Skip to main content
Ctrl+K
NumPy v2.3 Manual - Home NumPy v2.3 Manual - Home
  • User Guide
  • API reference
  • Building from source
  • Development
  • Release notes
  • Learn
    • NEPs
  • GitHub
  • User Guide
  • API reference
  • Building from source
  • Development
  • Release notes
  • Learn
  • NEPs
  • GitHub

Section Navigation

  • NumPy’s module structure
  • Array objects
    • The N-dimensional array (ndarray)
    • Scalars
    • Data type objects (dtype)
    • Data type promotion in NumPy
    • Iterating over arrays
    • Standard array subclasses
    • Masked arrays
      • The numpy.ma module
      • Constants of the numpy.ma module
      • Masked array operations
    • The array interface protocol
    • Datetimes and timedeltas
  • Universal functions (ufunc)
  • Routines and objects by topic
  • Typing (numpy.typing)
  • Packaging
  • NumPy C-API
  • Array API standard compatibility
  • CPU/SIMD optimizations
  • Thread Safety
  • Global Configuration Options
  • NumPy security
  • Status of numpy.distutils and migration advice
  • numpy.distutils user guide
  • NumPy and SWIG
  • NumPy reference
  • Array objects
  • Masked arrays

Masked arrays#

Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-alike replacement for numpy that supports data arrays with masks.

  • The numpy.ma module
    • Rationale
    • What is a masked array?
    • The numpy.ma module
  • Using numpy.ma
    • Constructing masked arrays
    • Accessing the data
    • Accessing the mask
    • Accessing only the valid entries
    • Modifying the mask
    • Indexing and slicing
    • Operations on masked arrays
  • Examples
    • Data with a given value representing missing data
    • Filling in the missing data
    • Numerical operations
    • Ignoring extreme values
  • Constants of the numpy.ma module
    • masked
    • nomask
    • masked_print_option
  • The MaskedArray class
    • MaskedArray
    • Attributes and properties of masked arrays
  • MaskedArray methods
    • Conversion
    • Shape manipulation
    • Item selection and manipulation
    • Pickling and copy
    • Calculations
    • Arithmetic and comparison operations
    • Representation
    • Special methods
    • Specific methods
  • Masked array operations
    • Constants
    • Creation
    • Inspecting the array
    • Manipulating a MaskedArray
    • Operations on masks
    • Conversion operations
    • Masked arrays arithmetic

previous

numpy.broadcast.reset

next

The numpy.ma module

© Copyright 2008-2025, NumPy Developers.

Created using Sphinx 7.2.6.

Built with the PyData Sphinx Theme 0.16.1.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy