login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A163832
a(n) = n*(2*n^2 + 5*n + 1).
3
0, 8, 38, 102, 212, 380, 618, 938, 1352, 1872, 2510, 3278, 4188, 5252, 6482, 7890, 9488, 11288, 13302, 15542, 18020, 20748, 23738, 27002, 30552, 34400, 38558, 43038, 47852, 53012, 58530, 64418, 70688, 77352, 84422, 91910, 99828, 108188, 117002
OFFSET
0,2
COMMENTS
Row sums of triangle A155156.
FORMULA
G.f.: -2*x*(1+x)*(x-4)/(x-1)^4.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
a(n) = A163683(n) + n = A163815(n) - 2*n = 2*A162254(n).
a(n) = -n*A168244(n+2). - Bruno Berselli, Feb 02 2012
E.g.f.: x*(8 + 11*x + 2*x^2)*exp(x). - G. C. Greubel, Aug 05 2017
MATHEMATICA
Table[n(2n^2+5n+1), {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 8, 38, 102}, 40] (* Harvey P. Dale, Feb 02 2012 *)
PROG
(PARI) for(n=0, 40, print1(n*(2*n^2+5*n+1)", ")); \\ Vincenzo Librandi, Feb 22 2012
CROSSREFS
Cf. A155156.
Sequence in context: A257215 A204076 A319960 * A362492 A139798 A359931
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 05 2009
EXTENSIONS
Edited by R. J. Mathar, Aug 05 2009
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy