login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A191375
Primes that are the sum of squares of three positive Fibonacci numbers.
0
3, 11, 17, 19, 43, 59, 137, 179, 347, 443, 449, 467, 491, 509, 569, 619, 883, 907, 1051, 1229, 1601, 2753, 3203, 3467, 3491, 3907, 6491, 8363, 8387, 8803, 20749, 20809, 21893, 24917, 28661, 41641, 44497, 49393, 54323, 55171, 62219, 75029, 108587, 284267, 372173
OFFSET
1,1
FORMULA
a(n) > exp(n^(1/3)*log(phi+1))/5. - Charles R Greathouse IV, Feb 24 2023
EXAMPLE
43 = fib(3)^2 + fib(3)^2 + fib(5)^2 is prime.
MATHEMATICA
f = Union[Table[Fibonacci[n]^2, {n, 16}]]; t = Union[Flatten[Table[ f[[i]] + f[[j]] + f[[k]], {i, Length[f]}, {j, i, Length[f]}, {k, j, Length[f]}]]]; Select[t, # <= f[[-1]] && PrimeQ[#] &] (* T. D. Noe, Jun 03 2011 *)
PROG
(PARI) list(lim)=my(f=List(), v=List()); for(n=1, oo, my(t=fibonacci(n)^2); if(t+2>lim, break); listput(f, t)); for(i=1, #f, for(j=1, i, for(k=1, j, my(p=f[i]+f[j]+f[k]); if(p>lim, break); if(isprime(p), listput(v, p))))); Set(v) \\ Charles R Greathouse IV, Feb 24 2023
CROSSREFS
Sequence in context: A369171 A309581 A291277 * A260793 A057179 A322962
KEYWORD
nonn,easy
AUTHOR
Carmine Suriano, Jun 01 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy