OFFSET
0,2
COMMENTS
For the numerators see A300298, also for a comment and the Jolley reference. The g.f. of {r(n)}_{n>=0} and examples are given there too.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..5000
FORMULA
a(n) = denominator(r(n)), with the result of the sum given in the name r(n) = n*(50 + 35*n + 10*n^2 + n^3)/(96*(1 + n)*(2 + n)*(n + 3)*(4 + n)), n >= 0.
MATHEMATICA
Table[Denominator[n (50 + 35 n + 10 n^2 + n^3) / (96 (1 + n)(2 + n) (n + 3) (4 + n))], {n, 0, 50}] (* Vincenzo Librandi, Apr 06 2018 *)
PROG
(GAP) List(List([0..40], n->Sum([0..n-1], k->1/(Product([0..4], j->k+j+1)))), DenominatorRat); # Muniru A Asiru, Apr 05 2018
(PARI) a(n) = denominator(sum(k=0, n-1, prod(j=0, 4, (k+j+1))^(-1))); \\ Altug Alkan, Apr 05 2018
(Magma) [Denominator(n*(50+35*n+10*n^2+n^3)/(96*(1+n)*(2+n)*(n+3)*(4+n))): n in [0..50]]; // Vincenzo Librandi, Apr 06 2018
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Apr 05 2018
STATUS
approved