
Beyond the Request: Harnessing HTTP Response Headers for
Cross-Browser Web Tracker Classification in an Imbalanced

Setting
Wolf Rieder

w.rieder@tu-berlin.de

Technische Universität Berlin

Berlin, Germany

Philip Raschke

philip.raschke@tu-berlin.de

Technische Universität Berlin

Berlin, Germany

Thomas Cory

cory@tu-berlin.de

Technische Universität Berlin

Berlin, Germany

Abstract
The World Wide Web’s connectivity is greatly attributed to the

HTTP protocol, with HTTP messages offering informative header

fields that appeal to disciplines like web security and privacy, es-

pecially concerning web tracking. Despite existing research em-

ploying HTTP request messages to identify web trackers, HTTP

response headers are often overlooked. This study endeavors to

design effective machine learning classifiers for web tracker de-

tection using binarized HTTP response headers. Data from the

Chrome, Firefox, and Brave browsers, obtained through the traffic

monitoring browser extension T.EX, serves as our dataset. Ten su-

pervised models were trained on Chrome data and tested across

all browsers, including a Chrome dataset from a year later. The

results demonstrated high accuracy, F1-score, precision, recall, and

minimal log-loss error for Chrome and Firefox, but subpar perfor-

mance on Brave, potentially due to its distinct data distribution and

feature set. The research suggests that these classifiers are viable

for web tracker detection. However, real-world application testing

remains pending, and the distinction between tracker types and

broader label sources could be explored in future studies.
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1 Introduction
The rapid evolution of the Web has cemented its role as an integral

component of modern life. Users access a vast array of information

and services through desktop and mobile browsers. However, every

interaction, from content consumption to mere site visitation, re-

veals information about the habits and preferences of users, which

in turn has implications for personal privacy and online security.

These privacy concerns are highlighted by the ubiquity of be-

havioural targeting. A detailed behavioural profile can be con-

structed by analyzing a user’s browsing history, facilitating the

delivery of tailored advertisements and content. This profiling is

made possible by web tracking that employs sophisticated tech-

niques to track users across the Web. Given the increasing concerns
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about such practices [9, 34], there is a growing emphasis on research

in web privacy.

An established countermeasure against unsolicited HTTP com-

munications is the use of filter lists [48] such as EasyList 1
(EL)

and EasyPrivacy 2
(EP). However, their dependency on manual

curation makes them vulnerable to oversights and rapid obsoles-

cence [1, 20, 23]. Moreover, some trackers employ strategies like

domain masking to evade these lists [10].

In an attempt to mitigate these shortcomings, efforts of past

decades have explored the potential of Machine Learning (ML) in

this domain. Various classifiers, some achieving accuracy metrics

in the 80th percentile [12, 25], have been developed using diverse

data sources such as HTTP headers and JavaScript API calls.

Meanwhile, the potential of information contained in HTTP

responses has been largely overlooked, except for HTTP cookies.

The value of this information might be doubted because it becomes

available only after web tracking has occurred. However, this lim-

itation primarily affects scenarios where the model’s predictions

are used to block communications with web trackers in real-time.

Alternative approaches are feasible: (i) dynamically generating filter

lists based on the model’s predictions, or (ii) using it as a supple-

mentary tool for classifiers that depend solely on pre-HTTP request

information.

Most previously proposed classifiers have not addressed the issue

of deployability, suggesting that the field is still in an exploratory

phase. Consequently, it is valuable to examine the suitability of

HTTP response information for web tracker classification. Unlike

HTTP request information, which is controlled by the client and

varies between users, HTTP response information is configured by

the server, i.e., the potential web tracker. Notably, a study in the

related field of web security underscores the effectiveness of this

approach [33].

Our key contributions are as follows:

(1) We conduct a study of HTTP response headers across mul-

tiple browsers, focusing on their potential for web tracker

detection within the Tranco global top 10K websites. Fur-

thermore, we identify challenges with this type of data for

developing ML classifiers.

(2) We present a semi-automated ML pipeline which facilitates

the training of ML models for the binary classification of

web trackers based on HTTP response or request headers.

(3) We train and evaluate ten supervised classifiers. Our findings

indicate that when applied to a subset of binarized HTTP

1
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2
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headers, selected tree and gradient boosting models can de-

tect web trackers. Our best classifier achieves ROC-AUC,

AUPRC, and an F1-score exceeding 0.93.

(4) We conduct a comprehensive and multi-faceted evaluation

of these classifiers, which includes longitudinal studies to

gauge potential concept drift and evaluates the cross-browser

performance of classifiers trained solely on traffic data col-

lected within the Chrome browser. We show that Chrome

data captures a majority of the structural header character-

istics of trackers. Our evaluation incorporates 13 metrics,

offering a holistic view of the binary classification challenge.

In addition, we use our pipeline to train classifiers using only

HTTP request headers to highlight the comparative value of

HTTP response headers for web tracker detection.

The remainder of this paper is structured as follows: Section 2

reviews past research in the field of web tracker detection. Section 3

introduced definitions, our research questions, and the analyzed

datasets. Section 4 explores HTTP response headers from Chrome,

Firefox, and Brave datasets, providing general findings and identify-

ing potential challenges for the ML pipeline. Section 5 describes the

design and implementation of the ML pipeline, including selected

models, metrics, and baselines. Section 6 presents the evaluation

of the trained classifiers. The penultimate Section 7 discusses our

results and limitations, and Section 8 concludes the paper.

2 Related Work
This section provides an overview of existing research on web

tracker detection based on machine learning. To highlight how our

proposed classifier differs from prior work, we focus this overview

on classifiers that rely solely on HTTP protocol information. For

the sake of completeness, however, we summarize other approaches

at the end of the section.

2.1 Classification Based on HTTP Information
Approaches to the detection of web trackers with the support of

machine learning date back to the early 2000s. In 2010, Yamada

et al. [51] were the first to use temporal link analysis to build a

graph based on hosts related to HTTP requests from the traffic gen-

erated by corporate networks. Their classifier considers temporal

information, such as the visit duration at a specific website or host.

Yamada et al. consider this a discriminating criterion based on the

assumption that users spend less time on websites of web track-

ers, as trackers generally appear as third parties that are contacted

briefly in the context of other websites rather than first parties that

users actively visit.

In 2013, Bau et al. [3] described and discussed the usefulness

of machine learning as an effective counter to web tracking. They

outlined problems with manually curated filter lists - problems that

still hold true today, such as the reliance on manual curation and

the inflexibility of static lists. Beyond building an Elastic Net model

focused on traces of content extraction in the Document Object
Model and HTTP headers to show the advantages of automated

approaches, Bau et al. laid down requirements for future machine

learning models as well as problems facing researchers in this

domain.

A year later, Bhagavatula et al. [4] tried to identify ad-related

URLs, a topic closely connected to the web tracking detection prob-

lem. To this end, they crawled the Alexa top 500 websites to compile

an extensive dataset with six distinct feature sets based on the URLs

themselves as well as additional metadata. Their analysis approach

is based predominantly on Support Vector Machines (SVMs) with

different kernels, achieving average accuracy and precision scores

above 89%. Like Bau et al. before them, Bhagavatula et al. recog-

nized the need for machine learningmodels to replace filter lists and

put forward additional requirements for production-ready machine

learning approaches, such as optimized training times.

In 2015, Gugelmann et al. [22] proposed an alternative approach

by deriving several statistical features from HTTP traffic, e.g., up-

and download volume. In contrast to prior studies, they thoroughly

described their model-building process and emphasized their fea-

ture engineering. Their feature selection process included the use

of Pearson’s correlation coefficient as well as the consideration of a

feature’s entropy. In addition, they employed an unspecified classifi-

cation tree, among other classifiers, to find an optimal Naïve Bayes

model that achieved a precision of 83% and was able to correctly

identify previously unseen trackers.

In the same year, Li et al. [30] proposed TrackAdvisor, a system
to classify HTTP requests based on the collective statistics of cook-

ies contained therein. Using FourthParty, they captured 563,031

requests and identified 22,270 cookies sent to third parties. Rather

than relying solely on filter lists, they used a multi-step process

emphasising manual inspection to label the captured data. Notably,

the training and test sets created from the captured data comprised

just 500 requests each and had a balanced class distribution, which

differs from the distribution found in the original data. Nevertheless,

Li et al. used these sets to train an SVM that ultimately achieved a

precision of 99.4% and a recall of 100%. Like Gugelmann et al., they

point out the usefulness of the HTTP Referrer header for third-party
tracker detection.

In 2016, Dudykevych and Nechypor [16] also used cookies as

the basis for their classifiers. In contrast to Li et al., however, they

developed their own crawler, used a larger dataset of 550,000 cook-

ies, and developed a different feature set. The latter is only briefly

described, but information from the cookies and HTTP requests

were used as features. It can be assumed that the features are nu-

merical and categorical, as the authors used Principal Component

Analysis and correlation, which require numerical data, as well

as binarization of categorical features. The resulting classification

accuracies ranged from 82.01% for Naïve Bayes to 95.43% for the

regularized logistic regression method.

The analysis of HTTP traffic for and with machine learning

models is also an important topic in web security research, albeit

with a different target (i.e., label) than web privacy research. In

a 2019 study, McGahagan et al. [33] analyzed response headers

from 45 874 websites and extracted 672 features, resulting in a

final feature vector with 22 properties. In addition, they tested

whether over- and undersampling affected themodel’s performance.

Their extensive coverage of metrics, models, different training and

tuning combinations, and feature engineering documentation can

be considered standard among ML practitioners but is somewhat

rare among related research in the field of web tracking detection.

Crucially, an important contribution of this paper is the in-depth
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presentation of the usefulness of HTTP response headers for ML

models to detect malicious entities. We apply a similar approach

but to web privacy research.

Unlike most papers discussed in this section, which have used

data from the Firefox browser to test the performance of supervised

learning models, Din et al. [15] used deep learning (DL) techniques

for Brave and other Chromium-based browsers. Although their

approach is geared towards the image-based detection of advertis-

ing in websites rather than web tracking, their incorporation of

multiple browsers is highly relevant for models that classify web

trackers.

Cozza et al. [12] developed a system that not only classifies

HTTP requests but also automatically updates the filter list. Al-

though this study is not the first to detect previously undocumented

trackers using machine learning techniques, the deployment of a

tracker-detecting browser extension that combines a filter list with

a machine learning model and updates its ground truth marks an

important step forward in tracker detection technology.

Guarino et al. [21] built upon prior research by Gugelmann et al.

and Li et al. by training multiple models based on combinations of

features used by these studies, including different HTTP headers

and the ratio of upstream and downstream data transmissions. Their

top performer is a Random Forest model with an average accuracy

of 92%. It should be noted, however, that this study is based on a

relatively small dataset of just 1000 observations. Nevertheless, the

authors astutely emphasize that content delivery networks (CDNs)

are a primary cause of false positives in the domain of web tracker

detection due to similarities in traffic patterns between CDNs and

third-party trackers.

Taking advantage of the observation that HTTP-based commu-

nication between clients and servers often comprises cascades of

multiple HTTP messages, Iqbal et al. [26] conducted an extensive

study that uses entire request chains rather than individual requests

as the basis for classifying web tracking. Notably, they were among

the first to consider responses alongside requests by developing

three distinct feature sets: the first is based on the entire request

chain, the second relies on information pertaining to individual

requests, and the third considers response headers and metadata.

By training a Random Forest model on five distinct datasets with

different configurations from separate crawls, Iqbal et al. achieved

accuracies above 98%. However, if the model was trained on only

one crawl and tested on the others, the accuracy dropped by up

to 14%, highlighting the difficulties of applying models to datasets

with varying configurations, e.g., data collected across different

browsers. Whereas Iqbal et al. selected features based on intuition

and domain knowledge, our approach selects features from a data-

driven standpoint and considers all response headers for feature

extraction.

2.2 Other Detection Approaches
Beyond the HTTP-focused approaches outlined above, various clas-

sification methods utilizing different data sources to extract dis-

tinctive criteria have been proposed and evaluated. These include

classifiers focused on JavaScript code and API access events that

aim to identify device fingerprinting techniques, pure URL-based

classifiers, CNAME cloaking detectors, and graph-based classifiers

that leverage the topology of the Web to identify third-party track-

ing in particular. The following paragraphs briefly highlight notable

research on these alternative approaches.

Focusing on JavaScript API calls, Wu et al. [50] developed DMT-
TrackerDetector, a system using decision trees in which observed

API calls serve as features. Their system, comprising a 717-dimen-

sional feature vector, achieved 97.8% accuracy and addressed obfus-

cation issues, showing the distinct JavaScript API usage by trackers

and non-trackers.

Bahrami et al. [2] refined the scope of their analysis by focusing

on device fingerprinting rather than API calls in general. Their ap-

proach combines graph analysis with supervised and unsupervised

learning to detect web trackers in historical JavaScript file data

collected between 2010 and 2019 by creating a graph that includes

temporal aspects and the output of Abstract Syntax Tree-based key-

word extraction. Their method, which includes nine graph-related

features and graph embedding, as well as a clusteringmodel, yielded

accuracies up to 89.13% and identified distinct clusters for finger-

printing and functional APIs, highlighting the viability of such an

approach.

Kalavri et al. [28] also proposed a graph-based approach, using

neighborhood analysis and label propagation on a bipartite graph

representing connections between first-party websites and third-

party services to detect web trackers, achieving over 97% accuracy.

They analyzed six months of data, finding that most trackers are

closely linked, with precision scores ranging from 64 to 92%.

Combining these graph-based approaches, Castell-Uroz et al. [8]

proposed a tripartite network graph to identify third-party tracking

resources and their origin domains within first-party websites. By

applying this approach to a dataset comprising over 90,000 domains,

they detected new trackers through their hash value popularity and

dirt level, finding that higher values correlated with the likelihood

of a given resource to be tracking-related.

Conversely, Metwalley et al. [35] developed an unsupervised

algorithm analyzing URL queries and HTTP request headers for

identifying trackers. Their method, applied to 200 Alexa-ranked

websites, identified 34 new trackers and successfully supported the

analysis of cookie-matching practices, though it had limitations in

detecting all known trackers.

2.3 Summary
Research presented in this section explored various approaches to

detect web trackers using machine learning, utilizing various avail-

able information. However, HTTP response information has been

mostly neglected, and if considered, only the cookie information

or a small subset of header information was taken into account.

This gap may stem from the intuition that the model’s predictions

should be utilized in a real-time application scenario, ignoring use

cases where ex-post detection of trackers is sufficient. However,

prior studies often owe a thorough discussion on the deployability

of their approaches. Related to this, training and test data have

been generated by the same browser, often in the same browsing

session. The generalization of a model’s predictions is yet to be

evaluated. Furthermore, the metrics used to assess a classifier’s

performance are not homogenized in the related literature, making

a direct comparison of the classifiers’ performances unfeasible.
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3 Approach
This study addresses the research gap identified in our review of

related research by evaluating the (cross-browser) performance of

commonly used machine learning classifiers that are trained on

HTTP response headers. In this section, we present our underlying

research questions and the approach we employ to address them.

3.1 Preliminaries
A core principle of automated web tracker detection is delineating

what constitutes a tracker. The focus of this delineation lies on the

tracking entities and not on the tracking activity. Our definition of

a tracker (T) and non-tracker (NT) is contingent upon the ground

truth used to label each dataset:

𝐻 : Set of all HTTP responses’ remote hostnames.

𝑅 : Set of detection rules derived from EL and EP.

match(ℎ, 𝑟 ) :
{
1 if ℎ matches rule 𝑟

0 otherwise

𝑇 = {ℎ ∈ 𝐻 | ∃𝑟 ∈ 𝑅 : match(ℎ, 𝑟 ) = 1}
𝑁𝑇 = {ℎ ∈ 𝐻 | ∀𝑟 ∈ 𝑅 : match(ℎ, 𝑟 ) = 0}

In other words: if the remote hostname (i.e., the sender) of a

response matches at least one rule in our aggregate list compiled

from the EL and EP filter lists, we label the response as a tracker.
For the sake of simplicity, we use the terms header and response

header interchangeably to refer to HTTP response headers through-

out the remainder of the paper unless explicitly stated otherwise.

3.2 Research Questions
The primary objective of this study is to assess the efficacy of

response headers for automated web tracker detection. Based on

the ML approaches of prior research and the observed areas to

further extend our empirical understanding and detection of web

trackers, we formulate the following research questions (RQ) that

guide us throughout this study:

• RQ1: What are the key characteristics of HTTP re-
sponse header data in the web tracking domain? We

want to understand the datasets to develop our pipeline and

classifiers accordingly.

• RQ2: Can trained classifiers detect web trackers with
only response header features in an imbalanced set-
ting while achieving a similar performance to past
research?We aim to train high-performing classifiers while

keeping the likely true distribution. We define our lower

bound as an F1-Score of 0.9 based on the classification re-

sults of past research to provide a meaningful addition to

existing detection solutions. Trackers and non-trackers are

not equally present in the datasets, thus an imbalance is

present and we want to assess how well classifiers perform

in this setting.

• RQ3: How large is a classifier’s performance degrada-
tion when it is trained on one browser’s HTTP traffic
data and then applied to other browsers?Web trackers

might exhibit different header characteristics depending on

the browser. We use data from three browsers to capture a

potential variety of web trackers and to assess the stability

and generalization stability of our classifiers.

We address our RQs by developing a semi-automatedML pipeline

that transforms HTTP traffic datasets collected with T.EX - The
Transparency EXtension (T.EX) [43] and use it to train several super-

vised binary classifiers. Additionally, we use reliable data compiled

by prior research to facilitate future comparisons between new

classifiers. Semi-automated means that the ML pipeline has to be

started manually, is based on manual data exploration, and does

not employ any AutoML libraries. The pipeline executes all steps

automatically but cannot react to structurally new datasets without

any changes or human intervention. Fully automating the pipeline

requires the development of a direct interface between T.EX and

the pipeline, i.e., automatically running new crawls and importing

the new datasets to the pipeline, as well as structural converters

for datasets from other sources.

To test the robustness and reliability of our classifiers, we train

them on a Chrome dataset and apply them to other browser datasets

(latitudinal comparison) and another Chrome dataset generated one

year later (longitudinal comparison). Furthermore, as past research

observed an uneven distribution of trackers and non-trackers, we

train our classifiers with the original imbalanced distribution to as-

sess how effectively our classifiers perform on the true distribution.

3.3 Data Collection
We use existing datasets containing labeled HTTP messages by EL

and EP. Following best practices suggested by [13], the crawls that

generate the datasets should fulfill three criteria: (i) repeated crawls

across multiple browsers, (ii) documentation of the geographical

region as well as the technical environment, and (iii) selection of

web sites is based on the Tranco ranking, which was proven to be

less biased than the Alexa ranking [38]. An open-source dataset by

Raschke that used T.EX fulfills all three criteria and is described as

follows:

Multiple simultaneous and stateful crawls (6 x Chrome, 6 x

Brave, 6 x Firefox) of the Tranco top 10K websites (as of 16th

of May 2022) were performed on the 12th of August 2022

with T.EX [...]. Measurements had been carried out on 18

AmazonWeb Services instances (c5.large) runningWindows

Server. All instances were launched in Frankfurt, Germany

(eu-central-1).

After completing the crawls, each instance’s extension stor-

age was extracted [...]. Note: 2 of the 6 Firefox instances

crashed during the crawl. Therefore, only 4 Firefox datasets

are available [39].

To assess potential concept drift and resulting model degradation

over time, we crawled one more dataset for Chrome in 2023 and

made it open-source [40]. We follow a similar methodology as

described in [41], using T.EX and visiting the landing pages with

Chrome to explore the top 10K websites from the Tranco ranking

as of March 29
th
, 2023.

Our reasons for only generating an additional dataset for Chrome

are as follows: firstly, Chrome is the most widely used browser with

a market share of 66.13% on desktops, whereas Firefox has 7.1%
3

3
https://gs.statcounter.com/browser-market-share/desktop/worldwide
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Chrome22 Firefox22 Brave22 Chrome23

T NT T NT T NT T NT

#Responses 256,202 602,516 309,391 526,865 2969 561,694 206,747 596,066

#Responses in % ≈ 0.3 ≈ 0.7 ≈ 0.37 ≈ 0.63 ≈ 0.5 ≈ 99.5 ≈ 0.26 ≈ 0.74

#Unique headers in total 2213 7577 2516 7322 237 7348 2164 7398

Unique Headers per response (𝑄1, �̃�,𝑄3) 10,13,16 12,15,19 12,15,18 13,16,19 13,18,20 12,15,19 10,13,16 13,15,19

Table 1: Overview of the collected datasets from [39], split by datasets as well as tracker (T) and non-trackers (NT).

and Brave has less than 1%
4
. Based on this distribution, the Chrome

dataset serves as the foundation for training to reflect and reach

the majority, i.e., using data most users encounter. Secondly, web

privacy research often relies on a simulated Firefox browser with

Selenium due to the use of OpenWPM, leaving space for other

browsers of interest. Thirdly, it helps us answer whether a model

based on Chrome data can be applied to Firefox or Brave while

achieving high-performance metrics.

4 Initial Response Header Analysis
To address RQ1 and gain a better understanding of the data under-

lying our analysis before designing our ML pipeline, we conduct

an initial analysis of the data, the results of which we present in

this section. Our exploration is guided by intuition and domain

knowledge. We first explore headers across all three browsers to

find empirical evidence of their potential relation to trackers. The

goal is to identify the key characteristics of the datasets and not to

present a complete analysis. We then use these insights to develop

our classifiers and evaluate the effectiveness of response headers

for web tracker detection.

4.1 Descriptive Analysis of Headers
First, we conduct a descriptive analysis to understand the data

structure and distribution of class and feature features within the

datasets. Table 1 summarizes descriptive metrics for each dataset.

We begin with the datasets Chrome22, Chrome23, and Firefox22. All

three datasets show similar results for the distribution between

trackers and non-trackers, as well as the number of unique headers

in total and per response.

Let 𝐵 represent the set of browsers, where 𝐵 = {Chrome22,

Chrome23, Firefox22, Brave22} and let 𝐿 represent the set of labels,

where 𝐿 = {𝑇, 𝑁𝑇 }. For each browser 𝑏 ∈ 𝐵 and each label 𝑙 ∈ 𝐿,

we define 𝐻𝑁𝑏,𝑙 as the set of all distinct header names across all

HTTP response messages from a browser 𝑏 and categorized under

label 𝑙 . The number of unique headers for each combination of 𝑏

and 𝑙 is defined as the cardinality of 𝐻𝑁𝑏,𝑙 :

|𝐻𝑁𝑏,𝑙 | = |{ℎ𝑛 | ℎ𝑛 ∈ 𝐻𝑁𝑏,𝑙 }|

We can observe a small quantitative change in the number of

unique headers between Chrome22 and Chrome23. On average, non-

trackers have more unique headers as well as a higher median �̃�

and interquartile range than trackers.

4
https://kinsta.com/browser-market-share/

As Brave is a privacy-oriented browser that performs exten-

sive blocking of web tracking by default, Brave22 exhibits a far

lower number of trackers and unique headers in tracking-related

response messages than the other datasets. Interestingly, the �̃�

equals 18 for trackers and 15 for non-trackers, representing the

only instance where trackers had a higher number. Although the

dataset comprises almost exclusively non-trackers, the number of

unique headers is similar to the other datasets.

0 1000 2000 3000 4000 5000 6000 7000 8000

100

101

102

103

104

105

106
Fr

eq
ue

nc
y

(L
og

Sc
al

e)
Frequency Distribution of HTTP/S Response Headers by Browser

Browser
Chrome22
Chrome23
Firefox22
Brave22

Figure 1: Frequency distribution of headers for each browser,
indicating the frequency with which each header is present
in the dataset.

Figure 1 shows a frequency plot to outline how often each header

appears in the dataset. The plot demonstrates a power-law distri-

bution, where few headers occur frequently, and many others form

a long tail of low frequency. This sparseness indicates that while

there are many different headers, only a few are consistently used

across different websites and by different browsers.

Figure 2 depicts a Venn diagram that compares the response

headers present in the examined datasets, highlighting data and

feature similarity between the different browsers. The intersection

numbers, such as the 5672 headers common to all browsers, suggest

a significant overlap in features across different platforms. However,

the presence of headers unique to each browser or shared by only

two browsers indicates that while there is a core set of shared

features, there is also a notable amount of variation that may be

critical for web tracker detection.

For instance, the Empirical Cumulative Distribution Function plots
for Chrome22 andChrome23 presented in Figure 3 row (A) show that

the Content-Length values of non-trackers are generally higher than
those of trackers, which suggests that non-trackers tend to send

larger responses. This is consistent across both datasets, indicating

that while browsers evolve, certain characteristics, like the smaller
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Figure 2: Venn diagram of HTTP response headers in the ex-
amined datasets, revealing a core set of 5672 headers that are
common across Chrome, Firefox, and Brave. Unique headers
are present in each browser, although Chrome23 has the high-
est number of unique headers, which may reflect browser-
specific features or experimental headers.

size of tracker responses, remain consistent. Conversely, row (B)

of Figure 3 plots the feature similarity for the X-XSS-Protection
header, showing that header values can be very similar between

the datasets, i.e., the training and test sets. This further supports

our observation that most of the examined datasets are similar and

that trackers and non-trackers differ in their use of HTTP header

fields and values. Although we have presented only a few selected

examples here, they highlight the general challenges that come

with response message datasets.

Additional characteristics of the datasets include a high amount

of missing header values, resulting from a large number of avail-

able HTTP headers, of which any given response only uses a small

number. This is exacerbated by the common practice of using cus-

tom headers that are not part of the HTTP standard, i.e., are not

registered in RFC 4229
5
. This results in the presence of 8058 custom

headers in the Chrome22 dataset, contrasted by a comparatively

small �̃� of unique headers per response as shown in Table 1.

The examined datasets are formatted as a matrix, with rows rep-

resenting individual HTTP requests or responses and each unique

HTTP header denoted in a separate column. This, combined with

the observed large total number of unique headers and small num-

ber of headers per response, results in a sparse matrix where most

elements are empty.

5 Methodology
Based on the findings of our data exploration presented in Sec-

tion 4, we propose a comprehensive methodology to assess the

effectiveness of classifiers based on response headers.

5.1 Problem Formulation
We consider the problem of binary classification, where we aim to

predict the presence of web trackers based on response headers.

The headers, represented by the feature vector 𝑥 ∈ R𝑑
, are nominal

5
https://www.ietf.org/rfc/rfc4229.txt

Figure 3: Row (A) presents the ECDFs for both Chrome
datasets for the Content-Length header values. We set a cut-
off value at 10,000 to highlight the core observation andmore
than half of the responses have a value below this threshold
– �̃�𝑇 22 = 62, �̃�𝑁𝑇 22 = 8068 and �̃�𝑇 23 = 45, �̃�𝑁𝑇 23 = 8021.5. Row
(B) shows how similar the values across Chrome22, Firefox22,
and Brave22 are for the X-XSS-Protection header.

and can be discrete and continuous variables. These variables are

derived from HTTP headers of four different browser types, de-

noted as the previously defined set 𝐵. For this study, we specifically

consider the datasets Chrome22, Chrome23, Firefox22, and Brave22.

Given a training set Dtrain = {(𝑥1𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}, where 𝑥𝑖 is
a feature vector of the 𝑖-th HTTP header and 𝑦𝑖 ∈ {0, 1} represents
the associated class label, our goal is to train a set of classifiers

𝑓𝑗 : R𝑑 → {0, 1} for 𝑗 ∈ 𝑀 that minimizes the empirical risk:

𝑅(𝑓𝑖 ) =
1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖 , 𝑓𝑖 (𝑥𝑖 )), 𝑗 ∈ {1, . . . , 𝑀}, (1)

where 𝐿(𝑦𝑖 , 𝑓𝑖 (𝑥𝑖 )) is the loss incurred by predicting 𝑓𝑖 (𝑥𝑖 ) when
the true label is 𝑦𝑖 . The specific form of the loss function 𝐿(·) will
be dependent on the classifier 𝑓𝑗 used.

We consider datasets represented by 𝐷𝑠 , where 𝑠 can pertain

to training, testing, or calibration subsets of the data. We observe

several challenges (CH) and key characteristics from our data ex-

ploration, which answer our RQ1:

• (CH1) High Cardinality: The feature vectors 𝑥𝑖 in our

datasets 𝐷𝑠 may exhibit high cardinality for certain features.

This problemmay pose challenges in terms of model training

and encoding.

• (CH2) Sparseness: As discussed above, the feature vectors

𝑥𝑖 in our datasets 𝐷𝑠 are represented as sparse vectors, with

each vector defined as:

𝑥𝑖 = {𝑣1, 𝑣2, . . . , 𝑣𝑑 }
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A significant proportion of the entries 𝑣 𝑗 within 𝑥𝑖 are either

zero or represent missing data, resulting in an overall sparse-

ness of 𝐷𝑠 . Such sparseness may introduce computational

complexities and challenge the performance of certain ML

algorithms that are not optimized for sparse data.

• (CH3) Class Imbalance: For datasets collected from a given

browser 𝐵 and represented as 𝐷𝑠 , the class distribution may

be imbalanced. The majority class is denoted by 𝛼𝐵 , and the

minority class is represented by 𝛽𝐵 , satisfying 𝛼𝐵 + 𝛽𝐵 = 1.

The degree of this imbalance may vary based on the browser,

as shown in Table 1, with some datasets exhibiting a more

pronounced disparity between 𝛼𝐵 and 𝛽𝐵 . Such imbalance

can introduce bias to models, favoring the majority class

and potentially undermining the accurate prediction of the

minority class.

• (CH4) High Dimensionality: With a high dimensional-

ity 𝑑 and a high number of observations 𝑛 per dataset, the

classification is susceptible to the Curse of Dimensionality,
potentially leading to overfitting and necessitating intricate

dimensionality reduction techniques. Therefore, applying

a process that achieves a reduced feature space 𝑋 ′
𝑖 ⊆ 𝑋 is

necessary, entailing a reasonable training time.

• (CH5) Data Similarity: The datasets collected across brow-

sers can exhibit pronounced similarities in their feature dis-

tributions and values. Given the high dimensionality of our

feature space, exhaustive pairwise comparisons can be com-

putationally expensive and time-consuming, highlighting

the challenge of accurately gauging data similarities in such

a complex space.

5.2 Machine Learning Pipeline
This subsection outlines our ML pipeline that addresses the chal-

lenges in classifying web trackers. Related work uses various ap-

proaches to detect web trackers, a task closely related to web se-

curity research. Both research fields exploit HTTP data, typically

requiring extensive data processing and feature engineering to iden-

tify useful features. However, Laughter et al. [29] explored whether

binary features that represent the mere presence of HTTP headers

could effectively detect malicious HTTP requests. Their classifiers

achieved accuracy scores above 90%. Similar findings were reported

by [4] and [16].

The binarization of HTTP headers is appealing for two reasons:

(i) it simplifies feature engineering, which is complex for categorical

header data, and (ii) it enhances model deployment for tracker detec-

tion, as checking header presence is faster than detailed processing.

Therefore, we apply and evaluate this method in our analysis.

We train our classifiers on the Chrome22 dataset, using other

datasets for testing as per RQ3. Therefore, only the training set is

used to filter out headers, and the results of all steps in the data

processing phase in Figure 4 are afterwards applied to all testing

sets. Each step in our pipeline aims to reduce dataset dimensions,

addressing overfitting and sparsity issues.

To handle sparsity and high dimensionality and simplify the

data matrix, we use several methods: (i) applying a low variance

filter to remove headers with a single value, (ii) eliminating rare

headers with a missing-value ratio approaching one, (iii) dropping

headers associated with only one label as they might be correlated

to the label, and (iv) employing Approximate string matching (Fuzzy
Matching) to merge similar headers based on a weighted ratio of

distance metrics (e.g., Damerau Levenshtein and Hamming).
Fuzzy matching is especially useful due to the presence of hun-

dreds of similar headers within our data. Our initial data analysis

discussed in Section 4 identifies many examples where headers

with similar purpose were written or formatted differently, e.g.,

content-lenght, cteonnt-length, or ntcoent-length, instead of content-
length. Therefore, comparing the header names is insufficient, so

we automatically assess the value similarity to reduce potential

mismatches.

Although many different resampling techniques exist to combat

class imbalance, such as over- and undersampling [24], generative

adversarial networks [17], or variational autoencoders [19], the

question of whether this step is necessary remains. Some disadvan-

tages of such methods are, for example, the removal of observations,

the replication of existing observations, or the creation of synthetic

samples. Selecting and applying a sampling method can lead to

overfitting and over-optimism as well [45], notwithstanding the

question of whether it is even feasible to train the models on a

distribution that was not observed in real-world data.

Addressing CH3, our pipeline preserves the observed distribu-

tion as the imbalance is mild
6
in the Chrome22 dataset, i.e., a suffi-

cient number of samples exists for each class, which allows proper

training to differentiate between classes. We also compute metrics

that account for or are unaffected by imbalance, and the selected

ensemble models are inherently robust to this issue.

Last, following the findings of Niculescu-Mizil and Caruana [36],

we apply Isotonic Regression instead of Platt Scaling to calibrate the

probabilities calculated by our models. This is done by fitting an

Isotonic Regression model to the models’ predictions as well as

the true labels to adjust the predicted probabilities. The calibration

function for each model 𝑖 is denoted as 𝐶𝑖 (𝑓𝑖 (𝑥)).
We summarize our pipeline in Figure 4, including the data col-

lection. Note that we did not apply any data imputation to keep the

final datasets as close to the original collected datasets as possible.

In addition, due to the application of binarization as a final step,

we do not need to impute values for missing data as we are solely

interested in the presence of headers and not their values.

We do not generate a validation set for hyperparameter tuning

because we want to assess the effect of calibration in isolation.

Moreover, tuning requires more computational power. However,

this might lead to suboptimal configurations of our classifiers, thus

a reduced performance.

5.3 Classification Models
As discussed in Section 2.1, related studies [4, 12, 22, 30] often

used similar classifiers despite the broad range of available models.

We build upon these established selections, refining our choice of

models based on three conditions: (i) the models should be trainable

in a reasonable amount of time, (ii) they should be applicable to

this specific use case, and (iii) they should preferably be ensemble

methods, although we include a handful of non-ensemble models

6
https://developers.google.com/machine-learning/data-prep/construct/sampling-

splitting/imbalanced-data
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Figure 4: The parameterized pipeline automatically processes the collected datasets and trains the classifiers.

that were used in past research to allow for direct comparisons

between our results and those of related studies.We prefer ensemble

methods, as they usually perform better than their counterparts [14],

leading to their popularity over the past few years. Nevertheless,

to the best of our knowledge, they have not been widely used in

past web privacy research, with the exception of Random Forests.

In Table 2, we provide an overview of our selected models and their

use in related work.

Model Ensemble Past Research

Decision Tree No [16, 22, 42]

Random Forest Yes [12, 21, 26, 42, 50], [16] (U), [33]

Extra Trees Classifier No Not used

Logistic Regression No [4, 16, 22, 42, 50], [33]

Naïve Bayes (Gaussian or Bernoulli) No [4, 16, 21, 22, 50, 51]

Gradient Boosting Yes [33], [42]

Light-Gradient Boosting Machine Yes Not used

Adaptive Boosting Yes [42]

Hist-Gradient Boosting Yes Not used

eXtreme Gradient Boosting Yes [42]

Table 2: Overview of the selected ML models and their use in
related research discussed in Section 2.1. One paper did not
specify exactly which ensemble model was used. The most
likely model is marked as Unspecified (U). Papers from the
field of web security are underlined.

Other supervised learning methods, such as Multi-layer Percep-
trons [12, 21], KNN, and especially SVM, could have been used.

The latter was successfully applied in multiple papers [4, 12, 21, 30].

However, both suffer in terms of time and computational complexity.

SVM, for instance, has a training time complexity of 𝑂 (𝑛2), where
𝑛 is the number of observations [47]. In addition, deep-learning

models are not considered, as our research focuses on simple, light-

weight models. We also do not pursue a graph-based approach as

used by several papers [8, 28] because we do not examine connec-

tions between responses, e.g., through grouping based on their URL

or building a graph based on their order.

5.4 Baseline Models
We compare our classifiers against three baseline models and multi-

ple metrics that we define in Section 5.6. We select one tree classifier,

the Decision Tree (DT), which is the foundation of six selected clas-

sificationmodels. Our other two baselines are Gaussian Naïve Bayes

(GNB) and Logistic Regression (LR), two simplistic and relatively

robust models.

It is good practice to compare against a baseline approach that

differs from the presented classifiers while using the same dataset.

Raschke et al. [42] presented a graph-based approach named T.EX-
Graphwhere edge and node attributes and centrality metrics served

as features. Furthermore, the authors included information from the

responses but did not pursue classifiers based solely on response

headers. This comparability should help assess the performance

gains and the relevance of response header values for automated

web tracker detection, although the authors applied Synthetic Mi-
nority Oversampling to balance their dataset. We focus on their

results stemming from the FQDN dataset, where hosts are modeled

as fully qualified domain names (FQDN) because the tracker distri-

bution is similar to that of our datasets with a non-tracker to tracker

ratio of 68:32. To verify the results and calculate additional metrics

not used in the original study, we replicated their experiment.

5.5 Models using HTTP Request Headers
Lastly, we compare our proposed approach to HTTP request header-

only models. Our reasoning for this comparison is twofold: (i)

showing which additional information can be gained fromHTTP re-

sponse headers, thus the usefulness of our approach and (ii) whether

the applied technique of binarization is helpful for models using

HTTP request headers. To enable a direct comparison between

request- and response-based classifiers, we apply the pipeline pre-

sented in Section 5.2 to the request headers present in our datasets

and compare the results for each request-response pair.

5.6 Evaluation Metrics
We measure the performance of our classifiers according to nine

metrics. Several of these metrics are common in the web tracking

literature, while others are selected due to their applicability to our

classification problem and to understand the relationship with the
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underlying data in more detail. We report on additional metrics,

such as the confusion matrix, in the appendix. Moreover, we cal-

culate confidence intervals (CI) for these metrics using bootstrap

sampling with 599 samples [49].

Metric Past Research

(Avg.) Accuracy [4, 12, 16, 21, 22, 26, 42], [33]

Precision [4, 22, 26, 30, 42]

Recall [22, 26, 30, 42]

F1-Score [22], [42]

AUC-ROC [22], [4], [33]

Confusion Matrix [21]

MCC [33]

AUPRC Not used

Log-Loss Not used

Table 3: Overview of applied performance metrics and their
use in related research discussed in Section 2.1.

The first metrics that are commonly used in web privacy re-

search are Accuracy, Precision, Recall, False Positives (FP), True

Positives (TP), False Negatives (FN), True Negatives (TN), and F1-

Score. Two accuracy scores can be calculated: one from the perspec-

tive of trackers, the positive label, and one from non-trackers, the

negative label. However, accuracy is not useful with imbalanced

datasets because a model could always predict the majority class

and achieve accuracy with the same value as the distribution of

said class. For this reason, we calculate the following additional

metrics to quantify the performance of a classifier with an imbal-

anced dataset: (i) Balanced Accuracy (BACC), (ii) Log-loss Score, (iii)
Matthews-Correlation-Coefficient (MCC), and (iv) Area Under the
Precision-Recall Curve (AUPRC). A further explanation for each

metric is reported in the Appendix B.

6 Experiments
In this section, we evaluate the effectiveness of our proposed metho-

dology in detecting trackers. We begin by presenting our classi-

fier results based on Chrome22 data and follow up by testing them

with data from Firefox22 and Brave22. Furthermore, we assess the

longitudinal performance with the Chrome23 dataset that was col-

lected almost a year after Chrome22. Note that this section only

summarizes our results. Performance metrics across all classifiers

are reported in the Appendix D.

We test our approach on a MacBook Pro (14-inch, 2021) with

a 10-core CPU, a 16-core GPU, 1TB of SSD storage, and 32GB of

RAM.

We address CH5 by applying t-SNE to our datasets as shown in

Figure 5. Non-trackers form high-density clusters, indicating that

they share similar headers. Brave22 exhibits more smaller groups

at the edges that are separated from the others. Trackers only form

one large cluster, showing that commonalities exist even though

they are more dispersed overall. This is potentially due to the higher

number of custom headers present in tracker responses. Addition-

ally, overlaying the t-SNE plots for trackers and non-trackers reveals

a substantial overlap between the two classes.

6.1 Intra-browser Performance
Table 4 shows the performance of our Chrome22-trained classifiers

and the baselines. Regarding AUPRC, the RF leads with a score of

0.98, closely followed by Extra Trees (ET) classifier and DT with

scores of 0.977 and 0.965, respectively.

Except for the AdaBoost and GNB, all classifiers show a lower

than baseline log-loss value, indicating a high prediction accuracy.

The F1-score metric further strengthens the position of ET and

RF, as they all score above 0.93, indicating that they are good at

differentiating between the positive and negative classes (RQ2).

The high MCC scores corroborate the other metrics, placing ET, RF,

and DT as the most robust performers with accurate predictions

across all categories in the confusion matrix. In contrast, baseline

models like LR and AdaBoost perform comparatively lower across

all metrics.

The gradient boosting models, specifically XGBoost, have fairly

high scores, as reflected in an AUPRC score of 0.953 and an F1-Score

of 0.883. However, their MCC scores were lower in contrast to ET,

RF, and DT due to their recall scores.

Comparing the best-performing classifiers ET and RF to the base-

line models shows that they perform significantly higher, except

for DT, which only performed significantly worse in terms of log-

loss. The t.ex-Graph classifiers display lower performance across

all metrics.

6.2 Cross-browser and Longitudinal
Performance

Figure 6 presents the cross-browser performance and longitudinal

performance of our Chrome22-trained classifiers. We focus on three

selected classifiers: one baseline model, our best performing model,

and one gradient boosting model.

For ET and XGBoost, Chrome22 shows high performance across

most metrics, which is expected as the models would be most

adapted to the data they were trained on. The performance on

Chrome23, Firefox22, and Brave22 varies, with a general trend of de-

creasing performance, indicating potential overfitting to the train-

ing data or a lack of generalizability to other datasets. The former

should not be the case, as we observe less than a 5% performance

drop between the in-distribution training and test set. Furthermore,

we split the in-distribution data before the pre-processing, thus

mitigating any data leakage and applied Repeated Stratified K-Fold
cross-validation with five repeats and five folds. As shown in the

previous sections, the datasets are different and trackers have vary-

ing structures, which is why we perform a cross-browser evaluation

to test the generalizability.

Overall, the results depicted in Figure 6 indicate that, while all

models perform well on the dataset they were trained on, their

ability to generalize to other data varies. ET exhibits the most

consistent performance across different browser datasets, indicating

better generalization but it had a lower log-loss score for Firefox22

compared to the two. The figure underscores the importance of

cross-browser testing to ensure that models are not only tuned to a

specific dataset but also maintain their performance across diverse

scenarios.

The Brave results show a high accuracymetric for the overall per-

formance, but the F1-Score and MCC are low and represent a more
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Figure 5: t-SNE plots using a representative sample across all browsers to gauge data similarity. Separate clusters exist for
trackers and non-trackers, but there is significant overlap between both classes. The results are separated by class to highlight
differences between trackers and non-trackers.

Model Accuracy Log-Loss ROC-AUC AUPRC BACC F1-Score Precision Recall MCC

LR 0.874 0.321 0.829 0.858 0.829 0.773 0.836 0.718 0.69

[0.872;0.875] [0.318;0.324] [0.827;0.831] [0.856;0.862] [0.827;0.831] [0.769;0.776] [0.831;0.839] [0.714;0.723] [0.686;0.693]

GNB 0.835 3.232 0.803 0.688 0.803 0.723 0.723 0.723 0.605

[0.832;0.836] [3.193;3.28] [0.8;0.805] [0.683;0.693] [0.8;0.805] [0.72;0.727] [0.719;0.727] [0.719;0.727] [0.6;0.61]

DT 0.958 0.324 0.945 0.965 0.945 0.929 0.945 0.913 0.9

[0.957;0.959] [0.311;0.34] [0.944;0.946] [0.963;0.966] [0.944;0.946] [0.928;0.93] [0.943;0.947] [0.911;0.915] [0.898;0.902]

RF 0.959 0.162 0.946 0.98 0.946 0.93 0.947 0.913 0.901

[0.958;0.96] [0.156;0.17] [0.944;0.947] [0.979;0.98] [0.944;0.947] [0.928;0.931] [0.949;0.949] [0.911;0.915] [0.899;0.903]

ET 0.96 0.195 0.946 0.977 0.946 0.931 0.951 0.912 0.903
[0.959;0.961] [0.186;0.204] [0.945;0.947] [0.976;0.978] [0.945;0.947] [0.93;0.933] [0.949;0.953] [0.91;0.914] [0.901;0.906]

AdaBoost 0.858 0.673 0.809 0.846 0.809 0.742 0.809 0.686 0.65

[0.856;0.859] [0.673;0.673] [0.806;0.811] [0.844;0.849] [0.806;0.811] [0.739;0.746] [0.805;0.813] [0.682;0.69] [0.646;0.653]

GBM 0.892 0.292 0.85 0.89 0.85 0.804 0.872 0.746 0.734

[0.89;0.893] [0.289;0.294] [0.848;0.852] [0.888;0.892] [0.848;0.852] [0.801;0.808] [0.869;0.875] [0.742;0.751] [0.731;0.738]

LGBM 0.917 0.212 0.881 0.94 0.881 0.851 0.916 0.794 0.797

[0.915;0.918] [0.21;0.214] [0.879;0.883] [0.938;0.941] [0.879;0.883] [0.848;0.853] [0.913;0.918] [0.79;0.798] [0.793;0.801]

HistGB 0.918 0.211 0.884 0.94 0.884 0.854 0.916 0.8 0.801

[0.917;0.92] [0.209;0.213] [0.882;0.886] [0.939;0.942] [0.882;0.886] [0.851;0.857] [0.913;0.918] [0.796;0.803] [0.798;0.804]

XGBoost 0.933 0.182 0.908 0.953 0.908 0.883 0.924 0.845 0.838

[0.932;0.934] [0.18;0.184] [0.906;0.909] [0.952;0.954] [0.906;0.909] [0.881;0.885] [0.992;0.926] [0.842;0.848] [0.835;0.84]

XGBoost 0.883 2.666 0.871 0.248 0.871 0.869 0.867 0.871 0.737

RF 0.877 0.744 0.867 0.273 0.867 0.863 0.860 0.867 0.726

GBM 0.857 1.476 0.854 0.42 0.854 0.843 0.836 0.854 0.689

DT 0.843 21.54 0.827 0.332 0.827 0.824 0.822 0.827 0.649

KNN 0.841 1.674 0.836 0.577 0.836 0.826 0.819 0.836 0.655

AdaBoost 0.839 0.709 0.833 0.493 0.833 0.823 0.817 0.833 0.649

SVC 0.837 0.641 0.849 0.332 0.849 0.826 0.818 0.849 0.666

LR 0.802 12.24 0.817 0.362 0.817 0.791 0.785 0.817 0.601

Table 4: Performance comparison of the Chrome22-trained classifiers for identifying trackers across a subset of 13 metrics. The
best results are highlighted in bold and blue, the second best are underlined and green, and baseline models are denoted as
italic and orange. For comparison, the performance results of the T.EX-Graph classifier [42] are reported in the bottom half of
the table.

realistic performance, which is expected due to the considerable

differences between the Chrome and Brave data.

Our longitudinal performance analysis indicates a slight de-

cline in the efficacy of the classifiers when transitioning from the

Chrome22 to the Chrome23 dataset. We can observe a decrease

in metrics such as AUC-ROC, Accuracy, and others. Notably, the

MCC score between ET and XGBoost are getting similar. A trend

which we can observe across most classifiers for Chrome23 but also

Firefox22. However, theMCC scores of the gradient boostingmodels

did not drop significantly more between Chrome22 and Chrome23,

e.g., XGBoost went down from 0.838 to 0.823, whereas the ET suf-

fered from 0.903 to 0.851. This suggests that while all models are
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Figure 6: Radar charts plotting the performance of three selected classifiers across a subset of 13 metrics, illustrating that, while
all models perform well on the in-distribution test set, the ET model exhibits more consistent performance across the various
test sets, suggesting better generalizability. The models show a reduced performance on out-of-distribution test sets, indicating
potential overfitting to the training data.

affected by evolving data characteristics, ensemble methods, par-

ticularly some gradient boosting models, may offer a more stable

predictive performance in longitudinal settings in contrast to the

ET and RF. Nevertheless, ET and RF had better or similar perfor-

mance compared to XGBoost. Applying isotonic calibration has

only minor improvements compared to the uncalibrated models,

as highlighted by Figure 9. The exceptions are GNB and AdaBoost,

where estimates have improved, e.g., the uncalibrated AdaBoost

initially centered most predictions around 0.5.

6.3 Feature Importance
As shown in Figure 7, the features Cross-Origin-Resource-Policy
and Last-Modified were the important features overall, followed

by Accept-Ranges and P3P. These four headers have distinct pur-
poses in HTTP communication, except for P3P which is deprecated

nowadays
7
. Although we plot the top ten features, the majority

of them have low importance values below 0.1. DT, RF, and GBM

share similar values, whereas the best-performing model, ET, has

no features with a significantly higher value than the others.

Iqbal et al. [26], who also used response header data for their

classification as discussed in Section 2.1, calculated the information
gain for each of their eight response-based features. This is only

partially comparable to feature importance but enables two key

comparisons: (i) ETag and especially P3P were important features as

well, and (ii) they highlighted the importance of the Content-Length,
Content-Type, and Set-Cookie headers, although they did not rank

among the top 10 features in our classifiers.

6.4 HTTP Request Header Performance
Lastly, we compare the performance of our response header-based

approach to classifiers that were trained on request headers. Com-

paring the request-based classifiers internally, we observe perfor-

mance differences similar to those of their response-based coun-

terparts. Overall, however, the request-based classifiers perform

worse, as shown in Figure 8. Their AUPRC, F1-Score, and MCC

values are close to 0.5 or less, which means that their prediction

reliability is low.

7
https://www.w3.org/TR/P3P/
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Wealso observe a pattern similar to the response-based classifiers

regarding cross-browser and longitudinal performance. Over time,

the classifiers perform slightly worse, e.g., with the MCC for the

ET going down from 0.42 to 0.404. Regarding Firefox22 data, the

precision improved but the recall decreased. Nevertheless, the MCC

is only 0.213, and the AUPRC is 0.458 for the ET, indicating that

the classifier has no discriminative power. In the case of Brave, the

classifiers are essentially ineffective and exhibit a low F1-score and

MCC.

Among the most important features across the majority of clas-

sifiers are X-Client-Data, Content-Type, Origin, and Cookie. The first
two are especially relevant, with values ranging from 0.2 to 0.566,

excluding GNB, AdaBoost, and LightGBM. Although Content-Type
is both a request and response header, it was not among the top-

ten most important features for the response classifiers. The most

important feature for the request-based classifiers, X-Client-Data, is
used by Chrome to send an identifier to certain Alphabet-affiliated

domains, e.g., doubleclick.net or googleadservices.com 8
, which are

prevalent in our datasets. We observe similar importance values

when we use an out-of-distribution dataset like Firefox22.

7 Discussion
Tracking affects users across all three browsers but varies to a cer-

tain degree, e.g., Brave had the least amount of tracking-related

HTTP messages compared to Chrome and Firefox. This can be

attributed to Brave’s extensive built-in privacy protection mecha-

nisms.

7.1 Experimental Results
First and foremost, the application of binarization resulted in sur-

prisingly good results, i.e., the mere presence of a header value is

sufficient and extensive feature engineering is not required from

a tracker detection standpoint. Our approach works well in this

imbalanced setting, although it might be problematic for some clas-

sification algorithms without additional measures, such as setting

class weights or rebalancing the class distribution. Additional mea-

sures include using ML models, which handle imbalanced datasets

well [27], or anomaly detection [37]. Thus, although this has not

been considered in our pipeline, it might be interesting to explore

how well these measures may improve the performance of our

proposed approach.

Our cross-browser approach reveals three things: firstly, the

Chrome22 dataset already captures most of the tracker structure.

Secondly, due to the resulting effectiveness of a Chrome22-trained

classifier on out-of-distribution data, such as Firefox22, it may not

be necessary to re-train classifiers for these datasets. Thirdly, apply-

ing our approach to browsers like Brave that filter web tracking by

default has a strong negative performance impact because the clas-

sifiers trained on unfiltered data are not able to effectively classify

the modified structure of trackers in the filtered data.

The results of our clustering shown in Figure 5 reveal that track-

ers are more dispersed than non-trackers, which might be an argu-

ment for browser-specific models, as these might be able to better

8
https://github.com/chromium/chromium/blob/master/components/variations/net/

variations_http_headers.cc

distinguish between trackers. Another challenge is the overlap be-

tween trackers and non-trackers, which further impedes correct

classification. Feature engineering taking the header values into

account might be a valuable approach to reduce the overlap, as

header values can differ between trackers and non-trackers (see

Section 4). A data-driven and large-scale in-depth analysis of header

values and tracker structures across browsers is needed to explore

this approach further.

Our comparison of request- and response-based classifiers re-

vealed that request-based classifiers perform worse overall, which

might be attributed to their comparatively small feature space, i.e.,

a smaller number of unique headers. This weaker performance

suggests that request headers are less informative for the detection

of web trackers than response headers. Nevertheless, the request-

based classifiers correctly identify some trackers that the response-

based classifiers missed, and vice-versa, as highlighted by the exam-

ple of ET in Table 5. Thus, future work could explore combinations

of both approaches as part of a multi-modal ensemble model.

Predicted Label by ET True Label Count Total

Response Request

NT NT T 3777 103357

NT NT NT 99580 103357

T T NT 404 7826

T T T 7422 7826

NT T T 729 19257

NT T NT 18528 19257

T NT NT 1991 41304

T NT T 39313 41304

Table 5: Comparison of the predicted and true labels for the
request- and response-based ET classifier based on the in-
distribution test set.

7.2 Potential Evasion Approaches
Spoofing of header values to evade our approach should not be a

problem, as the values are not taken into account. However, this

limits the models’ explainability in the sense that we lose the actual

header values that might provide us with relevant information to

understand trackers and whether some headers are required by

trackers or not.

Servers can modify a response by adding or removing headers be-

fore responding to a client. The latter could impact the effectiveness

of our classifiers, as they require the presence of headers. Because

analyzing the characteristics and use cases of each header in our

datasets is unfeasible, we focus on the top ten headers from our

feature importance analysis to assess the impact of their removal

on our classifiers’ ability to correctly identify trackers.

For this, we must differentiate between deprecated and actively

used headers. The former may be removed by servers at any time

and might prevent a positive detection by our classifiers. Examples

include the Pragma header, which provides caching directives and

has been superseded by the Cache-Control header, and the P3P
header representing privacy practices.
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Headers belonging to the latter category cannot be removed

as easily. Security headers, such as X-Frame-Options, Cross-Origin-
Resource-Policy, and Content-Security-Policy-Report-Only, are used
to defend against various attacks like click-jacking, cross-site script

inclusion attacks, or cross-site request forgery. Of equal impor-

tance are headers related to Cross-Origin-Resource-Sharing, such

as Access-Control-Allow-Credentials that allows the inclusion of,

e.g., credentials for HTTP authentication or cookies in cross-origin

requests. Other vital headers include Last-Modified, Accept-Ranges,
Etag, and Content-Encoding, which are relevant for compression,

caching, or downloads. Excluding any of the aforementioned head-

ers would have consequences leading to decreased security, perfor-

mance, or functionality. Therefore, it would not be in the interest

of web services to exclude these headers.

Siby et al. [46] argued that content features, such as URLs, are

more vulnerable to obfuscation than structural features. This as-

sertion extends to the content of headers as well. However, our

classifiers are not concerned with the content of headers, but rather

with their mere presence. Malicious actors could employ two differ-

ent techniques in this case: (i) the addition of headers and (ii) the

removal of headers – both could be done intentionally or randomly.

The complete removal, however, could potentially disrupt the func-

tionality of trackers or non-trackers. The presented classifiers could

be further enhanced through the integration or the extension of

structural and flow features. In the case of Siby et al., the inclusion

of these features contributed to the robustness of AdGraph.

The authors [46] developed a threat model and considered vari-

ous techniques that trackers might utilize to evade detection. Al-

though it is conceivable that an individual tracker could obfuscate

its identity by employing a particular set of response headers to

mimic non-trackers, if all trackers were to adopt a uniform set of

headers or employ a similar strategy, they would collectively form

a distinct cluster as illustrated in Figure 5, thereby differentiating

themselves from non-trackers.

Furthermore, high coordination between trackers would be nec-

essary to employ said strategies but due to the heterogeneity of

trackers and their owners, this level of coordination is unlikely. Nev-

ertheless, a large impact could be achieved if the owner’s trackers

are highly prevalent such as Alphabet’s.

Lastly, the similarity between trackers and non-trackers with

respect to their feature vectors is already notably, emphasizing

the classifier’s effectiveness in differentiating between these two

groups. This suggests that the classifier is already highly proficient

in identifying and separating trackers from non-trackers.

7.3 Deployment Scenarios
Utilizing the models for automated web tracker detection in real-

life applications is possible in two scenarios. First, HTTP response

information is unavailable in an online (or live) detection scenario

to block communication with web trackers. In this scenario, our

model can enable or support reinforced learning of a complemen-

tary model on whose prediction blocking of HTTP communication

is decided. This process, e.g., may imply manual inspection of HTTP

communication where the predictions of our model are considered

in cases where the primary model is wrong or indecisive. Second,

as filter lists are still fundamental for web privacy protection, the

manual process of generating filter rules can be optimized or out-

right replaced by utilizing our model. In this scenario, existing

datasets or data from volunteers containing HTTP communication

are used to identify web tracking requests. Filter rules for those can

be dynamically generated and appended to conventional filter lists,

which are already used.

7.4 Limitations of Using Filter Lists
As one of the oldest methods for blocking trackers [32], filter lists

have proven to be reliable and effective. However, they have to be

updated constantly, which is commonly done manually. A longitu-

dinal study of nine years by Alrizah et al. [1] showed that human

errors and delayed updates are a root cause for lower performance.

Chen et al. [10] highlighted methods to evade blockers and filter

lists: (i) changing URLs, (ii) embedding code directly into the web-

site with the script-tag, and (iii) combining functional and tracking

code in one file. In summary, using filter lists for our ground truth is

not without problems and may impact the evaluation of our classi-

fiers. Nevertheless, they present a popular ground truth in research

to label datasets for training ML models.

8 Conclusion
In this work, we train Chrome22-based classifiers on a subset of bi-

narized response headers to evaluate their effectiveness and useful-

ness in web tracker detection while retaining the natural imbalance

of trackers.

We observe that response headers represent characteristics of

web trackers which were previously under-explored by past re-

search. They can be used to differentiate well between trackers and

non-trackers and provide additional information on the nature of

tracking-related entities. Our data-driven approach combined with

binarization reveals new and confirms previously identified fea-

tures. Applying the same methodology to request headers results in

a weaker performance, thus strengthening the feasibility of using

response headers for web tracker detection.

Our two best classifiers RF and ET achieve scores ranging from

0.9 to 0.98. In addition, we measure the cross-browser effective-

ness, showing that multiple Chrome22-based classifiers achieve

high AUPRC but moderate MCC values for Firefox22. However, we

also observe large performance losses for Brave22. The longitudinal

performance of the selected classifiers deteriorates only by small

margins, which highlights their potential due to the changing ca-

pabilities of trackers [7, 18, 20]. Still, periodic re-training might be

necessary if the performance decreases significantly.

In future research, we plan to expand on our approach of lever-

aging response headers for web tracker detection by considering

header values in feature engineering and exploring the viability of

deep-learning approaches based on response header data. Addition-

ally, we intend to integrate our approach with existing solutions to

develop a holistic web tracking detection system. Moreover, headers

represent only a part of an HTTP message, and research has shown

that the message bodies are also relevant when it comes to under-

standing and identifying trackers [21, 30]. Emerging technologies

like Large Language Models could be used to analyze bodies in an

efficient and meaningful way.
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A Availability of Code
To strengthen the contribution and proper scientific conduct, we

released all of our code and data online for everyone at:

github.com/wolfrieder/http-response-classifier

The datasets for the year 2022 [39] and 2023 [40] are available

under the respective references.

B Evaluation Metrics
Here, we describe our additional metrics in more detail and their

relevance for our classification problem.

Balanced Accuracy Broderson et al. [6] introduced the Bal-
anced Accuracy (BACC) metric for imbalanced datasets in

2010 as an alternative to average accuracy scores, which are,

according to the authors, problematic for CIs and imbalanced

datasets. The metric comprises recall and true negative rate
(TNR) and is defined as:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

)
(2)

Log-loss Score Also referred to as cross-entropy-loss, the log-
loss score focuses on the predictive performance of a model.

It describes how large the error between a prediction prob-

ability and the true label is, where a value closer to zero

represents a better score. However, this metric can be influ-

enced by an imbalance, i.e., the baseline log loss gets smaller

with an increase in imbalance. Therefore, it is essential to

compare the metric to its baseline value. For instance, the

baseline for our Chrome22 dataset with a 70:30 ratio equals

0.611
9
. The model’s log-loss should be lower than its base-

line. The log-loss score is defined as:

𝐿𝑙𝑜𝑔 (𝑦, 𝑝) = −[𝑦 · 𝑙𝑜𝑔(𝑝) + (1 − 𝑦) · 𝑙𝑜𝑔(1 − 𝑝)] (3)

where 𝑦 is the label class and 𝑝 is the probability.

Matthews-Correlation-Coefficient The Matthews-Correla-
tion-Coefficient (MCC) [31], a metric that has seen increasing

popularity in recent years, is defined as:

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) · (𝑇𝑃 + 𝐹𝑁 ) · (𝑇𝑁 + 𝐹𝑃) · (𝑇𝑁 + 𝐹𝑁 )
(4)

MCC ranges from -1 to +1 and can be understood as a cor-

relation coefficient between the true and predicted labels.

The MCC will only achieve a high value if both class labels

are predicted with high accuracy, positioning the MCC as

a meaningful metric for imbalanced datasets [5]. This was

further substantiated in 2020 by Chicco et al. [11], who out-

lined how accuracy and F1-Score are not reliable measures

for imbalanced datasets.

AUPRC The last metric in our study is the Area Under the
Precision-Recall Curve (AUPRC). The Precision-Recall Curve
is a plot that illustrates the trade-off between precision and

recall for a classifier at various thresholds. The AUPRC is

an aggregated measure of this curve, representing the classi-

fier’s ability to correctly identify positive instances across

different thresholds. In imbalanced settings, where one class

is significantly underrepresented, AUPRC is a more informa-

tive and reliable metric than ROC-AUC, as it focuses on the

performance of the classifier on the minority class, which is

of interest for us [44].

C Classifier Performance without Selected
Alphabet-Services

We performed an additional experiment to further test the robust-

ness of our classifiers and to provide preliminary results for future

research. The Chrome22 classifiers were trained without HTTP re-

sponses containing Google or DoubleClick in their hostname and

tested on the in-distribution dataset. Comparing the ET and RF

with our original classifiers showed a slight decrease for AUPRC

(ET: 0.959, RF: 0.962), MCC (ET: 0.876, RF: 0.872), and F1-Score (ET:

0.902, RF: 0.899). Important features were also similar, but the X-
Frame-Options header was no longer part of the top ten features and
was replaced by the Priority header. Testing the new classifiers on a

dataset containing all of the previously excluded HTTP responses

showed a larger decrease in performance. However, the LR model

now outperformed all other classifiers – AUPRC (ET: 0.954, RF:

0.942, LR: 0.975), MCC (ET: 0.297, RF: 0.201, LR: 0.547), and F1-Score

(ET: 0.652, RF: 0.559, LR: 0.866).

D Cross-Browser and HTTP Request Classifier
Performance

This section presents our classifier performance metric results for

Chrome23, Firefox22, Brave22. In addition, it includes the results of

our HTTP request header trained classifiers, including the top ten

features across each classifier.

9
https://towardsdatascience.com/intuition-behind-log-loss-score-4e0c9979680a
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Model Accuracy Log-Loss ROC-AUC AUPRC BACC F1-Score Precision Recall MCC FP TN FN TP

LR 0.895 0.246 0.849 0.881 0.849 0.787 0.821 0.756 0.718 34148 561918 50425 156322

[0.894;0.895] [0.245;0.247] [0.848;0.851] [0.88;0.882] [0.848;0.851] [0.785;0.789] [0.819;0.822] [0.754;0.759] [0.716;0.72] - - - -

GNB 0.86 2.47 0.825 0.759 0.825 0.735 0.717 0.754 0.64 61574 534492 50925 155822

[0.859;0.861] [2.454;2.488] [0.824;0.826] [0.757;0.76] [0.824;0.826] [0.733;0.736] [0.715;0.719] [0.752;0.756] [0.638;0.642] - - - -

DT 0.928 1.358 0.905 0.854 0.905 0.86 0.861 0.859 0.811 28600 567466 29241 177506

[0.927;0.929] [1.344;1.374] [0.904;0.906] [0.852;0.855] [0.904;0.906] [0.859;0.861] [0.86;0.863] [0.857;0.86] [0.81;0.813] - - - -

RF 0.936 0.326 0.913 0.94 0.913 0.875 0.883 0.866 0.832 23712 572354 27639 179108

[0.935;0.937] [0.32;0.333] [0.912;0.914] [0.94;0.941] [0.912;0.914] [0.874;0.876] [0.882;0.885] [0.865;0.868] [0.83;0.833] - - - -

ET 0.944 0.381 0.92 0.936 0.92 0.888 0.905 0.873 0.851 18998 577068 26330 180417

[0.943;0.944] [0.374;0.387] [0.92;0.921] [0.935;0.937] [0.92;0.921] [0.887;0.889] [0.904;0.906] [0.871;0.874] [0.849;0.852] - - - -

AdaBoost 0.891 0.565 0.848 0.873 0.848 0.782 0.809 0.757 0.711 36991 559075 50140 156607

[0.891;0.892] [0.565;0.565] [0.847;0.849] [0.872;0.875] [0.847;0.849] [0.781;0.784] [0.807;0.811] [0.756;0.76] [0.709;0.713] - - - -

GBM 0.899 0.235 0.864 0.899 0.864 0.802 0.812 0.792 0.735 37790 558276 43056 163691

[0.899;0.9] [0.234;0.236] [0.863;0.865] [0.898;0.9] [0.863;0.865] [0.801;0.803] [0.811;0.814] [0.789;0.794] [0.733;0.736] - - - -

LGBM 0.927 0.177 0.899 0.939 0.899 0.856 0.871 0.841 0.807 25678 570388 32912 173835

[0.926;0.928] [0.177;0.178] [0.898;0.9] [0.938;0.94] [0.898;0.9] [0.855;0.857] [0.87;0.873] [0.839;0.843] [0.806;0.809] - - - -

HistGB 0.927 0.177 0.898 0.939 0.898 0.855 0.872 0.839 0.807 25504 570562 33235 173512

[0.926;0.928] [0.176;0.178] [0.897;0.899] [0.938;0.939] [0.897;0.899] [0.854;0.857] [0.87;0.873] [0.837;0.841] [0.805;0.808] - - - -

XGBoost 0.933 0.165 0.908 0.946 0.908 0.868 0.879 0.857 0.823 24323 571743 29621 177126

[0.932;0.933] [0.164;0.166] [0.907;0.909] [0.946;0.947] [0.907;0.909] [0.866;0.869] [0.878;0.881] [0.854;0.858] [0.821;0.824] - - - -

Table 6: Performance comparison of the Chrome22-trained classifiers that were tested on Chrome23 test data.

Model Accuracy Log-Loss ROC-AUC AUPRC BACC F1-Score Precision Recall MCC FP TN FN TP

LR 0.798 0.479 0.751 0.818 0.751 0.676 0.831 0.57 0.557 35881 490984 132978 176413

[0.797;0.799] [0.477;0.48] [0.75;0.752] [0.816;0.819] [0.75;0.752] [0.675;0.678] [0.829;0.832] [0.568;0.572] [0.555;0.559] - - - -

GNB 0.789 4.382 0.754 0.703 0.754 0.685 0.765 0.62 0.535 59045 467820 117571 191820

[0.788;0.79] [4.359;4.401] [0.753;0.755] [0.701;0.705] [0.753;0.755] [0.683;0.686] [0.763;0.767] [0.618;0.622] [0.533;0.537] - - - -

DT 0.861 3.225 0.826 0.814 0.826 0.786 0.907 0.694 0.699 21890 504975 94749 214642

[0.86;0.861] [3.207;3.248] [0.825;0.827] [0.813;0.816] [0.825;0.827] [0.785;0.788] [0.906;0.908] [0.692;0.695] [0.698;0.701] - - - -

RF 0.854 2.835 0.822 0.892 0.822 0.78 0.884 0.698 0.684 28256 498609 93560 215831

[0.854;0.855] [2.818;2.857] [0.821;0.823] [0.828;0.83] [0.821;0.823] [0.779;0.781] [0.883;0.886] [0.696;0.699] [0.682;0.686] - - - -

ET 0.855 2.954 0.822 0.825 0.822 0.78 0.887 0.696 0.685 27377 499488 94056 21335

[0.854;0.856] [2.936;2.975] [0.821;0.823] [0.823;0.826] [0.821;0.823] [0.779;0.781] [0.886;0.888] [0.694;0.698] [0.683;0.687] - - - -

AdaBoost 0.78 0.676 0.732 0.814 0.732 0.648 0.795 0.546 0.514 43497 483368 140402 168989

[0.779;0.781] [0.676;0.676] [0.731;0.733] [0.813;0.815] [0.731;0.7333] [0.646;0.649] [0.793;0.797] [0.544;0.548] [0.512;0.516] - - - -

GBM 0.815 0.447 0.77 0.833 0.77 0.704 0.859 0.597 0.596 30267 496598 124761 184630

[0.814;0.815] [0.445;0.448] [0.769;0.771] [0.832;0.834] [0.769;0.771] [0.703;0.706] [0.858;0.861] [0.595;0.599] [0.594;0.598] - - - -

LGBM 0.83 0.483 0.788 0.841 0.788 0.731 0.882 0.625 0.632 25973 500892 116153 193238

[0.829;0.831] [0.481;0.485] [0.787;0.789] [0.84;0.842] [0.787;0.789] [0.73;0.733] [0.88;0.883] [0.623;0.627] [0.63;0.633] - - - -

HistGB 0.83 0.478 0.788 0.843 0.788 0.731 0.881 0.625 0.631 26198 500667 115984 193407

[0.829;0.831] [0.476;0.48] [0.787;0.789] [0.842;0.844] [0.787;0.789] [0.73;0.733] [0.879;0.882] [0.624;0.627] [0.629;0.633] - - - -

XGBoost 0.837 0.549 0.799 0.841 0.799 0.747 0.875 0.652 0.645 28926 497939 107618 193407

[0.836;0.838] [0.547;0.552] [0.798;0.8] [0.839;0.841] [0.798;0.8] [0.746;0.749] [0.873;0.876] [0.651;0.654] [0.643;0.647] - - - -

Table 7: Performance comparison of the Chrome22-trained classifiers that were tested on Firefox22 test data.

Model Accuracy Log-Loss ROC-AUC AUPRC BACC F1-Score Precision Recall MCC FP TN FN TP

LR 0.947 0.174 0.728 0.06 0.728 0.091 0.05 0.506 0.147 28500 533194 1467 1502

[0.946;0.948] [0.173;0.175] [0.719;0.738] [0.056;0.065] [0.719;0.738] [0.087;0.095] [0.048;0.052] [0.489;0.525] [0.141;0.153] - - - -

GNB 0.896 1.847 0.825 0.064 0.825 0.071 0.037 0.754 0.152 58048 503646 731 2238

[0.895;0.897] [1.832;1.865] [0.816;0.832] [0.06;0.067] [0.816;0.832] [0.068;0.073] [0.035;0.038] [0.736;0.767] [0.147;0.156] - - - -

DT 0.984 0.159 0.922 0.443 0.992 0.364 0.231 0.859 0.441 8474 553220 419 2550

[0.984;0.985] [0.154;0.164] [0.916;0.927] [0.429;0.457] [0.916;0.927] [0.354;0.372] [0.223;0.237] [0.846;0.869] [0.432;0.447] - - - -

RF 0.985 0.063 0.923 0.728 0.923 0.383 0.247 0.86 0.456 7801 552893 415 2554

[0.985;0.986] [0.061;0.064] [0.917;0.928] [0.713;0.745] [0.917;0.928] [0.373;0.391] [0.238;0.253] [0.848;0.87] [0.447;0.463] - - - -

ET 0.986 0.075 0.922 0.672 0.922 0.399 0.26 0.858 0.468 7264 554430 422 2547

[0.986;0.087] [0.073;0.078] [0.916;0.927] [0.654;0.687] [0.916;0.927] [0.387;0.407] [0.251;0.266] [0.846;0.866] [0.458;0.474] - - - -

AdaBoost 0.94 0.669 0.734 0.042 0.734 0.085 0.046 0.525 0.142 32299 529395 1411 1558

[0.94;0.941] [0.669;0.669] [0.725;0.742] [0.039;0.045] [0.725;0.742] [0.081;0.088] [0.044;0.048] [0.508;0.542] [0.137;0.148] - - - -

GBM 0.963 0.158 0.835 0.439 0.835 0.167 0.095 0.706 0.25 19964 541730 873 2096

[0.963;0.964] [0.157;0.158] [0.829;0.843] [0.418;0.46] [0.829;0.843] [0.162;0.172] [0.092;0.098] [0.693;0.72] [0.244;0.256] - - - -

LGBM 0.979 0.109 0.86 0.537 0.86 0.267 0.163 0.74 0.341 11312 550382 773 2196

[0.978;0.979] [0.109;0.11] [0.851;0.867] [0.518;0.559] [0.851;0.867] [0.257;0.274] [0.155;0.168] [0.724;0.755] [0.33;0.349] - - - -

HistGB 0.979 0.109 0.861 0.549 0.861 0.267 0.163 0.742 0.341 11340 550354 766 2203

[0.978;0.979] [0.108;0.109] [0.854;0.869] [0.531;0.57] [0.854;0.869] [0.256;0.275] [0.156;0.168] [0.727;0.758] [0.331;0.349] - - - -

XGBoost 0.979 0.091 0.871 0.643 0.871 0.276 0.169 0.762 0.352 11148 550546 707 2262

[0.979;0.979] [0.091;0.092] [0.864;0.878] [0.627;0.661] [0.864;0.878] [0.267;0.284] [0.162;0.174] [0.747;0.775] [0.343;0.361] - - - -

Table 8: Performance comparison of the Chrome22-trained classifiers that were tested on Brave22 test data.
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Figure 9: The AdaBoost and GNB classifier improved significantly through calibration using isotonic regression.
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Figure 10: The top ten features are presented in order of importance across different classifiers based on the in-distribution
test set. The heatmap illustrates the normalized importance values for each feature and classifier. We calculated Permutation
feature importance for LR and GNB but not for the others as we do not have any high cardinality features.

Model Accuracy Log-Loss ROC-AUC AUPRC BACC F1-Score Precision Recall MCC FP TN FN TP

LR 0.767 0.537 0.663 0.515 0.663 0.509 0.687 0.404 0.392 9420.0 111084.0 30559.0 20682.0

[0.765;0.769] [0.534;0.539] [0.66;0.665] [0.511;0.52] [0.66;0.665] [0.504;0.513] [0.683;0.693] [0.4;0.408] [0.387;0.397] - - - -

GNB 0.304 3.056 0.502 0.488 0.502 0.46 0.299 0.995 0.025 119366.0 1138.0 236.0 51005.0

[0.302;0.305] [3.037;3.074] [0.502;0.503] [0.484;0.493] [0.502;0.503] [0.458;0.463] [0.298;0.301] [0.995;0.996] [0.021;0.029] - - - -

DT 0.778 0.521 0.667 0.548 0.667 0.514 0.743 0.393 0.42 6965.0 113539.0 31123.0 20118.0

[0.776;0.78] [0.518;0.523] [0.665;0.67] [0.543;0.552] [0.665;0.67] [0.509;0.518] [0.738;0.749] [0.388;0.398] [0.416;0.425] - - - -

RF 0.778 0.52 0.667 0.548 0.667 0.514 0.743 0.393 0.42 6969.0 113535.0 31113.0 20128.0

[0.776;0.78] [0.518;0.523] [0.665;0.67] [0.543;0.552] [0.665;0.67] [0.509;0.519] [0.738;0.749] [0.388;0.398] [0.416;0.425] - - - -

ET 0.778 0.52 0.667 0.548 0.667 0.514 0.743 0.393 0.42 6966.0 113538.0 31123.0 20118.0

[0.776;0.78] [0.518;0.523] [0.665;0.67] [0.543;0.552] [0.665;0.67] [0.509;0.518] [0.738;0.749] [0.388;0.398] [0.416;0.425] - - - -

AdaBoost 0.767 0.686 0.663 0.516 0.663 0.508 0.687 0.404 0.392 9423.0 111081.0 30562.0 20679.0

[0.765;0.769] [0.686;0.686] [0.66;0.665] [0.511;0.52] [0.66;0.665] [0.504;0.513] [0.682;0.692] [0.4;0.408] [0.387;0.397] - - - -

GBM 0.777 0.525 0.666 0.539 0.666 0.512 0.737 0.393 0.417 7183.0 113321.0 31124.0 20117.0

[0.775;0.779] [0.523;0.528] [0.664;0.669] [0.535;0.543] [0.664;0.669] [0.507;0.517] [0.732;0.742] [0.388;0.397] [0.412;0.422] - - - -

LGBM 0.778 0.52 0.667 0.548 0.667 0.514 0.743 0.393 0.42 6968.0 113536.0 31123.0 20118.0

[0.776;0.78] [0.518;0.523] [0.665;0.67] [0.543;0.552] [0.665;0.67] [0.509;0.518] [0.738;0.749] [0.388;0.398] [0.416;0.425] - - - -

HistGB 0.778 0.52 0.667 0.548 0.667 0.514 0.743 0.393 0.42 6971.0 113533.0 31115.0 20126.0

[0.776;0.78] [0.518;0.523] [0.665;0.67] [0.543;0.552] [0.665;0.67] [0.509;0.519] [0.738;0.749] [0.388;0.398] [0.416;0.425] - - - -

XGBoost 0.778 0.52 0.667 0.548 0.667 0.514 0.743 0.393 0.42 6966.0 113538.0 31123.0 20118.0

[0.776;0.78] [0.518;0.523] [0.665;0.67] [0.543;0.552] [0.665;0.67] [0.509;0.518] [0.738;0.749] [0.388;0.398] [0.416;0.425] - - - -

Table 9: Performance comparison of the Chrome22-trained classifiers with HTTP request headers that were tested on in-
distribution test data.
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