Skip to main content
. Author manuscript; available in PMC: 2019 Apr 4.
Published in final edited form as: Neuron. 2018 Apr 4;98(1):31–48. doi: 10.1016/j.neuron.2018.02.022

Table 1.

Gene Location Evidence For References Evidence Against References
TRPV1 Peripheral Peripheral TRPV1 agonists induce hypothermia and activate preoptic warm-sensitive neurons (Hori, 1984; Nakayama et al., 1978; Tan et al., 2016) Some effects of peripheral TRPV1 agonists may be centrally mediated (Hori, 1984; Romanovsky et al., 2009)
Peripheral TRPV1 antagonists induce hyperthermia (Gavva, 2008; Gavva et al., 2007) TRPV1 antagonist induced hyperthermia is independent of temperature (Romanovsky et al., 2009; Steiner et al., 2007)
TRPV1 can be activated by warm temperatures following sensitization by endogeneous co-agonists (Cao et al., 2013; Tominaga et al., 1998; Vellani et al., 2001) Temperature threshold of purified TRPV1 (~42 C) is above the range of innocuous warmth (Cao et al., 2013; Caterina et al., 1997)
TRPV1 antagonists block the activation of sensory neurons by innocuous warmth in vivo (Yarmolinsky et al., 2016) TRPV1 knockout or ablation of TRPV1 + neurons has little or no effect on body temperature or thermoregulation (Caterina et al., 2000; Garami et al., 2011; Iida et al., 2005; Pogorzala et al., 2013)
TRPV1 Central Central capsaicin can induce hypothermia (Hori, 1984) TRPV1 expression is extremely sparse in the brain and absent from preoptic area (Cavanaugh et al., 2011)
The requirement for TRPV1 in the response to brain warming or central capsaicin has not been reported
TRPM2 Central or peripheral TRPM2 KO diminishes the activation of neurons by warming in hypothalamic slices or DRG cultures (Song et al., 2016; Tan and McNaughton, 2016) TRPM2 is broadly expressed in the brain and periphery and does not specifically label thermoregulatory cells (Song et al., 2016; Tan and McNaughton, 2016)
TRPM2 KO mice have a mildly elevated fever in response to PGE2 and show reduced preference for warm temperatures (Song et al., 2016; Tan and McNaughton, 2016) TRPM2 KO mice have normal core body temperature, and the response to brain warming and other thermoregulatory challenges has not been reported
TRPV3 Peripheral Heterologous TRPV3 is activated by innocuous warmth (threshold ~32 C), (Peier et al., 2002; Smith et al., 2002; Xu et al., 2002) The thermosensory deficits in TRPV3 KO mice are strain and sex-dependent (Huang et al., 2011; Miyamoto et al., 2011)
TRPV3 KO mice have impaired thermosensation (Moqrich et al., 2005) TRPV3/TRPV4 double KO mice have normal thermosensation (Huang et al., 2011)
TRPV4 Peripheral Heterologous TRPV4 is activated by innocuous warmth (threshold ~34 C) (Guler et al., 2002) TRPV4 KO mice and TRPV3/TRPV4 double KO mice have normal thermoregulation (Huang et al., 2011; Liedtke and Friedman, 2003)
TRPV4 KO mice have impaired thermosensation and a peripheral TRPV4 antagonist increases body temperature (Lee et al., 2005; Vizin et al., 2015)

References

Cao, E., Cordero-Morales, J.F., Liu, B., Qin, F., and Julius, D. (2013). TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77, 667-679.

Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., and Julius, D. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306-313.

Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824.

Cavanaugh, D.J., Chesler, A.T., Jackson, A.C., Sigal, Y.M., Yamanaka, H., Grant, R., O’Donnell, D., Nicoll, R.A., Shah, N.M., Julius, D., and Basbaum, A.I. (2011). Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31, 5067-5077.

Garami, A., Pakai, E., Oliveira, D.L., Steiner, A.A., Wanner, S.P., Almeida, M.C., Lesnikov, V.A., Gavva, N.R., and Romanovsky, A.A. (2011). Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. J Neurosci 31, 1721-1733.

Gavva, N.R. (2008). Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci 29, 550-557.

Gavva, N.R., Bannon, A.W., Surapaneni, S., Hovland, D.N., Jr., Lehto, S.G., Gore, A., Juan, T., Deng, H., Han, B., Klionsky, L., et al. (2007). The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 27, 3366-3374.

Guler, A.D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., and Caterina, M. (2002). Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22, 6408-6414.

Hori, T. (1984). Capsaicin and central control of thermoregulation. Pharmacol Ther 26, 389-416.

Huang, S.M., Li, X., Yu, Y., Wang, J., and Caterina, M.J. (2011). TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 7, 37.

Iida, T., Shimizu, I., Nealen, M.L., Campbell, A., and Caterina, M. (2005). Attenuated fever response in mice lacking TRPV1. Neurosci Lett 378, 28-33.

Lee, H., Iida, T., Mizuno, A., Suzuki, M., and Caterina, M.J. (2005). Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 25, 1304-1310.

Liedtke, W., and Friedman, J.M. (2003). Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A 100, 13698-13703.

Miyamoto, T., Petrus, M.J., Dubin, A.E., and Patapoutian, A. (2011). TRPV3 regulates nitric oxide synthase-independent nitric oxide synthesis in the skin. Nat Commun 2, 369.

Moqrich, A., Hwang, S.W., Earley, T.J., Petrus, M.J., Murray, A.N., Spencer, K.S., Andahazy, M., Story, G.M., and Patapoutian, A. (2005). Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468-1472.

Nakayama, T., Suzuki, M., Ishikawa, Y., and Nishio, A. (1978). Effects of capsaicin on hypothalamic thermo-sensitive neurons in the rat. Neurosci Lett 7, 151-155.

Peier, A.M., Reeve, A.J., Andersson, D.A., Moqrich, A., Earley, T.J., Hergarden, A.C., Story, G.M., Colley, S., Hogenesch, J.B., McIntyre, P., et al. (2002). A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046-2049.

Pogorzala, L.A., Mishra, S.K., and Hoon, M.A. (2013). The cellular code for mammalian thermosensation. J Neurosci 33, 5533-5541.

Romanovsky, A.A., Almeida, M.C., Garami, A., Steiner, A.A., Norman, M.H., Morrison, S.F., Nakamura, K., Burmeister, J.J., and Nucci, T.B. (2009). The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 61, 228-261.

Smith, G.D., Gunthorpe, M.J., Kelsell, R.E., Hayes, P.D., Reilly, P., Facer, P., Wright, J.E., Jerman, J.C., Walhin, J.P., Ooi, L., et al. (2002). TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186-190.

Song, K., Wang, H., Kamm, G.B., Pohle, J., Reis, F.C., Heppenstall, P., Wende, H., and Siemens, J. (2016). The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353, 1393-1398.

Steiner, A.A., Turek, V.F., Almeida, M.C., Burmeister, J.J., Oliveira, D.L., Roberts, J.L., Bannon, A.W., Norman, M.H., Louis, J.C., Treanor, J.J., et al. (2007). Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci 27, 7459-7468.

Tan, C.H., and McNaughton, P.A. (2016). The TRPM2 ion channel is required for sensitivity to warmth. Nature 536, 460-463.

Tan, C.L., Cooke, E.K., Leib, D.E., Lin, Y.C., Daly, G.E., Zimmerman, C.A., and Knight, Z.A. (2016). Warm-Sensitive Neurons that Control Body Temperature. Cell 167, 47-59 e15.

Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D. (1998). The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531-543.

Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J.B., and McNaughton, P.A. (2001). Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol 534, 813-825.

Vizin, R.C., Scarpellini Cda, S., Ishikawa, D.T., Correa, G.M., de Souza, C.O., Gargaglioni, L.H., Carrettiero, D.C., Bicego, K.C., and Almeida, M.C. (2015). TRPV4 activates autonomic and behavioural warmth-defence responses in Wistar rats. Acta Physiol (Oxf) 214, 275-289.

Xu, H., Ramsey, I.S., Kotecha, S.A., Moran, M.M., Chong, J.A., Lawson, D., Ge, P., Lilly, J., Silos-Santiago, I., Xie, Y., et al. (2002). TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181-186.

Yarmolinsky, D.A., Peng, Y., Pogorzala, L.A., Rutlin, M., Hoon, M.A., and Zuker, C.S. (2016). Coding and Plasticity in the Mammalian Thermosensory System. Neuron 92, 1079-1092.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy