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Quantum revival patterns from classical phase-space trajectories
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A general semiclassical method in phase space based on the final value representation of the Wigner function
is considered that bypasses caustics and the need to root search for classical trajectories. We demonstrate its
potential by applying the method to the Kerr Hamiltonian, for which the exact quantum evolution is punctuated
by a sequence of intricate revival patterns. The structure of such revival patterns, lying far beyond the Ehrenfest
time, is semiclassically reproduced and revealed as a consequence of constructive and destructive interferences
of classical trajectories.
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I. INTRODUCTION

The semiclassical approximation to quantum mechanics is
valuable not only when an exact solution is out of reach, but
it also sheds light on a quantum system’s classical backbone
in both chaotic and integrable scenarios [1]. It was not until
the seminal work of Tomsovic and Heller [2], however, that
semiclassical approximations were shown to describe intricate
phenomena in nontrivial time regimes. Indeed, such approxi-
mations remained valid for longer than the previously estab-
lished threshold for accuracy, the Ehrenfest time, at which
classical structure finer than a quantum cell starts to develop
[1,3,4]. Motivated by this success, semiclassical methods have
since been applied for systems with ever-increasing com-
plexity, testing the limit of what one would consider to be
exclusively quantum [5–7].

Among the class of intrinsically quantum phenomena, the
so-called quantum revival patterns, also known as fractional
revivals [8,9], are a formidable example: They are char-
acterized by shifted and superposed replicas of the initial
distribution. Reproducing this phenomenon using the stan-
dard semiclassical methods initiated by van Vleck [1,10]
is problematic mainly because the semiclassical propagator
diverges at regions known as caustics, which proliferate in
the time interval required for a revival pattern to form. Even
though it is possible to use the more sophisticated uniform
approximations [11], which override infinities, they are valid
only locally until the next caustic is met. Such approximations
are also unable to amend a standard difficulty in semiclassical
propagation, known as the root-search problem, which is the
need to seek and select relevant classical trajectories based on
boundary conditions.

Initial value representations (IVR) [12] have been tailored
to deal with such difficulties. The Herman-Kluk propagator
[13–15], for instance, is an integral over classical trajectories
defined by their initial values, requiring no root search. As
an offshoot, the caustic singularities are replaced by zeros
and a workable approximation for quantum evolution is then
achieved [16,17].

However, in several applications such as the semiclassi-
cal treatment of decoherence [18], it is desirable to employ

methods that have been developed based on the Weyl repre-
sentation of quantum mechanics. Here, one evolves directly
the Wigner function [19–21] or its Fourier transform, the
chord function, by the Weyl transform of the semiclassical
propagator [22–24]. A mere change of variables to initial
or final values of the trajectories results in divergence-free
phase-space evolution [25]. Thus, the desirable features of
previous IVR techniques follow naturally, without any need
to substitute the standard semiclassical propagators that are
derived directly from path integrals [1].

Whether or not an initial (or final) value representation will
be able to remain accurate and unshaken by caustics, which
usually spoil standard propagation, must be checked numeri-
cally. Since the time evolution under the action of quadratic
Hamiltonians is semiclassically exact, such systems are not
suited as a test bed. The difficulty is then that higher-order
Hamiltonians, which generate nonlinear classical motion, do
not generally have exactly solvable quantum evolutions. How
can one then be certain about features in the semiclassical
evolution without an exact result with which to compare
them? Indeed, one finds that a vast literature has grown that
is based on the convenience of these methods without ever
addressing this basic dilemma.

Here, we propose the square of the simple harmonic os-
cillator, the fourth-order Kerr system, as the ideal benchmark
test for a semiclassical method for systems with one degree of
freedom. It is singled out by the following properties: (i) One
can calculate exactly its intricate quantum evolution, which
displays a periodic structure of the aforementioned quantum
revival patterns; (ii) classical trajectories can be obtained
analytically, thus avoiding integration errors; (iii) the caustic
structure is so complex that it must reveal any shortcoming in
the method. Also, since semiclassical methods are only exact
for quadratic Hamiltonians, the semiclassical treatment of
Kerr propagation is still only an approximation, regardless of
the exactness of its classical trajectories. This is the stringent
test to which we submit the recently proposed phase-space
final value representation (FVR) [25].

The Kerr system is also of significant experimental in-
terest. The optical Kerr effect can be emulated, e.g., in a
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Bose-Einstein condensate confined by a three-dimensional
optical lattice [26]. A three-dimensional circuit quantum elec-
trodynamic architecture was also used to engineer an artificial
Kerr medium in order to observe fractional revivals of a
coherent state [27]. Due to the extremely weak nonlinearities
of most materials, however, collapses and revivals due to the
Kerr effect have not yet been observed in optical media.

Direct use of the semiclassical propagator by Toscano et al.
for the Kerr system did allow for accurate evaluation of the au-
tocorrelation function of a coherent state for long times [28],
but the wave functions were only evaluated far from caustics.
Tomsovic et al. used sophisticated complex time-dependent
semiclassical propagators to accurately calculate autocor-
relation functions of Gaussian many-body states of Bose-
Hubbard systems with their Kerr-like Hamiltonian beyond
the Ehrenfest time [29]. The many-body context was also the
motivation of the cruder semiclassical approximation for the
Wigner function propagator in Ref. [30], which nonetheless
did detect full revivals for the Kerr system through the an-
nihilation operator’s expectation value for an initial coherent
state. Moreover, the Herman-Kluk approximation was applied
to the zero-dimensional Bose-Hubbard model: By lifting the
wave function into phase space, simple interferences were
visually captured for an initial coherent state placed very close
to the origin in a Kerr-like system [31]. However, none of
the previous explorations attain the high degree of detailed
verification of a semiclassical method as we here exhibit for
the Kerr evolution.

The text is organized as follows. In Sec. II we introduce
the Kerr system, presenting its exact classical and quantum
evolutions. This is followed by a description of the FVR
method in Sec. III and its results in Sec. IV. We discuss the
semiclassical mechanism for revival production in Sec. V and
finish the paper with the final remarks of Sec. VI. Movies of
quantum and semiclassical evolution of the Wigner function
for a coherent state are provided as Supplemental Material
[32].

II. KERR SYSTEM

The fourth-order Kerr Hamiltonian, which we consider
here, is essentially the square of the Hamiltonian of a simple
harmonic oscillator. With an appropriate choice of units for
position, momentum, and energy, we can always bring the
Kerr Hamiltonian into the form

H (q, p) = (p2 + q2)2. (1)

Viewing (1) as a classical Hamiltonian, one finds that

ω = 4(p2 + q2) (2)

is conserved for each orbit, playing the role of an angular
frequency. The resulting Hamilton equations of motion can
then be solved analytically. Since orbits with a larger radius
have higher angular velocities, the initial classical distribution
will both revolve around the origin and stretch into a thin
filament, as can be seen in the evolution of a coherent state
displayed in the left column of Fig. 1 for four different times
t .

Quantum mechanically, q and p in (1) become opera-
tors satisfying the commutation relation [q̂, p̂] = i, where
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FIG. 1. The classical and quantum Wigner functions of a coher-
ent state initially centered at the phase-space point (q, p) = (5, 0) are
displayed for four different times, with the largest one exceeding 6TE ,
the Ehrenfest time for this case being given by (6) as TE ≈ 0.063. The
times t3 = Trev/5 and t4 = Trev/2 correspond to fractional revivals,
where Trev is given by (5). The gray squares in the classical plots
represent regions of area h̄.

we adopt h̄ = 1. Introducing the number operator n̂ of the
harmonic oscillator, we can express the Kerr Hamiltonian as

H = (2n̂ + 1)2 (3)

with its Fock eigenstates |n〉.
It has long been noticed [33] that under the action of the

Kerr Hamiltonian (3) fractional revivals occur in the quantum
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evolution of a coherent state

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉, (4)

where α = (〈q̂〉 + i〈p̂〉)/
√

2. Following [34], we choose times
t = (2a/b)Trev, where the integers a and b are mutually prime
and the time for a complete revival is given by

Trev = π

4
. (5)

By choosing sufficiently large integers, any given time can
be approximated to the desired accuracy. It can be shown
[34] that for times t of the form introduced here, the evolved
coherent state |α(t )〉 can be expressed as a superposition of b
or b/2 coherent states when b is odd or even, respectively. In
particular, for a = 1 and b = 2m, one finds a fractional revival
pattern of order m.

The classical evolution of the Wigner function for a coher-
ent state (4) is obtained by solving the Liouville equation or,
equivalently, by propagating the initial Wigner function using
the classical equations of motion. The quantum evolution is
given by time evolving (4) under (3) and taking its well-known
Wigner transform (7), to be introduced in the next section.
In Fig. 1 we provide the classical (left column) and quantum
(right column) exact Wigner functions for the evolution of
an initial coherent state at four distinct times. We see that
for t1 the classical backbone is clearly visible in the quan-
tum Wigner function, together with the typical interference
patterns. Such clear analogies between classical and quantum
behavior are expected up to the Ehrenfest time,

TE = 2π

ωc
, (6)

in which the initial distribution’s center, moving with angular
velocity ωc, has performed a full revolution around the origin
[4]. For t2, for instance, we have already exceeded TE and the
superposition of multiple interferences masks the relationship
to the underlying classical structure. The following panels for
t3 and t4 display fractional revival patterns. Their time values
of t3 = Trev/5 and t4 = Trev/2 by far surpass the Ehrenfest
time: Not only has the classical filament become quite thin,
but the gap between different windings has narrowed to
O(h̄1/2).

III. EVOLUTION OF THE WIGNER FUNCTION

Our focus is the analysis of the intricate features of the
evolved state |ψ (t )〉, best examined within a full represen-
tation in phase space with coordinates (q, p), the position
and the momentum, respectively. Among these, the Weyl
representation, whose main object is the Wigner function

W (q, p, t )= 1

π h̄

∫
dq̃〈q+q̃|ψ (t )〉〈ψ (t )|q − q̃〉e−2iq̃p/h̄,

(7)

is equivalent to, e.g., the position or momentum representa-
tions of quantum mechanics. In particular, position marginal

x

ξ

η+

η−

η+

η−

x

ξ

R

R

FIG. 2. A final chord ξ ′, with center x′, is evolved backwards
to form an initial chord ξ (ξ ′, x′, t ), centered at x(ξ ′, x′, t ). By con-
sidering the endpoints of ξ ′ and ξ , such evolution is described by
the circuit η′

− �→ η− �→ η+ �→ η′
+. The first and last propagations

are performed along classical trajectories (dashed lines), while the
middle one is a reflection around x, given by η+ = 2x − η−. The
shaded areas R and R′ represent the Wigner function at initial and
final times, respectively.

distributions are given by

|〈q|ψ (t )〉|2 =
∫

d pW (q, p, t ), (8)

and analogously for momentum. The squared autocorrelation
is also obtainable from the Wigner function as

A2(t ) = 2π

∫
dqd pW (q, p, t )W (q, p, 0). (9)

Hence, the portrait of the evolved Wigner function is sufficient
for testing any semiclassical method.

The divergences of standard semiclassical methods can
be traced to the amplitude in the propagator as caustics are
approached. A change of variables in the several alternative
methods proposed in Ref. [25] suppress these divergences,
with the further advantage that the FVR preserves its semi-
classical form for purely quadratic Hamiltonians.

The time-evolved Wigner function within the FVR ap-
proach depends on pairs of trajectories with initial values η±
and final values η′

±, as depicted in Fig. 2. The initial center
and chord are given by x = (η+ + η−)/2 and ξ = η+ − η−,
respectively; the final center and chord, x′ and ξ ′, are defined
accordingly. Then, following [25],

W (x′, t ) =
∫ dξ ′

pdξ ′
q

(2π )

∣∣∣∣det
dξ

dξ ′

∣∣∣∣
1
2

exp

{
i

[
S̃x′ (ξ )+ σ̃π

2

]}
χ (ξ ),

(10)

which is expressed in terms of functions that we now describe.
The argument ξ of both χ and the action S̃x′ is defined in
the present FVR as the backward classical propagation of
the integration variables ξ ′ = (ξ ′

q, ξ
′
p). The initial state, on

which absolutely no restriction is placed, enters through the
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FIG. 3. Density plot for the determinant in (10) in the (ξ ′
q, ξ

′
p)

plane at times t = 0.013 and t = 0.071 for the final Wigner function
evaluated at (q, p) = (5, 2). The caustic submanifolds at which the
original root-search-based propagator diverges are displayed as solid
black curves. The initial state is the same as for Fig. 1.

symplectic Fourier transform of its Wigner function at t = 0,

χ (ξ ) =
∫

dy

(2π )
exp (−iy · Jξ )W (y, 0), (11)

J being the symplectic matrix. Note that for coherent states,
both χ (ξ ) and W (y, 0) are Gaussians. The exponential in
(10) arises from a semiclassical approximation of an evolved
phase-space reflection [24,25]. The choice of final instead
of initial values as integration variables is just a matter of
choice when classical trajectories are exact, but preferable
when only numerical solutions are available [35]. Considering
that the initial chord ξ is determined by the pair of trajectories
propagated backward from η′

±, the first term in the phase of
(10) can be written as

S̃x′ (η′
±, η±) = η+ · Jη− + t
H (η±) −

∮
C(η′±,η± )

p dq. (12)

Here, 
H (η±) = H (η+) − H (η−) is the energy difference
between the endpoints of ξ and C(η′

±, η±) is the closed
contour given by η′

− �→ η− �→ η+ �→ η′
+ �→ η′

−, detailed in
Fig. 2. The term σ̃ in (10) counts the zeros of the determinant
in the prefactor up to time t and is related to the Maslov index
[36,37]. The regions defined by this determinant’s kernel are
exactly the caustic submanifolds, which form a complex web
in the Kerr system, as can be seen in Fig. 3.

IV. SEMICLASSICAL EVOLUTION FOR
THE KERR HAMILTONIAN

Semiclassical propagation depends entirely on classical
trajectories and must not only reproduce the interferences
between the classical whirl and itself, but also eventually
cancel them in large phase-space regions at fractional revival
patterns (cf. panels for t3 and t4 in the right column of Fig. 1).
Figure 4 shows that, despite the complex caustic structure and
large interference-free regions, the FVR method successfully
reproduces fractional revival patterns that occur for times
much longer than the Ehrenfest time.
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FIG. 4. The semiclassical Wigner functions obtained from the
FVR in Eq. (10) (left column) for the same time values as in
Fig. 1. We repeat the exact quantum equivalents for comparison
(right column). Notice how the FVR is able to transform the thin
classical spirals in Fig. 1 into pentagonal and cat states. For more
details about the time evolution see the movies in the Supplemental
Material.

It should be recalled that standard semiclassical methods
based on root search are limited to initial states that are
either initial coherent states [2,36] or approximate WKB states
[1,3]. A shifted first excited Fock state lies outside both these
classes, but as Fig. 5 demonstrates, our FVR approximation
captures its full time evolution just as easily as that of initial
coherent states.

The squared autocorrelation obtained from the semiclas-
sical and quantum Wigner functions using (9) is displayed
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FIG. 5. (a) Semiclassical (left) and quantum (right) Wigner func-
tions for the triangular revival at t = π/12. The initial state is a
displaced n = 1 Fock state centered at (q, p) = (5, 0). (b) Position
marginal distributions obtained from (8) for the post-normalized
Wigner functions displayed in (a).

in Fig. 6. It again affirms the FVR accuracy. Note that due
to the fine semiclassical undulations inside the revived co-
herent states (see Fig. 4), the Wigner function loses a small
fraction of its normalization—a homogeneous loss that can be
corrected by simple postnormalization. This loss is due to a
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FIG. 6. Comparison of the time dependence of the squared
autocorrelation function (9) for the quantum result (line) and the
semiclassical result after post-normalization (points) for the initial
state used in Fig. 1. Beyond half the revival time t = π/8 ≈ 0.393,
A2(t ) is seen to continue symmetrically. In order to make the fine
structure more visible, we have left out part of the time interval.

subset of trajectories that do not contribute to the mechanism
described in the following section.

V. SEMICLASSICAL MECHANISM FOR
REVIVAL PATTERNS

Some light can be shed on how the classical trajectories
combine to create revival patterns. We start with the full
revival at Trev = π/4. Here, the final Wigner function is equal
to the initial one, implying that the final chords ξ ′ must be
backwards evolved near themselves, i.e., ξ ′ ≈ ξ . Since the
orbits are circles, this condition fixes contributing ξ ′ chords
as the ones whose endpoints η′

+ and η′
− perform an integer

number of complete revolutions around the origin, finishing
near their initial values η+ and η−. In terms of the orbits’
angular frequencies,

ω±Trev = 4|η±|2Trev = 2π j±, (13)

where we define the winding numbers j± for η±. The pairs
of orbits whose radii lie in between the successive time-
quantized values (13) define long chords with rapidly oscil-
lating phases that cancel out: Their absence is responsible for
the fine undulations in the revived coherent states and affects
the Wigner function’s normalization.

Substituting the variables in (13) in Eq. (12),

S̃x′ (η′
±, η±) − η+ · Jη− =

(
π2

4Trev

)
( j2

+ − j2
−), (14)

and since the winding numbers for this case are exactly the
Maslov contributions, the final phase (modulo a symplectic
Fourier transform) is finally given by

S̃x′ (η′
±, η±) + σ̃π

2
= π ( j+ − j−)[1 + ( j+ + j−)]. (15)

Since j+ − j− and j+ + j− have the same parity, the phase
in (15) is always an even multiple of π . The relevant final
chords are, therefore, selected such that the final Wigner
function is localized exactly over the initial one, reproducing
the complete revival as expected.

For fractional revivals with times t = π/β, the only differ-
ence is that the relevant final chords might perform fractional
revolutions around the origin. We can express this condition
as

ω±π

β
= 4|η±|2π

β
= 2π ( j± + α), (16)

where α is a rational number that reflects the positions of the
final coherent states and thus depends on β. In contrast to
the revived coherent states, the interference patterns appearing
near the origin for the cat state revival (β = 8) are due
exclusively to long chords, typically spanning the diameter of
the classical spiral.

VI. CONCLUSION

The ability to reproduce the complete kaleidoscopic evo-
lution for the quantum Kerr system on the basis of classi-
cal phase-space trajectories is indisputable evidence for our
FVR method. The undulations visible in the semiclassical
Wigner functions play no role in extracting typical quantum
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mechanical quantities obtained by integration, a process that
filters out residual classical fine structures. Preliminary re-
sults evince that our FVR method is not restricted to ex-
act classical systems, demonstrating the generality of this
approach [38].
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