Przejdź do zawartości

α-Amylaza

Z Wikipedii, wolnej encyklopedii
(Przekierowano z Amylaza ślinowa)
α-Amylaza
Model cząsteczki ludzkiej α-amylazy ślinowej
Identyfikacja
numer CAS

9000-90-2

numer EC

3.2.1.1

α-Amylaza (4-glukanohydrolaza α-1,4 glukanu[1], EC 3.2.1.1[2][3]) – organiczny związek chemiczny, enzym z grupy amylaz, hydrolizujący losowe wiązania α−1,4−glikozydowe α−glikanów (skrobii, glikogenu i analogicznych cukrów) do oligosacharydów o różnej długości łańcucha. Koniec redukujący produktu hydrolizy jest anomerem α, z czego wynika oznaczenie „α” w nazwie tego enzymu (a nie z konfiguracji hydrolizowanego)[2][3][1][4]. W jamie ustnej α-amylaza obecna w ślinie inicjuje trawienie polisacharydów do oligosacharydów, maltozy i glukozy, po czym proces ten kontynuowany przez amylazę trzustkową, która kończy hydrolizę na poziomie tri- i disacharydów[4][5]. Są one ostatecznie rozkładane do glukozy w jelitach[4]. W organizmie człowieka α-amylaza produkowana jest głównie przez ślinianki oraz trzustkę, a jej najwyższą aktywność stwierdza się w ślinie i soku trzustkowym[6]. Ponadto jest ona obecna m.in. w śluzówce jelita, moczu, mięśniach, nerkach, płucach, płynie mózgowo-rdzeniowym, pocie, nasieniu oraz w komórkach nowotworowych[6][7]. α-Amylazy występują u kręgowców, bezkręgowców, w roślinach i mikroorganizmach[7].

U człowieka α-amylaza jest kodowana przez dwa geny, znajdujące się w chromosomie 1[7]. W jej centrum aktywnym znajdują się trzy reszty aminokwasowe: kwasu glutaminowego (233 miejsce w łańcuchu białkowym) i kwasu asparaginowego (miejsce 197 i 300)[4].

Historia

[edytuj | edytuj kod]

W 1811 r. Gottlieb Kirchhoff(inne języki), a w 1830 r. Augustin-Pierre Dubrunfaut(inne języki) odkryli, że zdolność do rozkładu skrobi mają ekstrakty pszenicy i słodu jęczmiennego, a czynnik odpowiedzialny za ten rozkład nazwano diastazą[7]. W 1925 r. Kuhn zastąpił to określenie α-amylazą[7][8] (od greckiej nazwy skrobii amylon[7]).

Biologia człowieka

[edytuj | edytuj kod]
α-Amylaza z zaznaczonymi resztami aminokwasowymi, które wchodzą w skład miejsca aktywnego. Kolor różowy: kwas glutaminowy (233 miejsce w łańcuchu białkowym); kolor żółty: kwas asparaginowy (197 miejsce); kolor niebieski: kwas asparaginowy (300 miejsce).

U człowieka opisano pięć izoenzymów α-amylazy (trzy izoformy amylazy ślinowej oraz dwie amylazy trzustkowej)[5]. Struktury ludzkich izoenzymów α-amylazy zostały określone metodą krystalografii rentgenowskiej[5].

Amylaza ślinowa

[edytuj | edytuj kod]

α-Amylaza ślinowa (ptalina) występuje w formie pojedynczego łańcucha zbudowanego z 18 reszt aminokwasowych[7]. Ptialina jest syntetyzowana na polirybosomach kоmórek gruczołów ślinowych, a następnie przechowywana w postaci ziaren w cytoplazmie komórki jako proenzym[6].

Optymalne pH dla działania ptialiny wynosi 6,7[7] (zakres działania waha się od 5,6 do 6,9[9]), a temperatura 37 °C[9]. Ptialina wymaga obecności jonów chlorkowych, bromkowych i jodkowych. Enzym jest inaktywowany poniżej pH 3,3 żołądka[9].

Badania opublikowane w pierwszej dekadzie XXI w. wskazały, że oznaczanie poziomu α-amylazy ślinowej może być przydatne jako wskaźnik stresu psychospołecznego[10] i nieinwazyjny biomarker aktywności układu współczulnego[11]. Później odkryto również korelację aktywności α-amylazy ślinowej (oraz liczby kopii genu AMY1 kodującego ten enzym) z ryzykiem występowania próchnicy[12][13].

Amylaza trzustkowa

[edytuj | edytuj kod]

Amylaza trzustkowa jest białkiem globularnym o masie cząsteczkowej 52 kD[7]. α-amylaza trzustkowa syntetyzowana jest w komórkach pęcherzykowych trzustki i przechowywana w cytoplazmie tych komórek w postaci nieczynnego proenzymu[6]. Enzym wydzielany jest do przewodu pokarmowego w postaci czynnej, a jego aktywność jest zależna od obecności jonów wapnia w centrum katalitycznym[7]. Miejscem działania enzymu jest jelito cienkie[7]. Syntezę amylazy trzustkowej pobudza insulina[6].

Inhibitory α-amylaz

[edytuj | edytuj kod]

Inhibitory α-amylaz używane są w profilaktyce i leczeniu m.in. cukrzycy typu 2 i otyłości ze względu na to, że opóźniają i blokują poposiłkowe trawienie i wchłanianie węglowodanów, dzięki czemu kontrolują wzrost poziomu glukozy we krwi[5]. Do inhibitorów α-amylaz należą flawonoidy, polifenole, garbniki roślinne, terpeny i pochodne kwasu cynamonowego[5].

Diagnostyka medyczna

[edytuj | edytuj kod]

Aktywność α-amylazy oznaczana może być w próbkach krwi żylnej pobranych na skrzep, porannej próbce moczu oraz w płynie z jam ciała i w soku trzustkowym[7]. Zakres normy α-amylazy wykazuje dużą zmienność, która jest zależna od wieku pacjenta oraz metody oznaczania, jednak po 60. roku życia jej aktywność stopniowo się zwiększa, będąc następstwem upośledzenia czynności nerek i jej retencji w organizmie[7]. Całkowita aktywność α−amylazy w surowicy jest zależna od aktywności amylaz pochodzących z tkanek, czasu półtrwania enzymu (który według różnych metod oznaczania wynosi od 1,4 do 17,7 godziny), czynności nerek, klirensu wątrobowego i pojemności inhibitorowej[7].

Stężenie α-amylazy rośnie w przypadku ostrego zapalenia trzustki (OZT). Powinno obniżać się po 2-5 dniach, w innym przypadku należy spodziewać się powikłań choroby[14]. W przypadku OZT podwyższone stężenie amylazy w moczu może utrzymywać się do 3 tygodni z powodu przedłużonego oczyszczania nerkowego[14].

Podwyższone stężenie α-amylazy może wystąpić również w przypadku m.in. urazów trzustki, perforacji wrzodu trawiennego, ciąży pozamacicznej, ostrego zapalenia wyrostka robaczkowego, ostrego zapalenia pęcherzyka żółciowego, niewydolności nerek, urazu głowy czy kwasicy ketonowej[15].

Przemysł

[edytuj | edytuj kod]

α-Amylazy wraz z proteazami stanowią ponad 70% światowego rynku biokatalizatorów[4]. Do produkcji α-amylaz wykorzystuje się bakterie (zazwyczaj szczepy Bacillus, Streptomyces i Thermomyces lanuginosus(inne języki)) i grzyby, zwykle z rodzajów Rhizopus, Trichoderma, Penicillium, Fusarium i Aspergillus. Preparaty otrzymywane z grzybów są bardziej stabilne termicznie od bakteryjnych[16].

Enzymy te są szeroko stosowane w przemyśle papierniczym, tekstylnym, farmaceutycznym, piwowarskim, spożywczym i cukrowniczym, a także do upłynniania skrobi[16]. Podstawowe zastosowanie α-amylazy w przemyśle to hydroliza skrobi, dzięki czemu otrzymuje się z niej glukozę i maltozę[4].

Przypisy

[edytuj | edytuj kod]
  1. a b Lucyna Słomińska, Magdalena Garbacik, Porównanie właściwości hydrolitycznych dwóch termostabilnych preparatów enzymatycznych, „Technologia Alimentaria”, 1 (2), 2002, s. 21-30 [dostęp 2024-01-28].
  2. a b EC 3.2.1.1 [online], enzyme.expasy.org [dostęp 2024-01-28] (ang.).
  3. a b EC 3.2.1.1 [online], www.enzyme-database.org [dostęp 2024-01-28] (ang.).
  4. a b c d e f Zbigniew Chałupka, Immobilizowane alfa-amylazy i celulazy w zastosowaniach praktycznych, „Wiadomości Chemiczne”, 70 (5-6), 2016, s. 369-389 [dostęp 2024-01-28].
  5. a b c d e Camila Gabriel Kato i inni, Inhibition of α -Amylases by Condensed and Hydrolysable Tannins: Focus on Kinetics and Hypoglycemic Actions, „Enzyme Research”, 2017, 2017, s. 1–12, DOI10.1155/2017/5724902, PMID28589038, PMCIDPMC5446891 [dostęp 2024-01-28] (ang.).
  6. a b c d e Irena Zakrzewska, Jan Prokopowicz, Alfa-amylaza i jej inhibitory, „Diagnostyka laboratoryjna”, 15 (1), 1979, s. 3-13 [dostęp 2024-01-28].
  7. a b c d e f g h i j k l m n Doroda Ksiądzyna, Leszek Paradowski, Hiperamylazemia – aspekty praktyczne, „Advances in Clinical and Experimental Medicine”, 13 (5), 2004, s. 815-824.
  8. Amylase, Alpha – Manual [online], worthington-biochem.com [dostęp 2024-01-14] (ang.).
  9. a b c Cristina Valls i inni, Characterization of the activity and stability of amylase from saliva and detergent: Laboratory practicals for studying the activity and stability of amylase from saliva and various commercial detergents, „Biochemistry and Molecular Biology Education”, 40 (4), 2012, s. 254–265, DOI10.1002/bmb.20612 [dostęp 2024-01-28] (ang.).
  10. Noto, Yuka; Sato, Tetsumi; Kudo, Mihoko; Kurata, Kiyoshi; Hirota, Kazuyoshi. The Relationship Between Salivary Biomarkers and State-Trait Anxiety Inventory Score Under Mental Arithmetic Stress: A Pilot Study. „Anesthesia & Analgesia”. 101 (6), s. 1873-1876, grudzień 2005. DOI: 10.1213/01.ANE.0000184196.60838.8D. (ang.). 
  11. U.M. Nater, N. Rohleder, Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research, „Psychoneuroendocrinology”, 34 (4), 2009, s. 486–496, DOI10.1016/j.psyneuen.2009.01.014 [dostęp 2024-01-28] (ang.).
  12. Lina Stangvaltaite-Mouhat i inni, Amylase Alpha 1 Gene (AMY1) Copy Number Variation and Dental Caries Experience: A Pilot Study among Adults in Lithuania, „Caries Research”, 55 (3), 2021, s. 174–182, DOI10.1159/000514667 [dostęp 2024-01-28] (ang.).
  13. Rubi Mauricio-Castillo i inni, Dental caries prevalence and severity positively associate with AMY1 gene copy number, „Clinical Oral Investigations”, 28 (1), 2023, DOI10.1007/s00784-023-05435-y [dostęp 2024-01-28] (ang.).
  14. a b Mieczysława Czerwionka-Szaflarska, Jerzy Brazowski, Ostre zapalenie trzustki – problem również pediatryczny, „Przegląd Gastroenterologiczny”, 3 (2), 2008, s. 112–117 [dostęp 2024-01-28].
  15. S. Paterson-Brown, Ostry brzuch i niedrożność przewodu pokarmowego, [w:] O.J. Garden i inni, Chirurgia. Podręcznik dla studentów, Edra Urban & Partner, 2009, s. 217, ISBN 978-83-7609-128-0 [dostęp 2024-01-28].
  16. a b Hamid Mukhtar, Ikram-ul-Haq, Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor, „Brazilian Journal of Microbiology”, 43 (3), 2012, s. 1072–1079, DOI10.1590/S1517-838220120003000033, PMID24031930, PMCIDPMC3768893 [dostęp 2024-01-28].
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy