OFFSET
1,1
FORMULA
a(n) > exp(n^(1/3)*log(phi+1))/5. - Charles R Greathouse IV, Feb 24 2023
EXAMPLE
43 = fib(3)^2 + fib(3)^2 + fib(5)^2 is prime.
MATHEMATICA
f = Union[Table[Fibonacci[n]^2, {n, 16}]]; t = Union[Flatten[Table[ f[[i]] + f[[j]] + f[[k]], {i, Length[f]}, {j, i, Length[f]}, {k, j, Length[f]}]]]; Select[t, # <= f[[-1]] && PrimeQ[#] &] (* T. D. Noe, Jun 03 2011 *)
PROG
(PARI) list(lim)=my(f=List(), v=List()); for(n=1, oo, my(t=fibonacci(n)^2); if(t+2>lim, break); listput(f, t)); for(i=1, #f, for(j=1, i, for(k=1, j, my(p=f[i]+f[j]+f[k]); if(p>lim, break); if(isprime(p), listput(v, p))))); Set(v) \\ Charles R Greathouse IV, Feb 24 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Carmine Suriano, Jun 01 2011
STATUS
approved