login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A058231
A Somos-8 sequence.
0
0, 0, 1, 36, -16, 5041728, -19631351040, -62024429150208, -2805793044443561984, -1213280369793911777918976, 6452140445339288271043778576384, -30464666973776461531165746768673505280, 2509543205099684468628113981366827179048960, -83207632517142132982462515955707028888811707910062080
OFFSET
0,4
REFERENCES
D. G. Cantor (dgc(AT)ccrwest.org), email to N. J. A. Sloane, Nov. 30, 2000.
LINKS
D. G. Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. Reine Angew. Math. (Crelle's J.) 447 (1994), pp. 91-145.
R. W. Gosper and Richard C. Schroeppel, Somos Sequence Near-Addition Formulas and Modular Theta Functions, arXiv:math/0703470 [math.NT], 2007.
Yasuhiro Ishitsuka, Tetsushi Ito, Tatsuya Ohshita, Takashi Taniguchi, and Yukihiro Uchida, Periods modulo p of integer sequences associated with division polynomials of genus 2 curves, arXiv:2310.01013 [math.NT], 2023.
Alex Stone, The Astonishing Behavior of Recursive Sequences, Quanta Magazine, Nov 16 2023, 13 pages.
FORMULA
For all n, 0 = u[4] * a[n+4] * a[n-4] + u[3] * a[n+3] * a[n-3] + u[2] * a[n+2] * a[n-2] + u[1] * a[n+1] * a[n-1] + u[0] * a[n]^2, where u[0], ..., u[4] are 314101616640, 25442230947840, 235226865664, -181502208, -16.
a(-n) = -a(n) for all n in Z. - Michael Somos, Jun 15 2011
MATHEMATICA
(* Assuming the first 10 terms are known. *)
init = {0, 0, 1, 36, -16, 5041728, -19631351040, -62024429150208, -2805793044443561984, -1213280369793911777918976};
init2 = Join[-Rest[init] // Reverse, init]; lg = Length[init];
rep = {u[0] -> 314101616640, u[1] -> 25442230947840, u[2] -> 235226865664, u[3] -> -181502208, u[4] -> -16}; Clear[a];
rec = u[4] a[n + 4] a[n - 4] + u[3] a[n + 3] a[n - 3] + u[2] a[n + 2] a[n - 2] + u[1] a[n + 1] a[n - 1] + u[0] a[n]^2 /. rep;
(* Print[Solve[rec == 0, a[n+4]][[1]] /. n -> n-4]; *)
a[n_] := a[n] = (1/a[n - 8])(16(1226959440 a[n - 4]^2 + 99383714640 a[n - 5] a[n - 3] + 918854944 a[n - 6] a[n - 2] - 708993 a[n - 7] a[n - 1]));
Do[a[n] = init2[[n + lg]], {n, -(lg - 1), lg - 1}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 08 2018 *)
CROSSREFS
Sequence in context: A260383 A056770 A061038 * A008894 A033973 A033356
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 02 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy