internet
Protocol v6 (IPv6) frames on previously inactive ports. To discover controllers’ placement relative to
topology, we leverage a self-discovery rule (ref. Table 8.2). Controllers periodically send self-discovery
probes into the network, the edge switches subsequently encapsulate the ARP probes as PACKET-INs
and forward them to their Master controller. The hosttracker next processes the PACKET-IN, matches

the probe’s source [P with a host and tags that host as an active controller.
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8.6.5 Overhead of Controller Clustering

On a newly discovered switch, the OpenFlowPlugin module of an ODL replica attempts to take its
ownership by initiating a role request to become its Master. Another controller replica may, however,
be elected as the Raft leader of the node inventory data store used to serialize (i.e., reach consensus
on and order) switches’ state modifications. The election of the OF Master is thus independent of the
inventory data store ownership and the leader of the bootstrapping procedure. According to the OF
specification, only the Master of a switch may directly modify its flow table. For this reason, multiple
controllers may exchange data in order to apply changes to a switch’s flow table. Fig. 8.5 illustrates the

worst case relevant for our evaluation.

ODL Replica 1 ODL Replica 2 ODL Replica 3

C2C
Bootstrapping Logic Traffic Bootstrapping Logic Bootstrapping Logic
LEADER FOLLOWER FOLLOWER
FLOW_MOI

Inventory DS Inventory DS Inventory DS
FOLLOWER LEADER Service FOLLOWER
+— Abstraction
Traffic
OF Plugin OF Plugin OF Plugin
SLAVE SLAVE MASTER

OF
—— Trafic 7

Figure 8.5: An exemplary data flow of a FLOW_MOD RPC with each entity’s leader on a different controller.

8.6.6 Coping With Broadcast Storms in HHS

To solve the issues related to Phase 2b where particular flows may initially cause broadcast storms,
we rely on rate limiting mechanisms provided by the data plane (e.g., OF’s Metering [122] or Linux’s
Traffic Control). Namely, we police the following C2C flows (ref. Table 8.3): i) controller-initiated
ARP traffic; ii) TCP Synchronize Messages (TCP SYNs) destined for the C2C TCP port; ii) TCP SYN
Acknowledgments (ACKs) with C2C TCP port as source. The rate limit for policers may be configured
to a very low value, e.g., we used 1.5kbps for metering both ARP requests and replies (~ 12 ARP
pps). Similarly, a low maximum rate can be chosen for TCP SYNs and TCP SYN ACKs. It suffices
to match and rate-limit only TCP SYN and TCP SYN ACK traffic (as only these packets may generate
broadcasts) and not the complete TCP flow.

8.7 Evaluation and Results

8.7.1 Evaluation Methodology

We have implemented HSS and HHS as extensions of ODL’s Boron-SR3 release and have evaluated
their performance against realistic emulated industrial topologies [52, 215, 85, 192]. We focus on the
impact of topology type on the bootstrapping efficiency and not on the impact of network size. This

said, we did successfully validate our approaches in topologies comprising up to ~ 64 switches in a
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single [.2 domain, which are larger than the average industrial topologies with requirements on strict

QoS [85, ].

Our network emulator generates the input topology by isolating OVS instances in Docker containers
and interconnecting them as per target topology. In the single-controller scenario, the controller and
the topology were hosted on PC equipped with a recent Intel Core i7 CPU. Multi-controller scenarios

were executed on a dual-CPU Intel Xeon ES server.
The schemes are compared along with the following KPIs:

Global Bootstrapping Convergence Time (GBCT): Defined as the difference between: i) the time
instant at which all switches are provisioned with resilient flow rules; and ii) the instant when the first

switch was observed by any controller.

Time To Extend (TEXT): For each added switch, we measure and average the difference between
the instants: i) when a switch is provided with the control flow rules; ii) when the switch was first

observed by a controller.

Flow Table Occupancy (FTO): Number of active flow entries in a flow table after successful

bootstrapping procedure.

Industrial topologies, in particular those often found in process industry and factory automation,
were selected due to their requirement on redundant communication and dynamic network adap-
tation [204]. Fig. 8.6 depicts the evaluated topologies, with corresponding suffixes denoting the
topology size. line-N and star-N topologies were evaluated with a single controller only, while the
remaining topologies deploy up to 3 controllers. Note that while line-N, star-N and I-ring-N topologies
do not satisfy the conditions for path disjointness, we also evaluate these topologies to gain additional
insights. In single-controller scenarios, the replica was always placed adjacent to S;. For scenarios
involving 3 controllers, controllers were placed according to Table 8.6. In general, the controller
placement influences the observed measured KPIs in both single- and multi-controller scenarios. For

brevity, we limit our discussion to the impact of the Raft leader placement.

Topology Controller Topology Controller
placement placement
ring-4 S1, S2, S35 1-ring-5 S1, S4, S5
ring-8 S1, S4, Se 1-ring-7 S1, S3,S7
ring-16 S1, Se, S11 1-ring-10 S1,S3, S10
grid—4 S], SQ, S3 2—ring—6 S], S3, S(,
grid—9 Sl, 55, Sg 2—ring—11 Sl, S7, Sll

Table 8.6: Controllers’ placement with 3 controllers.

8.7.2 Bootstrapping Convergence Time
8.7.2.1 Single-Controller Setup

GBCTs are depicted in Fig. 8.7. GBCT of HSS is not impacted by the type of the underlying topology.
Instead, the time to embed resilient paths increases with the overall topology size. This is due to the
fact that HSS’s Phase 1c and Phase 2 do not execute in a concurrent manner. HHS’s GBCT, on the

other hand, is dependent on the design of the underlying topology. In particular, its convergence time
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Figure 8.6: Considered industrial topologies in evaluation of HSS and HHS [52, 215].
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Figure 8.7: Observed GBCT for single- and 3-controller scenarios. Measured time is normalized with respect
to the minimum observed GBCT means (13.5s and 33.9s for and 1 and 3 controllers, respectively). HHS
outperforms HSS for all evaluated topologies, mostly due to HSS being lower bounded by the (R)STP timer (ref.
Section 8.6.2).

scales with the number of additional hops the control traffic must traverse to reach a certain switch in

the network.

HHS bootstraps the switches with same hop distance from the controller concurrently. For example,
in grid topologies, the maximum number of hops between a switch and controller does not increase
with the same rate as the number of switches. Thus, going from grid-4 to grid-9, the absolute number
of switches increases by 5, but the hops required for HHS’s controller to reach most distant switches

increases only by 2, leading to an increased performance gap over HSS. Additionally, in contrast to
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Figure 8.8: TEXT values of the two schemes for configurations deploying 1 to 3 controllers. Y-axis depicts the
(per-topology) normalized TEXT, relative to the lowest obtained mean TEXT, i.e., 6.5s and 33.5s for 1- and
3-controllers.

HSS, HHS does not suffer from an artificially introduced lower bound (due to its non-reliance on
(R)STP).

8.7.2.2 Multi-Controller Setup

HHS relies heavily on the controllers’ data store during its operation - each read / write operation
requires proxying the request through the current Raft leader. Additionally, controllers frequently
block and synchronize their data stores, thus adding additional processing latency in sequential code
execution. In contrast to HHS, HSS does not rely on the data store as much, providing for better scaling

with increasing control plane size, hence the drop in performance gap for the 3-controller scenario.

With HSS, the Raft leader’s placement does not impact the resulting performance, since the
switches are bootstrapped in the FCFES manner. Thus, HSS’s values in Fig. 8.7b are generally less
spread than for HHS. For example, with HHS grid-9 may be bootstrapped as quick as grid-4. If the
leader for grid-9 is elected adjacent to S5 (ref. Fig. 8.6), the leader will require 2 hops to reach any
switch, i.e., the same number of hops as required by grid-4 for a leader placed on any of the 4 switches.
Note, however, that such comparison does not hold in ring topologies, since the leader placement there

does not influence the maximum hop distance to leader.

8.7.2.3 Discussion

In general, HHS outperforms HSS for all evaluated topologies. This is due to the lower bound on
the GBCT in HSS as imposed by the (R)STP timer (set to 55s, ref. Section 8.6.2). In HSS, GBCT
increases linearly with the topology size, contrary to HHS, where GBCT exhibits a non-linear relation
with the maximal hop distance between the leader controller and the switch. The larger the distance,
the larger the increase in necessary bootstrapping time. Thus, the performance gap between HSS
and HHS depends on the placement of the Raft leader and the overall topology size. In 3-controller

scenarios, HHS’s extensive reliance on the distributed data store reduces the performance gap.
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8.7.3 Network Extension Time
8.7.3.1 Single-Controller Setup

In single-controller scenarios, HHS requires a nearly constant time to extend a topology, i.e., deploy
a new switch, independent of the existing topology and number of new switches (ref. Fig. 8.8).
The slight increase for larger topology sizes relates to the accumulated CPU load from having to
consider additional switches, e.g., additional LLLDP packets to process when refreshing the topology
and spanning tree computation overhead. For HSS, just like with GBCT, TEXT grows linearly with the
topology size. This is due to the waiting period related to disabling the (R)STP timer and contention
in sequential rule installation. An optimistic case is the single-switch extension where no contention

impacts rule installation order (not depicted).

8.7.3.2 Multi-Controller Setup

A newly added switch in a multi-controller setup must on average wait longer on its control flow rules.
The C2C synchronization results in a higher TEXT degradation for HHS than for HSS. Additionally,
compared to the single-controller case, where TEXT remains mostly constant, in scenarios with 3

controllers HHS’s TEXT grows linearly with topology size, due to a larger resulting C2C separation.

8.7.3.3 Discussion

HHS outperforms HSS both in single- and 3-controller scenarios. However, due to the distributed
synchronization overhead, and the fact that control flow rules can be provisioned only when a controller

is discovered, the performance gap between HSS and HHS is reduced.

8.7.4 Flow Table Occupancy

Fig. 8.9 portrays the substantial growth in the FTO when deploying 3 controllers instead of a single one.
This is is due to switches being provisioned with resilient flow rules for connections to all controllers.
Additionally, some switches contain rules used to forward the inter-controller traffic. However, the
change in FTO is influenced not only by number of controllers, but also by the topology size, degree

of connectivity, and the controller placement. The ratios of FTOs are summarized in Table 8.7.
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Figure 8.9: Bar charts comparing the average FTO for HSS and HHS bootstrapping schemes.
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In HSS, the placement of the leader does not influence the FTO. This is due to resilient and tree rules
being installed only after a successful discovery of the entire network. Thus, the FTO depends only on
the output of the routing and tree computation algorithm. On the contrary, in HHS the placement of the
Raft leader controller influences the output of the iteratively-built spanning tree, producing fluctuating
FTOs for repeated executions. Notably, in grid-N, x-ring-N topologies, the leader controller placement
influences the FTO fluctuations, while in ring-N topologies, different leader placements have no effect
on FTO (visual results omitted due to space considerations). In all evaluated scenarios, HSS results in
lower minimal, average, and maximal FTOs. The average difference in FTO between HSS and HHS
equals approximately the number of preconfigured rules in HHS scheme. Indeed, both bootstrapping
schemes enforce a non-negligible number of forwarding rules. Investigation of methods for shrinking
the number of active flow rules leveraged by the schemes, i.e., by means of flow table compression [37,

] should be considered in future studies.

Topology HSS HHS
ring-{4, 8, 16} {2.44,2.62,2.77} {2.2,2.43,2.43}
grid-{4, 9} {2.44,2.22} {2.2,2.07}
1-ring-{5, 7, 10} {2.19,2.31,2.36} {2.0,2.12,2.16}
2-ring-{6, 8, 11} {2.29,2.27,2.44} {2.08,2.07,2.34}

Table 8.7: Ratios of observed average per-switch FTOs. Values are normalized respective to the FTO in
1-controller case for the same scheme and topology.

8.8 Chapter Summary and Outlook

We have described the designs of the first two bootstrapping schemes that autonomously bootstrap
a multi-controller SDN with a resilient control plane and with an automated IP and controller list
provisioning to switches. Besides evidencing the practicability of these two approaches and quantifying
the trade-offs they reveal (implementation complexity, legacy protocols needed, convergence time, flow
table occupancy, network extension time) the proposed approaches open the door towards reliable SDN
deployments in environments where OOBC connections are not possible, e.g., industrial networks. This
in return enables the deployment of orthogonal advances in industrial SDN environments [74, 85, 114,

]. To undermine the practicability of the presented schemes, the proposed automated bootstrapping
was validated successfully in an operational industrial network with fail-safe requirements [9,
the context of Horizon 2020 project VirtuWind 1.

]in

Outlook: The proposed approaches can be further improved by a number of orthogonal additions:

* Methods to alleviate traffic starvation: Having the control and data plane share the same
infrastructure motivates investigation of proper isolation of both traffic types and ensuring non-
starvation of control traffic. This is especially relevant in industrial environments where data

plane traffic often has stringent QoS requirements.

* Scalability of the bootstrapping schemes: Control plane load may eventually become a scalability

bottleneck due to imposed C2S and C2C traffic. This load, however, scales linearly with

1VirtuWind - H2020-ICT-14-2014 - http://www.virtuwind.eu


http://www.virtuwind.eu
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the number of switches and is hence predictable and easy to provision the network resources
for. Similarly, FTO may eventually become problematic due to multiplicative m (number of
controllers) and j (number of resilient flows crossing the observed switch) terms in Eq. 8.1 and
Eq. 8.2. To minimize the overhead of resulting FTO, the applicability of existing approaches for
flow table compression and flow rule context switching [42] should be investigated for further

optimization.

IPv6 support: Supporting the bootstrapping of [Pv6-enabled SDNs is a relevant extension
currently considered for future work. Distribution of addresses with Dynamic Host Configuration
Protocol Version 6 (DHCPv6) seems trivial - the DHCP server in the ODL instances would,
however, require a corresponding upgrade. Propagation of Router Advertisements for purpose of
enabling Stateless Address Autoconfiguration (SLAAC), would be non-trivial with HHS due to
non-reliance on (R)STP and possible occurrence of broadcast storm in the initial phase (directly
after network startup), due to use of NORMAL / ALL logical output port. Hence, similarly to other
broadcasted traffic, it would require additional default flow rules in each switch and a configured

policing mechanism for limitation of storm impact (ref. Section 8.6.6).



Chapter 9

Conclusion

9.1 Thesis Summary

This thesis postulates a working SDN control plane model where network services are replicated across
replicas in a logical cluster, in order to tolerate Fail-Stop and Byzantine faults. We conclude that a
higher control plane robustness, i.e., a higher degree of availability and reliability is achievable without
an impactful setback in achievable correctness, response time and complexity of the resulting control

plane deployment.

Consensus protocols ensure sequencing of client requests in an ordered log and its replication to
the replicas of the logical cluster. Our work introduces a framework for analytic estimation of the
availability and response time of a distributed control plane built atop of such consensus protocols.
We have shown that a proper configuration and replication intensity of the control plane can alleviate
the issue of SPOF with resulting worst-case unavailability < 1e~°, suitable for even the most critical
of industrial services. We have shown how, using a suitable consensus protocol parametrization
and SDN application workload, the strict control plane response time requirements postulated by the
future TSN-enabled applications can be provably met by a properly parametrized distributed control
plane. We have also handled the corner cases related to correct consensus operation in the face of
network partitions and have, in this light, proposed a modular design that decouples the consensus

implementation from underlying failure detection.

To provide for a decreased response time in the average case, we have introduced and validated
the AC state synchronization model, suitable for applications enabled to operate correctly with some
degree of data state staleness (e.g., distributed load-balancers, best-effort traffic routing etc.). By
not relying on costly consensus on each resource state update, the clients of the distributed control
plane benefit from shortened request-handling time. The AC provides for guarantees on maximal state
divergence across replicas and thus provides for provable worst-case inconsistency among replicas at

all times.

We have also introduced MORPH, a control plane design that tolerates both Byzantine and Fail-
Stop control plane failures. Compared to Fail-Stop-only tolerant designs, it efficiently enhances the
reliability and availability of controller-based decision-making in industrial environments. MORPH’s

distinguishing property is that, following an exposure of a controller failure, it subsequently allows
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for optimization of cluster membership according to type of failure detected. Together with its
extension PABFT, it autonomously adapts the cluster configuration to minimize the distributed control
plane overhead at all times. P4BFT’s control plane / data plane co-design additionally offloads the
packet processing from general purpose CPUs to optimally selected data-plane NPUs, thus leading
to a decrease in request processing time for controller state updates and switch reconfigurations. To
minimize the response time overhead of BFT sequencing step, we have designed and evaluated three

novel BFT sequencing protocols and have confirmed their response time decrease in realistic topologies.

To lower the entry-barrier in deployment of the presented control plane designs, we have proposed
and published two bootstrapping schemes for automated bootstrapping of multi-controller SDNs. The
proposed schemes target in-band control plane deployment with redundant control flow establishment
for enhanced availability of C2S and C2C connections. The schemes were validated in a number of
emulated network topologies typical for industrial deployments and in a production deployment of an

industrial SDN operated by a utility provider [15].

9.2 Concluding Remarks

We expect the presented designs to enable future scalable, highly-resilient and distributed SDN control
plane designs. While centralized TSN management may offer an initial deployment environment,
generic service orchestration designs may directly benefit from the presented novelties as well. In
particular, the dependability of deployment and orchestration tools operating on VNFs, unikernels
and microservices, as well as the dependability of tools for wiring of hardware devices, APIs and IoT
services (e.g., Node-RED) can benefit from the presented concepts. Finally, we strongly hope that the
control plane analysis and presented designs pursued here, can lead to a reduction of the remaining
stigma surrounding the reliability, scalability and applicability of logically centralized SDN control
plane and instead pave the way for innovation in generally conservative and slowly adapting Industrial

Ethernet networks.
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