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Abstract

Several works have recently focused on non-
parametric active learning, especially in the
binary classification setting under Hölder
smoothness assumptions on the regression
function. These works have highlighted the
benefit of active learning by providing better
rates of convergence compared to the pas-
sive counterpart. In this paper, we extend
these results to multiclass classification un-
der a more general smoothness assumption,
which takes into account a broader class of
underlying distributions. We present a new
algorithm called MKAL for multiclass k-nearest
neighbors active learning, and prove its theo-
retical benefits. Additionally, we empirically
study MKAL on several datasets and discuss
its merits and potential improvements.

1 Introduction

Active learning is a paradigm of machine learning in
which the learner does not have access to a fully la-
beled dataset. Starting with unlabeled data, the la-
bels are obtained interactively and at some cost from
a so-called oracle, and then used to progressively con-
struct a classifier. Active learning algorithms aim
at simultaneously reducing the labeling cost, and at
achieving better performances than standard passive
learning (Dasgupta, 2011; Settles, 2010). Their per-
formance is typically measured in terms of the num-
ber of labels required to achieve a given classification
error. The theory of active learning is now fairly well
developed, both in parametric (Hanneke, 2011; Balcan
et al., 2010, 2007, 2009; Hanneke and Yang, 2015) and
in nonparametric settings (Castro and Nowak, 2008;
Minsker, 2012; Locatelli et al., 2017, 2018; Hanneke,
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2018), and provides a framework to study conditions
under which active learning is favorable.

In this paper, we are particularly interested in the non-
parametric setting, for which seminal work has been
achieved by Castro and Nowak (Castro and Nowak,
2008) in the binary classification setting. Their work
relies on assumptions on the smoothness of boundary
decision between classes, and on the noise distribution
to provide an active learning algorithm that provably
achieves a better rate of convergence than in passive
learning. Subsequent works, for example (Minsker,
2012; Locatelli et al., 2018; Hanneke, 2018) rely on
a slightly modified version of the assumptions used
in (Castro and Nowak, 2008) to provide algorithms
with a (minimax) rate of convergence on the order
n−β(α+1)/(2α+d−αβ), where α and β are smoothness
and noise parameters, d is the dimension of the data
space, and n the number of label requests. These pa-
rameters will be discussed in details in Section 3 but we
can already notice that the active learning rate com-
pares favorably to the passive learning one, which is of
the order of n−β(α+1)/(2α+d).

Unfortunately, most of these algorithms suffer a major
limitation: the smoothness assumption (e.g., Hölder,
see Audibert and Tsybakov (2007)) requires the use
of a strong density assumption. This implies the ex-
istence of the density function of the marginal prob-
ability of the unlabeled data, and it also requires the
support of this marginal probability to be bounded.
Additionally, these preceding studies only considered
the binary classification setting. In this paper, we con-
sider a more universal smoothness assumption which
takes into account a broader class of probabilities while
avoiding the use of the strong density assumption. We
propose a new active learning algorithm based on k-
nearest neighbors in a multi-class setting and prove
theoretically that it performs better than its passive
counterpart. The paper is organized as follows: Sec-
tion 2 presents related work on active learning, nearest
neighbors and multiclass classification. In Section 3 we
introduce the main notations and assumptions used in
this work. Section 4 contains an overall description of
our algorithm, while Section 5 presents its theoretical
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properties. Section 6 provides an experimental study
on several datasets and a discussion of its results, and
we conclude with Section 7. Some of the proofs being
quite long, they are relegated to the Supplementary
Material, which contains additional experimental re-
sults as well.

2 Related works

Active learning. Previous works (Dasgupta et al.,
2007; Balcan et al., 2009; Hanneke, 2011; Balcan et al.,
2010; Hanneke and Yang, 2015; Beygelzimer et al.,
2009; Castro and Nowak, 2008; Minsker, 2012; Lo-
catelli et al., 2017) in active learning have shown
that we can obtain a good performance by using a
much smaller number of labeled sample than in pas-
sive learning.

As stated in Section 1, our work is most related to that
of Minsker (2012), Locatelli et al. (2017) in a nonpara-
metric setting, which extended the seminal work from
Castro and Nowak (2008) by assuming that the regres-
sion function belongs to the Hölder class of functions.
In this case, under some additional assumptions (re-
lated to Tsybakov’s noise and the strong density as-
sumption, see Section 3.2) and some range of values
of distributional parameters, they provided algorithms
with faster rates of convergence than those obtained
in passive learning by Audibert and Tsybakov (2007).
Furthermore, these algorithms are adaptive to their
distributional parameters unlike that of Castro and
Nowak (2008). Although these active learning algo-
rithms are very interesting regarding their advantage
with respect to their passive counterpart, the use of the
Hölder smoothness is a limiting factor. Indeed, it re-
quires the use of a strong density assumption and thus
the existence of the density function of the marginal
probability PX on the unlabeled data as well as the
boundedness of the support of PX . These limitations
motivated the development of our algorithm with a
more general smoothness assumption, valid for both
discrete and continuous distributions, and which does
not require the support of PX to be bounded.

Nearest neighbors. Nearest neighbors (NN) classi-
fication has been widely characterized in passive learn-
ing (see for example Cover and Hart (1967); Kulkarni
and Posner (1995); Devroye et al. (1994); Biau and
Devroye (2015)). In particular, its theoretical per-
formance has been considered for Hölder regression
function. Moreover, using also Tsybakov’s noise and
strong density assumptions, Chaudhuri and Dasgupta
(2014) showed that the convergence rate behaves as
nα(β+1)/(2α+d), the same as that obtained earlier in
Audibert and Tsybakov (2007) (where α, β, d repre-
sent the smoothness parameter, the noise parameter

and the dimension of the data space, respectively, see
Section 3.2). The nearest neighbors method has also
been used recently in active learning. For instance,
Kontorovich et al. (2016) considered an active learn-
ing method which derives a subsample of the data on
which the 1-NN method is applied. They showed that
this approach is statistically consistent. However, their
assumptions differ from ours in terms of smoothness
and noise. Similarly, the algorithm proposed in (Han-
neke, 2018) outputs a 1-NN classifier based on a sub-
sample of the data, such that the label of each instance
of this subsample is determined with high probabil-
ity by the labels of its neighbors within a large pool
of data. The number of neighbors is adaptively cho-
sen for each instance in the subsample, leading to the
minimax rate n−α(β+1)/(2α+d−αβ) under the same as-
sumptions as in (Locatelli et al., 2017). In this work,
we follow the same procedure as Hanneke (2018) under
a more general smoothness assumption, which will be
defined in Section 3.1.

Multiclass-classification Most of the previous
results in active learning in the same line of research
as ours (such as Minsker (2012); Locatelli et al.
(2017); Hanneke (2018)) are limited to binary classifi-
cation. Our work extends those results to multiclass
classification, assuming that the label set contains
more than two classes. In passive learning, Reeve and
Brown (2017) derived procedures for cost-sensitive
multiclass classification, where different misclassifica-
tion errors incur different costs. They considered the
same noise and smoothness assumptions as ours, and
assumed that the data belong to a manifold which is
characterized by an intrinsic dimension D which could
be much smaller than the dimension of the ambient
space, leading to a rate of convergence which behaves
as n−α(β+1)/(2α+D). Some recent works have also
considered multiclass classificatication with nearest
neighbors method under similar assumptions as ours
(e.g., Puchkin and Spokoiny (2020); Györfi and
Weiss (2021)). For instance, Puchkin and Spokoiny
(2020) used a nearest neighbors method to provide
an aggregated estimate. Their procedure is adaptive
both to the noise and smoothness parameters and
leads to a non-asymptotic analysis which generalizes
that of Chaudhuri and Dasgupta (2014).

3 Notations and assumptions

3.1 General notations

Let (X , ρ) be a metric space, where X ⊂ Rd is called
the instance space. Let the number of classes M ≥ 2
and the label space Y = {1, . . . ,M}. Let Ω(Y) be
defined as the (M−1)-simplex consisting of probability
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vectors over Y. Let P be a probability defined on
X×Y. We assume that the probability P is determined
by the marginal probability PX defined on X and by
the regression function η defined by:

η : X → Ω(Y)
x 7→ η(x) = (η1(x), . . . , ηM (x)),

(1)

where ηi(x) = P (Y = i|X = x). Let f : X −→ Y
a classifier whose risk is R(f) = P (f(X) ̸= Y ). It is
easy to show that the function defined by

f∗(x) = argmax
i∈{1,...,M}

ηi(x) (2)

achieves the minimum risk. In practice P is unknown
and the function f∗ is unreachable. In standard statis-
tical learning, the algorithm has access to an i.i.d sam-
ple (X1, Y1), . . . , (Xw, Yw) based on which it constructs

a classifier f̂w with minimum excess riskR(f̂w)−R(f∗)
with high probability, where the latter can be rewrit-
ten as :

R(f̂w)−R(f∗) = EX(ηf∗(X)(X)− ηf̂w(X)(X)). (3)

For multiclass classification purposes, let us introduce
ζ(v) such that, given a vector v ∈ [0, 1]M ,

ζ(v) = viv −max
j ̸=iv

vj , where iv = argmax
j∈{1,...,M}

vj . (4)

For x ∈ X , and r > 0, let B(x, r) = {z, ρ(x, z) ≤ r}
and supp(PX) = {x ∈ X , PX(B(x, r)) > 0, ∀ r > 0}.

3.2 Assumptions

We will make the following three assumptions on P .

Assumption 1: (Tsybakov’s noise assumption)
The probability distribution P satisfies the margin
noise assumption with parameter β ≥ 0 if for all 0 <
ϵ ≤ 1, there is C = C(β) ∈ [1,+∞[ such that

PX(x ∈ X , ζ(η(x)) ≤ ϵ) < Cϵβ . (H1)

This assumption generalizes the standard noise condi-
tion of Audibert and Tsybakov (2007) to the multiclass
setting.

Assumption 2: ((α,L)-smoothness assumption)
Let 0 < α ≤ 1 and L > 1. The regression function is
(α,L)-smooth if for all x, z ∈ supp(PX) we have:

∥ η(x)− η(z) ∥∞≤ L.PX(B(x, ρ(x, z)))α/d, (H2)

where d is the dimension of the instance space. This
assumption was introduced in Chaudhuri and Das-
gupta (2014) and is particularly well suited for k-
NN classification. Indeed, it allows to nicely control

the misclassification in the low-density regions. Previ-
ous works on nonparametric active learning (such as
Locatelli et al. (2017); Minsker (2012)) that assume
Hölder smoothness instead of (α,L)-smoothness also
need a strong density assumption. As stated in Theo-
rem 3.1, the (α,L)-smoothness allows to generalize the
Hölder smoothness, thereby avoiding a strong density
assumption.

Theorem 3.1 ((α,L)-smoothness assumption gener-
alizes (αH , LH)-Hölder and strong density assump-
tions, Chaudhuri and Dasgupta (2014)).
Suppose that the regression function η is (αH , LH)-
Hölder continuous:

∥ η(x)− η(z) ∥∞≤ LHρ(x, z)αH ,

and that PX satisfies the strong density assumption
i.e., PX has a density pX and there exist r0 > 0, c0 > 0
and p0 > 0 such that:

Vol(B(x, r) ∩ supp(PX)) ≥ c0Vol(B(x, r)),

for all r ≤ r0 and pX(x) > p0, x ∈ supp(PX).
Then there is a constant L > 1 such that for any x, z ∈
supp(PX), we have:

∥ η(x)− η(z) ∥∞≤ L.PX(B(x, ρ(x, z)))αH/d.

Assumption 3: (Doubling probability)
The marginal distribution PX is a doubling-
probability if there exists a constant Cdb > 0 such
that for any x ∈ X , and r > 0, we have:

PX(B(x, r)) ≤ CdbPX(B(x, r/2)). (H3)

This notion was first used in the context of metric
space dimension by Edgar (2000) and was recently
adapted to the area of machine learning where it helps
to formally define the notion of intrinsic dimension
(e.g., Kpotufe (2011)), that is the actual dimension of
the region in which the data is located. This assump-
tion allows to considerably reduce the complexity of
the classification problem and to bypass the so-called
curse of dimension. Contrary to the strong density as-
sumption, Assumption 3 does not require the existence
of the density of PX , and is thus more universal. In
this work, we will use Assumption 3 for geometrical
reasons, and also in a weaker form, so that it is suffi-
cient to deal with balls B(x, r) such that PX(B(x, r))
is sufficiently large. Some procedures to construct a
doubling probability are described in Kpotufe (2011).

3.3 Active learning procedure

Let us consider K = {(X1, Y1), . . . , (Xw, Yw)} a pool
of labeled data, with w > 1 an integer. In active
learning, the labels are hidden, and only the unlabeled
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part KX = {X1, . . . , Xw} is accessible. The labels of
some carefully selected points (Xi1 , . . . , Xij . . .) are it-
eratively requested until some stopping condition re-
lated to the number n of label requests allowed, called
the budget. Based on the resulting labeled set, a rea-
sonably good estimator of the Bayes classifier (2) is
provided.

In our procedure described in Section 4, instead of re-
questing the label of some points Xij , the labels of
their k nearest neighbors in KX are requested, where
k is chosen adaptively by our algorithm. Therefore,
the labels of points Xij are provided by using the
k−nearest neighbors procedure. The definition of k-
nearest neighbors procedure in multiclass classification
is recalled below for convenience.

Definition 3.1 (k-nearest neighbors procedure).
Let w > 0 and k < w two integers.
Let K = {(X1, Y1), . . . , (Xw, Yw)} an i.i.d. labeled
sample. Let Ik(x) the indices of the k nearest neigh-
bors of x in the sample K. The k-NN procedure can be
defined through the estimator:

η̂k : X → Ω(Y)
x 7→ η̂k(x) = (η̂k,1(x), . . . , η̂k,M (x)),

where η̂k,i(x) =
1
k

∑
j∈Ik(x) 1Yj=i. Then the label of x

obtained by the k-NN procedure is argmaxi≤M η̂k,i(x).

3.4 Specific notations

Before describing in details our algorithm, let us intro-
duce some specific variables and notations that will be
used throughout the remainder of the work.
For ϵ, δ ∈ (0, 1), k ≥ 1, c ≥ 7.106 and C from (H1):

bδ,k =

√
2

k

(
log

(
1

δ

)
+ log log

(
1

δ

)
+ log log(e.k)

)
,

k(ϵ, δ) =
c

∆2

[
log(

1

δ
) + log log(

1

δ
) + log log

(
512
√
e

∆

)]
,

∆ = max(
ϵ

2
,
( ϵ
C

) 1
β+1

), (5)

ϕn =

√
1

n

(
log

(
1

δ

)
+ log log

(
1

δ

))
. (6)

For Xs ∈ KX = {X1, . . . , Xw}, we denote henceforth

by X
(k)
s its k-th nearest neighbor in KX , and Y

(k)
s the

corresponding label. For an integer k ≥ 1, let

η̄k(Xs) = (η̄k,1(Xs), . . . , η̄k,M (Xs)),

where for i ∈ Y, η̄k,i(Xs) =
1
k

∑k
j=1 ηi(X

(j)
s ).

4 The MKAL algorithm

Given a pool KX of unlabeled data (with |KX | = w),
the label budget n, a precision parameter ϵ, a confi-
dence parameter δ ∈ (0, 12 ), and parameters related to
the assumptions which were introduced in Section 3.1,
our algorithm aims at providing a classifier f̂n,w based
on a set of points Sac chosen from KX to be most in-
formative. The first element of the set is Xt1 = X1

arbitrarily chosen in K. A point Xi is then considered
informative if its label cannot be inferred from the pre-
vious observations Xi′ (with i

′ < i). Furthermore, the
set Sac is provided in such a way that, with high con-
fidence, the classifier f̂n,w has a zero pointwise excess
error ηf∗(x)(x) − ηf̂n,w(x)(x) at points x which satisfy

ζ(η(x)) > ∆0 for some ∆0 > 0 suitably chosen. The
label of an informative point is then inferred by the
k-nearest neighbors procedure defined above, where k
is chosen adaptively by our algorithm for each point.
This is reasonable for practical situations where the
uncertainty about the label of Xt has to be overcome,
and it is related to the assumption (H2). A similar
procedure was already used in Hanneke (2018) and
Kontorovich et al. (2016).

Our algorithm MKAL (Multiclass k-NN Active Learn-
ing, Algorithm 1) works iteratively until the budget n
is consumed or if Xw is reached. It mainly uses two
subroutines: Reliable to determine the informative-
ness of a point and ConfidentLabel to infer its label.
These subroutines are detailed in Sections 4.1 and 4.2,
respectively.

4.1 Reliable subroutine

Given the current point X ∈ KX , the Reliable sub-
routine aims at determining if X is informative. Intu-
itively, Reliable attempts to find out if the label of
X can be inferred using the previously labeled points.
More formally, let X ′ a point that was examined be-
fore X, whose label has been inferred as Ŷ ′. In this
case, if ζ(η(X ′)) is sufficiently large, we can easily see
that labeling X ′ by Ŷ ′ gives a lower bound guarantee
ℓ > 0 such that ζ(η(X ′)) ≥ O(ℓ). If

min(PX(B(X, ρ(X ′, X)), PX(B(X ′, ρ(X ′, X))) ≤ O(ℓd/α).
(7)

then, by using assumption (H2), we can obtain a lower
bound guarantee on ζ(η(X)) of the order of O(ℓ), as
for ζ(η(X ′)). In this case, we can easily infer the label
of X by that of X ′.
Given a current point X, the Reliable subroutine
thus determines with high probability if there exists
a previous informative point X ′, which satisfies equa-
tion (7).
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Algorithm 1: Multiclass k-NN Active Learning
(MKAL)

Input: a pool KX = {X1, . . . , Xw}, label budget
n, smoothness parameters (α, L), margin
noise parameters (β, C), doubling
constant parameter Cdb, confidence
parameter δ, accuracy parameter ϵ.

Output: 1-NN classifier f̂n,w
1 s = 1 ▷ index of point currently examined

2 Ŝ(1), Ŝ(2) = ∅ ▷ current active sets
3 t = n ▷ current label budget
4 I = ∅ ▷ Set of informative points indices (used for

theoretical proofs)
5 while t > 0 and s < w do
6 Let δs =

δ
32Ms2

7 if k(ϵ, δs) ≤ t then
8 T=Reliable(Xs, δs, α, L, Cdb, Ŝ(1))
9 if T=False then

10 [Ŷs, Qs]=confidentLabel(Xs, k(ϵ, δs),
δs)

11 ℓ̂s = ζ(η̂(Xs))− 2bδs,|Qs|
12 t = t− |Qs|
13 I = I ∪ {s}
14 if ℓ̂s ≥ 0.1bδs,|Qs| then

15 Ŝ(1) = Ŝ(1) ∪ {(Xs, Ŷs, ℓ̂s)}
16 else

17 Ŝ(2) = Ŝ(2) ∪ {(Xs, Ŷs, ℓ̂s)}

18 s=s+1

19 S(1)ac = {(Xs, Ŷs), (Xs, Ŷs, ℓ̂s) ∈ Ŝ(1)}
20 S(2)ac = {(Xs, Ŷs), (Xs, Ŷs, ℓ̂s) ∈ Ŝ(2)}
21 f̂n,w ← 1-NN (S(1)ac ∪ S(2)ac )

Input and output variables. The Reliable sub-
routine takes as input the current point X, a con-
fidence parameter δ, the parameters related respec-
tively to the assumptions (H2) and (H3), a set Ŝ,
which contains some points considered as informa-
tive before reaching X. Each element of Ŝ is a
triplet, (X, Ŷ , ℓ), where Ŷ is the inferred label of
X and ℓ is a lower bound guarantee on ζ(η(X)). If

Reliable(X, δ, α, L,Cdb, Ŝ) outputs True, the point
X is not considered to be informative. By con-
vention, Reliable(X, δ, α, L,Cdb, ∅) always returns
False. Note that the input Ŝ corresponds to a subset
of the current active set Sac. More precisely, it corre-

sponds to the set of points S(1)ac defined in MKAL which
contains the labeled points where we have obtained a
higher guarantee on their inferred labels.

It is important to note that, outside the subroutine

Reliable, The set S(1)ac is used with another one: S(2)ac ,
together with which the represent the active set Sac.
This is for reasons related to the proofs, as details
in the supplementary Materials but, in practical sit-

uations, it is enough to only consider Sac as S(1)ac in
MKAL.

Auxiliary subroutines. Because PX appearing in
(7) is unknown, it is impossible to use this expression
directly in the Reliable subroutine. It can neverthe-
less be estimated with arbitrary precision and confi-
dence using only unlabeled data from K. For that
purpose, we combine the Reliable subroutine with
two auxiliary subroutines named Estprob and BerEst,
inspired from Kontorovich et al. (2016).

The Reliable subroutine uses EstProb(x, r, ϵo, 50, δ)
which in turn uses the subroutine BerEst(ϵo, δ, 50, p).
The subroutine BerEst consists in adaptively esti-
mating with high probability the expectation of a
Bernoulli variable Z ∼ p. The variables at the be-
ginning of BerEst subroutine (p1, . . . , p4) are sam-
pled at the beginning for theoretical analysis where
we want a concentration inequality to hold for a num-
ber of samples greater than 4 (see Kontorovich et al.
(2016); Maurer and Pontil (2009) for more details).
Besides, the EstProb(x, r, ϵo, 50, δ) subroutine uses a
particular version of the BerEst subroutine where the
Bernoulli variable corresponds to pi = 1Xi∈B(x,r), with
Xi ∈ KX . It begins by setting the Bernoulli variable
p = 1X∈B(x,r), with X ∈ K, and then outputs an
estimation of the probability-ball PX(B(x, r)) which
corresponds to the output of BerEst(ϵo, δ, 50, p).
For the estimation of PX(B(x, r)), instead of using the
unlabeled points from KX , we can also use a (large)
separate set of unlabeled points independent of KX .

4.2 ConfidentLabel subroutine

The ConfidentLabel subroutine aims at inferring the
label of an informative point X with some confidence.
It is the main source of the advantage over passive
learning, indeed, it adaptively finds the appropriate
number of label requests for each informative point
X, taking into account that :

• points with large margin ζ(η(X)) require fewer la-
bel requests, as controlled by the cut-off condition
in line 9.

• points with a small margin ζ(η(X)) are too noisy
and we should not waste too many label requests
on those. The maximum number of label requests
is controlled by the parameter k′ defined below.
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Algorithm 2: Reliable subroutine

Input: an instance X, the confidence parameter
δ, the smoothness parameters L, α, the
doubling constant Cdb, a set
Ŝ ⊂ X × Y × R+

Output: T
1 for (X ′, Y ′, ℓ) ∈ Ŝ do
2 p̂X′ =

EstProb

(
X ′, ρ(X,X ′),

(
ℓ

64LC3
db

)d/α
, 50, δ

)
3 p̂X =

EstProb

(
X, ρ(X,X ′),

(
ℓ

64LC3
db

)d/α
, 50, δ

)
4 if ∃ (X ′, Y, ℓ) ∈ Ŝ with ( p̂X′ ≤ 75

94

(
ℓ

64LC3
db

)d/α
OR p̂X ≤ 75

94

(
ℓ

64LC3
db

)d/α
) then

5 T = True

6 else
7 T = False

Algorithm 3: EstProb subroutine

Input: an instance x ∈ X , a positive number
r > 0, an accuracy parameter ϵo, an
integer parameter u, a confidence
parameter δ

Output: p̂X ▷ An estimate of PX(B(x, r))
1 Set p ∼ 1X∈B(x,r) a Bernoulli variable, with

X ∼ KX
2 p̂x = BerEst(ϵo, δ, u, p) ▷ BerEst subroutine

Input and output variables. The input variables
of the confidentLabel subroutine are the current
point X, an integer k′, and a confidence parameter
δ. The parameter k′ represents the maximum number
of label requests we are allowed to do (if the budget
t is large enough), and it is independent of X. Fur-
thermore, it is computed such that all the k′-NN are
at most at some distance from X. In that case the
majority in expectation of the empirical majority of
the k′-NN labels differs from η(X) by less than some
margin.

5 Theoretical properties of MKAL

Our main theoretical result is Theorem 5.1 below
which provides guarantees about the statistical per-
formance of MKAL and requires some additional no-
tations. Let Aa,w be the set of active learning al-
gorithms on KX , and P(α, β) the set of probabili-
ties such that each element satisfies assumptions (H2)
and (H1), and its marginal probability is a doubling-

Algorithm 4: BerEst subroutine (Bernoulli Esti-
mation)

Input: accuracy parameter ϵo, confidence
parameter δ′,
budget parameter u. ▷ u does not depend

on the label budget n
Z ∼ p a Bernoulli variable from which we can
sample.
Output: p̂

1 Sample p1, . . . , p4 ▷ with respect to ∼ p
2 S = {p1, . . . , p4}
3 K = 4u

ϵo
log( 8u

δ′ϵo
)

4 for i = 3 : log2(u log(2K/δ
′)/ϵo) do

5 m = 2i

6 S = S ∪ {pm/2+1, . . . , pm}

7 p̂ =
1

m

m∑
j=1

pj

8 if p̂ > u log(2m/δ′)/m then
9 Break

10 Output p̂

Algorithm 5: confidentLabel subroutine

Input: an instance X, integer k′, confidence
parameter δ.

Output: Ŷ , Q
1 Q = ∅
2 k = 1
3 while k ≤ k′ do
4 Request the label Y (k) of X(k)

5 Q = Q ∪ {(X(k), Y (k))}
6 for i=1 to M do
7 η̂i =

1
|Q|
∑

(X,Y )∈Q 1Y=i

8 η̂ = (η̂1, . . . , η̂M )
9 if ζ(η̂) > 4bδ,k then

10 Break ▷ cut-off condition with bδ,k from
(3.4)

11 k = k + 1

12 Ŷ = argmax
i∈Y

η̂i

probability. For A ∈ Aa,w, and P ∈ P(α, β), we denote
by f̂A,n,w,P := f̂n,w the classifier that is provided by
A, under an environment governed by the probability
P .

5.1 Main idea

The main technicality of our result involves a suitable
decomposition of the excess risk as follows: let f̂n,w
be the classifier provided by MKAL, and a parameter
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∆0 > 0 which will be chosen suitably in equation (9).
We have:

R(f̂n,w)−R(f∗) = EX(ηf∗(X)(X)− ηf̂n,w(X)(X))

= EX((ηf∗(X)(X)− ηf̂n,w(X)(X))1ζ(η(X))>∆0/2)

+ EX((ηf∗(X)(X)− ηf̂n,w(X))(X)1ζ(η(X))≤∆0/2).

Let us assume that, for n large enough, we have with
high probability:

• For all x ∈ supp(PX), the pointwise error satisfies:

ηf∗(x)(x)− ηf̂n,w(x)(x) ≤ ∆0. (8)

• For all x ∈ supp(PX) with large margin, that is

ζ(η(X)) > ∆0/2, we have f̂n,w(x) = f∗(x).

In that case,

R(f̂n,w)−R(f∗) ≤ ∆0PX(x, ζ(η(X)) ≤ ∆0/2)

≤ C∆β+1
0 by assumption (H1)

By choosing

∆0 = max

(
ϵ,
( ϵ
C

) 1
β+1

)
, (9)

we obtain:
R(f̂n,w)−R(f∗) ≤ ϵ.

5.2 Preliminary result

The following Proposition gives a sufficient condition
to obtain (8).

Proposition 5.1.
Let η̂ be the estimator provided by MKAL and f̂ the cor-
responding classifier. Let us assume that there exists
an event A such that for a large budget n, we have in
A: for all x ∈ supp(PX),

∥ η(x)− η̂(x) ∥∞≤
∆

2
. (10)

for some ∆ > 0.
Then, in the same event A,

ηf∗(x)(x)− ηf̂(x)(x) ≤ ∆. (11)

Proof.
Let us assume that, for x ∈ supp(PX),

∥ η(x)− η̂(x) ∥∞≤
∆

2
(12)

and
ηf∗(x)(x)− ηf̂(x)(x) > ∆. (13)

Because (12) holds, we have:{
|ηf∗(x)(x)− η̂f∗(x)(x)| ≤ ∆

2

|ηf̂(x)(x)− η̂f̂(x)(x)| ≤
∆
2

Consequently, by (13), we have:

∆ < ηf∗(x)(x)− ηf̂(x)(x)

≤ η̂f∗(x)(x) +
∆

2
− (η̂f̂(x)(x)−

∆

2
)

≤ η̂f∗(x)(x)− η̂f̂(x)(x)︸ ︷︷ ︸
≤0 by definition

+∆

≤ ∆,

which is a contradiction. And then, necessarily, equa-
tion (10) is sufficient for having (11).

5.3 Main result

The following Theorem is the theoretical core of our
algorithm and will be fully proven in the Appendix
(see Supplementary Material).

Theorem 5.1 (Label complexity for the MKAL algo-
rithm).
Let us consider the set P(α, β) defined above in Sec-
tion 5.1 and such that αβ < d. Let ϵ, δ ∈ (0, 12 ). Let
∆ be the parameter defined by (17). Let n, w ∈ N
the label budget and the number of unlabeled points,
respectively.

If n ≥ τ(ϵ, δ)×
(
1

ϵ

) 2α+d−αβ
α(β+1)

×

[
2 log

(
32MT 2

ϵ,δ

δ

)
+ log log

(
512
√
e

∆

)]
,

and w ≥ Õ

((
1

ϵ

) 2α+d
α(β+1)

)
,

and w ≥
400 log

(
12800w2

δ( 1
64L c̄ϕn)

d/α

)
( 1
64L c̄ϕn)

d/α
,

where Õ hides logarithmic factors, L appears in (H2),
c̄ = 0.1, ϕn is defined by (18), τ(ϵ, δ), Tϵ,δ are polyno-
mial on log( 1ϵ ), log(

1
δ ),

then with probability at least 1 − δ we have for all
x ∈ supp(PX),

∥ η(x)− η̂(x) ∥∞≤
∆

2
,

and

sup
P∈P(α,β)

[
R(f̂n,w)−R(f∗)

]
≤ ϵ. (14)
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6 Numerical experiments

In this Section we present numerical experiments to
illustrate the behavior of our MKAL algorithm. We re-
peated each experiment 10 times, and present addi-
tional results in the Supplementary Material. The im-
plementation of the code of MKAL can be found on the
following webpage: https://github.com/xsiebert/

MKAL

6.1 Datasets

We start first with a couple of synthetic binary
datasets and then consider multiclass ones. For each
dataset, we generate 100000 points as a training set
for the algorithm, and 30000 points as a test set. The
points are equally distributed between classes. The
confidence and accuracy parameters (δ and ϵ, respec-
tively) have both been set to 0.1 for the experiments
presented here.

Binary datasets We generated several synthetic
datasets such that the margin and regularity assump-
tions described in Section 3.2 are satisfied. Moreover,
the parameters are chosen such that the classification
problem is challenging.

The first dataset is generated from a two-dimensional
uniform distribution on (x1, x2) ∈ [−1, 1]2 with a re-
gression function η(x1, x2) = 0.5(1 + sin(π2x2)). This
regression function is independent of x1 and the opti-
mal classification boundary is x2 = 0.

The second dataset is similar to that used in Berlind
and Urner (2015), and corresponds to η(x1, x2) =
1
2 (1 + sin(π2x1) sin(

π
2x2)). The optimal classification

boundary is given by x1 = 0 and x2 = 0.

Multiclass datasets We generate points from a
mixture model with M > 2 classes corresponding to
isotropic gaussian distributions. The centers of the
gaussians are chosen randomly and the data rescaled
to fit in [−1, 1]2. The standard deviation is set to 0.2 to
create overlap between classes. Results with different
settings are provided in the Supplementary Material.

6.2 Results and discussion

6.2.1 Informative points selection

Figure 1 illustrates the selection of the informative
points by our algorithm, both for the binary and the
multiclass cases. The black dots indicate the points
that have been considered as non-informative by the
Reliable subroutine, because their label could be in-
ferred by the points already available in the active set,
as described in Section 4.1. Conversely, the yellow

crosses indicate the points that have been considered
informative by the same subroutine. The latter are for
the most part located close to the class boundaries,
where classification is indeed expected to be more dif-
ficult. In the case M = 5, the informative points are
concentrated at the boundaries between more than two
classes.

Figure 1: Selection of informative points by MKAL for
two binary datasets (top) and two multiclass datasets
(bottom), with the points colored according to their
class label. The yellow crosses indicate the points
that have been considered informative, and the black
dots the points that have been considered as non-
informative by the Reliable subroutine.

6.2.2 Performance of MKAL

Figure 2 shows the performance of our active MKAL

algorithm on the datasets of Figure 1, compared to
the passive 1-NN counterpart, as well as a 5-NN pas-
sive classifier for comparison. As the number of la-
beled points increases, the MKAL algorithm reaches a
point where it surpasses both passive nearest neigh-
bors classifiers. This is due to the fact that the points
used to construct the 1-NN classifier with MKAL are
carefully chosen, as shown on Figure 1, so that they
are all guaranteed to be informative by the Reliable

subroutine. On the opposite, in passive learning the
points are chosen randomly, and some of them are
likely to be poor choices. The second binary dataset is
more difficult to classify than the first one, and active
learning with MKAL appears to be even more helpful
in this case, as indicated by Figure 2. In the mul-
ticlass case, the advantage of MKAL, although signi-
ficative, is less pronounced in the setting considered,
because some classes are well separated. It becomes
more pronounced as the noise level increases (see Sup-
plementary Material).

https://github.com/xsiebert/MKAL
https://github.com/xsiebert/MKAL
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Figure 2: Comparison of the errors for the datasets
of Figure 1 for the MKAL algorithm and the passive
1-NN counterpart, as well as a 5-NN passive learning.
The error is computed on the test set and is plotted
with respect to the number of points whose labels have
been obtained.

7 Conclusions and perspectives

In this paper we present a novel algorithm for nonpara-
metric active learning, which addresses two limitations
of existing methods. First, we consider a more gen-
eral smoothness assumption which takes into account
a broader class of underlying distributions. Second,
we extend the results from binary classification to a
multiclass context. We prove the theoretical benefits
of our algorithm and empirically illustrate it on several
datasets.
Our results show that the careful selection of informa-
tive points by our algorithm allows the construction of
a 1-NN classifier which is statistically consistent and
provides better rate of convergence than passive coun-
terparts. We believe that this rate is minimax accord-
ing to the lower bound obtained in (Minsker, 2012)
in the binary setting. A following step will consist in
providing a similar rate of convergence in the case of
cost-sensitive learning where a related work is due to
(Krishnamurthy et al., 2017).
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Supplementary Materials

In this document we provide proofs that are too long to include in the main manuscript, as well as some additional
results from computer simulations.

A Missing proofs

This Section is organized as follows: in Section A.1, we introduce some additional notations. In Section A.2 we
formally prove Theorem 5.1 from the main manuscript.

A.1 Notations

Some notations that will be used throughout the proofs are listed below. Most of them were already introduced
in the main document but are repeated here for convenience.

As defined in Section 3 of the main manuscript, let B(x, r) = {x′ ∈ X , ρ(x, x′) < r} the open ball with respect to
the Euclidean metric ρ, centered at x ∈ X with radius r > 0. Let supp(PX) = {x ∈ X , ∀r > 0, PX(B(x, r)) > 0}
the support of the marginal distribution PX .

For p ∈ (0, 1], and x ∈ supp(PX), let us define

rp(x) = inf{r > 0, PX(B(x, r)) ≥ p}. (15)

As in the main part of the manuscript, for a point Xs ∈ K = {X1, . . . , Xw}, we denote by X
(k)
s its k-th nearest

neighbor in K, and Y (k)
s the corresponding label.

For an integer k ≥ 1, let

η̂k(Xs) = (η̂k,1(Xs), . . . , η̂k,M (Xs)) , η̄k(Xs) = (η̄k,1(Xs), . . . , η̄k,M (Xs)),

where for i ∈ Y,

η̂k,i(Xs) =
1

k

k∑
j=1

1
Y

(j)
s =i

, η̄k,i(Xs) =
1

k

k∑
j=1

ηi(X
(j)
s ). (16)

Let us also introduce some specific variables and notations that will be used throughout the remainder of this
document.

For ϵ, δ ∈ (0, 1), k ≥ 1, c ≥ 7.106 and C is defined in (H1) from the main manuscript:

bδ,k =

√
2

k

(
log

(
1

δ

)
+ log log

(
1

δ

)
+ log log(e.k)

)
,

k(ϵ, δ) =
c

∆2

[
log(

1

δ
) + log log(

1

δ
) + log log

(
512
√
e

∆

)]
,

∆ = max(
ϵ

2
,
( ϵ
C

) 1
β+1

), (17)

ϕn =

√
1

n

(
log

(
1

δ

)
+ log log

(
1

δ

))
. (18)
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A.2 Detailed proof of Theorem 5.1

Let us restate Theorem 5.1 from the main manuscript:

Theorem A.1 (Label complexity for the MKAL algorithm). Let us consider the set P(α, β) defined above in
Section 5 and such that αβ < d. Let ϵ, δ ∈ (0, 12 ). Let ∆ be the parameter defined by (17). Let n, w ∈ N used
in MKAL respectively as the label budget and the number on unlabeled points.

If n ≥ τ(ϵ, δ)×
(
1

ϵ

) 2α+d−αβ
α(β+1)

×

[
2 log

(
32MT 2

ϵ,δ

δ

)
+ log log

(
512
√
e

∆

)]
, (19)

and w ≥ Õ

((
1

ϵ

) 2α+d
α(β+1)

)
, (20)

and w ≥
400 log

(
12800w2

δ( 1
64L c̄ϕn)

d/α

)
( 1
64L c̄ϕn)

d/α
, (21)

where Õ hides logarithmic factors, L appears in (H2), c̄ = 0.1, ϕn is defined by (18), τ(ϵ, δ), Tϵ,δ are polynomial
on log( 1ϵ ), log(

1
δ ),

then with probability at least 1− δ we have for all x ∈ supp(PX),

∥ η(x)− η̂(x) ∥∞≤
∆

2
(22)

and
sup

P∈P(α,β)

[
R(f̂n,w)−R(f∗)

]
≤ ϵ. (23)

The proof of the above theorem is organized as follows:

• In Section A.2.1, we introduce some technical lemmas mostly related to concentration inequalities, algebra
results, etc... which will be very helpful.

• In Section A.2.2, we determine the number of label requests made in the neighbourhood of an informative
point. Remarkably, when an informative point is relatively far from the decision boundary, its label can be
determined (with high probability) by using only a small number of label requests.

• In Section A.2.4, by using some conditions on w ((27), (21)), a particular condition on the last informative
point (50), and the Lemma A.8 related to the estimation of the probability-ball and the informativeness of
a point, we prove that with high probability, we have:

– Each instance x in the support of PX with large ζ(η(x)) (greater than a specific threshold) is correctly
labeled (with high probability) by the classifier provided by MKAL, thus the prediction error is only made
on points with small ζ(η(x)) (Theorem A.4).

• In Section A.2.5, we prove that with high probability, the Equation (19) is sufficient to have (50).

• In Section A.2.6, by combining results from Section A.2.4, Section (A.2.5) and Proposition 5.1, we prove
that with high probability that, when the condition (19), (20), (21), hold, then the equations (22) and (23)
also hold.

A.2.1 Technical Lemmas

Lemma A.1 (Chernoff bounds). (Mulzer, 2018)
Suppose X1, . . . , Xm are independent random variables taking value in {0, 1}. Let X denote their sum and
µ = E(X) its expected value. Then,

• For any δ ∈ (0, 1),
Pm(X ≤ (1− δ)µ) ≤ exp(−δ2µ/2), (24)

where Pm is the probability with respect to the sample X1, . . . , Xm.
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• Additionally, for any δ′ ≥ 1, we have:

Pm(X ≥ (1 + δ′)µ) ≤ exp(−δ′µ/4). (25)

Lemma A.2 (Hoeffding’s inequality). (Hoeffding, 1963)

• First version:
Let X a random variable with E(X) = 0, a ≤ X ≤ b, then for v > 0,

E(evX) ≤ ev
2(b−a)2/8.

• Second version:
Let X1, . . . , Xm be independent random variables such that −1 ≤ Xi ≤ 1, (i = 0, . . . ,m). The empirical
mean of these variables is defined as

X̄ =
1

m

m∑
i=1

Xi.

Then we have:

P (|X̄ − E(X̄)| ≥ t) ≤ exp(−mt2/2).

Lemma A.3 (Kontorovich et al.). (Kontorovich et al., 2016)

Let δ′ ∈ (0, 1), ϵo > 0, t ≥ 7 and set g(t) = 1+ 8
3t+

√
2
t . Let p1, p2, . . . ∈ {0, 1} be i.i.d Bernoulli random variables

with expectation p. Let p̂ be the output of BerEst(ϵo, δ
′, t). There exists an event A′, such that P (A′) ≥ 1 − δ′,

and on A′, we have:

1. If p̂ ≤ ϵo
g(t) then p ≤ ϵo, otherwise, we have p ≥ 2−g(t)

g(t) ϵ0.

2. The number of random draws in the BerEst subroutine (Algorithm 4 in the main manuscript) is at most
8t log( 8t

δ′ψ )

ψ , where ψ := max(ϵo,
p
g(t) ).

Lemma A.4 (Logarithmic relationship). (Vidyasagar, 2013)
Suppose a, b, c > 0, abec/a > 4 log2(e), and u ≥ 1. Then:

u ≥ 2c+ 2a log(ab)⇒ u > c+ a log(bu).

Lemma A.5 (Chaudhuri and Dasgupta). (Chaudhuri and Dasgupta, 2014)
For p ∈ (0, 1], and x ∈ supp(PX), given p ∈ (0, 1], let rp(x) be defined in (15) For all , and x ∈ supp(PX), we
have:

PX(B(x, rp(x)) ≥ p.

Lemma A.6 (Kaufmann et al.). (Kaufmann et al., 2016)

Let ζ(u) =
∑
k≥1

k−u. Let X1, X2, . . . be independent random variables, identically distributed, such that, for all

v > 0, E(evX1) ≤ ev
2σ2/2. For every positive integer t, let St = X1 + . . . + Xt. Then, for all γ > 1 and

r ≥ 8

(e− 1)2
:

P

( ⋃
t∈N∗

{
|St| >

√
2σ2t(r + γ log log(et))

})
≤
√
eζ(γ(1− 1

2r
))(

√
r

2
√
2
+ 1)γ exp(−r).

Lemma A.7.
Let m ≥ 1 and u ≥ 20. Then we have:

m ≥ 2u log(log(u)) =⇒ m ≥ u log(log(m)).
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Proof.
Define ϕ(m) = m− u log(log(m)), and let m0 = 2u log(log(u)). We have:

ϕ(m0) = 2u log(log(u))− u(log(log(2u log(log(u)))))
= 2u log(log(u))− u log(log(2u) + log(log(log(u))))

It can be shown numerically that ϕ(m0) ≥ 0 for u ≥ 20.

Also, we have: ϕ′(m) = m log(m)−u
m log(m) ≥ 0 for all m ≥ m0 (notice that m0 ≥ u for u ≥ 20). Then it is easy to see

that ϕ(m) ≥ ϕ(m0) for all m ≥ m0. This establishes the lemma.

A.2.2 Label complexity on informative points

Theorem A.2.
Let ϵ, δ ∈ (0, 1). Set ∆ = max(ϵ,

(
ϵ
C

) 1
β+1 ), and pϵ =

(
31∆
1024L

)d/α
, where α, L, β, C are parameters used in (H1)

and (H2) from the main manuscript.
For p ∈ (0, 1], and x ∈ supp(PX), let us introduce rp(x) = inf{r > 0, PX(B(x, r)) ≥ p} and ks := k(ϵ, δs) defined
in (A.1) (where δs =

δ
32Ms2 ).

For k, s ≥ 1, set αk,s =
√

2
k log(

32s2

δ ). There exists an event A1 with probability at least 1− δ
16 , such that on A1,

for all 1 ≤ s ≤ w, if
ks ≤ (1− αks,s)pϵ(w − 1), (26)

then the ks nearest neighbors of Xs (in the pool KX ) belong to the ball B(Xs, rpϵ(Xs)). Additionally, the condition

w ≥ 4C̄

(
1

ϵ

) 2α+d
α(β+1)

(
log

(
16384M

√
e

δϵ

)
+ log

(
4C̄

(
1

ϵ

) 2α+d
α(β+1)

))
, (27)

where C̄ is an absolute constant, is sufficient to have (26).

Proof.

Fix x ∈ supp(PX). For k ∈ N, let us denote X(k)
x , the kth nearest neighbor of x in the pool. We have

P (ρ(x,X(ks+1)
x ) > rpϵ(x)) ≤ P (

w∑
i=1

1Xi∈B(x,rpϵ (x))
≤ ks).

Then by using Lemma A.1 and Lemma A.5, and if ks satisfies (26), we have:

P (ρ(x,X(ks+1)
x ) > rpϵ(x)) ≤ P (

w∑
i=1

1Xi∈B(x,rpϵ (x))
≤ (1− αks,s)pϵ(w − 1))

≤ P

(
w∑
i=1

1Xi∈B(x,rpϵ (x))
≤ (1− αks,s)PX(B(x, rpϵ(x)))(w − 1)

)
≤ exp(−α2

ks,s(w − 1)PX(B(x, rpϵ(x))/2)

≤ exp(−α2
ks,s(w − 1)pϵ/2)

≤ exp(−α2
ks,sks/2)

≤ exp(− log(32s2/δ))

=
δ

32s2
.

Fix x = Xs. Given Xs, there exists an event A1,s, such that P (A1,s) ≥ 1− δ/(32s2), and on A1,s, if

ks ≤ (1− αks,s)pϵ(w − 1), (28)
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we have B(Xs, rpϵ(Xs))∩{X1, . . . , Xw} ≥ ks. By setting A1 = ∩s≥1A1,s, we have P (A1) ≥ 1− δ/16, and on A1,
for all 1 ≤ s ≤ w, if ks ≤ (1− αks,s)pϵ(w − 1), then B(Xs, rpϵ(Xs)) ∩ {X1, . . . , Xw} ≥ ks.

Now, let us proof that the condition (27) is sufficient to guarantee (26).
The relation (26) implies

w ≥ ks
(1− αks,s)pϵ

+ 1. (29)

We can see by a bit of calculus, that αks,s ≤ 1
2 , and then

ks
(1− αks,s)pϵ

+ 1 ≤ 2ks
pϵ

+ 1

≤ 4
ks
pϵ

(
because

ks
pϵ
≥ 1

)
=

4c

pϵ∆2

[
log(

32Ms2

δ
) + log log(

32Ms2

δ
) + log log

(
512
√
e

∆

)]
=

b

∆2+ d
α

[
log(

32Ms2

δ
) + log log(

32Ms2

δ
) + log log

(
512
√
e

∆

)]
,

where b = 4c
(
1024L
31

)d/α
.

ks
(1− αks,s)pϵ

+ 1 ≤ C̄
(
1

ϵ

) 2α+d
α(β+1)

[
log(

32Ms2

δ
) + log log(

32Ms2

δ
) + log log

(
512
√
e

∆

)]
as ∆ = max(ϵ,

( ϵ
C

) 1
β+1

), where C̄ = b(C)
2α+d
α(β+1)

≤ C̄
(
1

ϵ

) 2α+d
α(β+1)

[
2 log(

32Ms2

δ
) + log

(
512
√
e

ϵ

)]
as log(x) ≤ x, and ∆ ≥ ϵ

≤ 2C̄

(
1

ϵ

) 2α+d
α(β+1)

[
log(s2) + log

(
16384M

√
e

δϵ

)]
≤ 4C̄

(
1

ϵ

) 2α+d
α(β+1)

[
log(s) + log

(
16384M

√
e

δϵ

)]
≤ 4C̄

(
1

ϵ

) 2α+d
α(β+1)

[
log(w) + log

(
16384M

√
e

δϵ

)]
.

We can now apply Lemma A.4, where we set

a = 4C̄

(
1

ϵ

) 2α+d
α(β+1)

, c = 4C̄

(
1

ϵ

) 2α+d
α(β+1)

log

(
16384M

√
e

δϵ

)
, b = 1.

We can easily notice that c ≥ a, a ≥ 4 and thus

abec/a ≥ 4e > log2(e).

Then, the relation

w ≥ 4C̄

(
1

ϵ

) 2α+d
α(β+1)

(
log

(
16384M

√
e

δϵ

)
+ log

(
4C̄

(
1

ϵ

) 2α+d
α(β+1)

))
is sufficient to guarantee (28).

Let us note that the guarantee obtained in the preceding theorem corresponds to that obtained in passive setting
(w = n)Reeve and Brown (2017).



Multi-class classification in nonparametric active learning

Theorem A.3.
Let δ ∈ (0, 1), and ϵ ∈ (0, 1). Let us assume that w satisfies (27). For Xs, set k̃(ϵ, δs) (with δs =

δ
32Ms2 ) as

k̃(ϵ, δs) =
c

16(ζ(η(Xs))2

log(32Ms2

δ
) + log log(

32Ms2

δ
) + log log

 256
√
e

ηf∗(Xs)(Xs)− max
j ̸=f∗(Xs)

ηj(Xs)

 ,
where c ≥ 7.106. For k ≥ 1, s ≤ w, let ∆ = max( ϵ2 ,

(
ϵ
C

) 1
β+1 ) and bδs,k defined in (16).

Then, there exists an event A2, such that P (A2) ≥ 1− δ/8, and on A1 ∩A2, we have:

1. For k ≥ 1, η̂k(Xs) and η̄k(Xs) defined in (16), for all s ∈ {1, . . . , w},

∥ η̂k(Xs)− η̄k(Xs) ∥∞≤ bδs,k. (30)

2. For all s ≤ w, if ζ(η(Xs)) ≥ 1
4∆, then, k̃(ϵ, δs) ≤ k(ϵ, δs), and the subroutine

ConfidentLabel(Xs):=ConfidentLabel(Xs, k(ϵ, δs), δs) uses at most k̃(ϵ, δs) label requests. We also have

ζ(η̂k̄s(Xs)) := η̂k̄s,Ŷs(Xs)−max
j ̸=Ŷs

η̂k̄s,j(Xs) ≥ 4bδs,k̄s (31)

and
Ŷs = f∗(Xs), (32)

where k̄s is the number of requests made in ConfidentLabel(Xs), Ŷs is the output of the subroutine
ConfidentLabel(Xs).

Proof.

1. Let us begin with the proof of the first part.
Here, we follow the proof of Theorem 8 in (Kaufmann et al., 2016), with few modifications.

Let s ∈ {1, . . . , w}. and l ∈ {1, . . . ,M}. Set Sk,l =

k∑
i=1

(
1
Y

(i)
s =l

− ηl(X(i)
s )
)
. Given {X1, . . . , Xw},

E
(
1
Y

(i)
s =l

− ηl(X(i)
s )
)

= 0, and the random variables
{
1
Y

(i)
s =l

− ηl(X(i)
s ), i = 1, . . . , k

}
are indepen-

dent. Then by Lemma A.2, given {X1, . . . , Xw}, as 1
Y

(i)
s =l

− ηl(X
(i)
s ) takes values in [−1, 1], we have

E
(
exp

(
v(1

Y
(i)
s =l

− ηl(X(i)
s ))

))
≤ exp(v2/2) for all v > 0. Furthermore, set z = log( 32Ms2

δ ), and

r = z + 3 log(z). We have r ≥ 8
(e−1)2 , and by Lemma A.6, with γ = 3/2, we have:

P

( ⋃
k∈N∗

{
|Sk,l| >

√
2k(r + γ log log(ek))

})
≤
√
eζ(3/2(1− 1

2r
))(

√
r

2
√
2
+ 1)3/2 exp(−r)

=

√
e

8
ζ

(
3

2
− 3

4(z + 3 log(z))

)
(
√
z + 3 log(z) +

√
8)3/2

z3
δ

32Ms2
.

It can be shown numerically that for z ≥ 2.03, which holds for all δ ∈ (0, 1), s ≥ 1,

√
e

8
ζ

(
3

2
− 3

4(z + 3 log(z))

)
(
√
z + 3 log(z) +

√
8)3/2

z3
≤ 1.

Then, we have, given s ∈ {1, . . . , w}, there exists an event A′
2,s,l such that P (A′

2,s,l) ≥ 1 − δ/32Ms2, and
simultaneously for all k ≥ 1, we have:

|Sk,l| ≤

√
2k

(
log

(
32Ms2

δ

)
+ log log

(
32Ms2

δ

)
+ log log(ek)

)
.
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By setting A′
2 = ∩Ml=1 ∩s≥1 A

′
2,s,l, we have P (A′

2) ≥ 1− δ/16, and on A′
2, we have for all s ∈ {1, . . . , w}, for

all k ≥ 1, and l ∈ {1, . . . ,M},
|η̂k,l(Xs)− η̄k,l(Xs)| ≤ bδs,k.

And then
∥ η̂k(Xs)− η̄k(Xs) ∥∞ ≤ bδs,k.

2. For the proof of the second part of Theorem A.3, we are going to show that there exists an event A′′
2 such

that (31) and (32) hold on A′
2 ∩A′′

2 ∩A1.
Given {X1, . . . , Xw}, and Xs ∈ {X1, . . . , Xw}, l ∈ {1, . . . ,M}, by Lemma A.2, there exists an event A′′

2,s,l,

with P (A′′
2,s,l) ≥ 1− δ/32Ms2, and on A′′

2,s,l, we have for all k ≥ 1,

|η̂k,l(Xs)− η̄k,l(Xs)| ≤

√
2 log(32Ms2

δ )

k
.

By setting A′′
2 = ∩Ml=1 ∩s≥1 A

′′
2,s,l, we have P (A′′

2) ≥ 1 − δ/16 and on A′′
2 , we have for all k ≥ 1, s ≥ 1,

l ∈ {1, . . . ,M},

|η̂k,l(Xs)− η̄k,l(Xs)| ≤

√
2 log(32Ms2

δ )

k
. (33)

On the event A1, we have, for all k ≤ ks, l ∈ {1, . . . ,M}, by the α-smoothness assumption (H2) from the
main manuscript,

|ηl(Xs)− η̄k,l(Xs)| ≤
31

1024
∆. (34)

On the event A′′
2 ∩A1, by (33), (34) we have simultaneously for all k ≥ 1, l ≤M :{

ηl(Xs) ≤ η̄k,l(Xs) +
31

1024∆
ηl(Xs) ≥ η̄k,l(Xs)− 31

1024∆,
(35)

and  η̂k,l(Xs)− η̄k,l(Xs) ≤
√

2 log( 32Ms2

δ )

k

η̂k,l(Xs) ≥ η̄k,l(Xs)−
√

2 log( 32Ms2

δ )

k .
(36)

For k ≥ 1, let l̂s,k be defined as the index of the largest component of η̂k(Xs), and j ∈ {1, . . . ,M} \ {l̂s,k}.
We have:

η̂k,l̂s,k(Xs)− η̂k,j(Xs)
(1)

≥ η̂k,f∗(Xs)(Xs)− η̂k,j(Xs)

(2)

≥ η̄k,f∗(Xs)(Xs)− η̄k,j(Xs)− 2

√
2 log( 32Ms2

δ )

k

(3)

≥ ηf∗(Xs)(Xs)− max
i̸=f∗(Xs)

ηi(Xs)− 2

√
2 log(32Ms2

δ )

k
− 62

1024
∆ + max

i̸=f∗(Xs)
ηi(Xs)− ηj(Xs)

(37)

(1) is obtained by definition of l̂s,k, (2), (3) are obtained by respectively using (36), (35).
Let us introduce the following conditions on k:

k ≥ 1024

(ηf∗(Xs)(Xs)− max
i ̸=f∗(Xs)

ηi(Xs))2
162 log(

32s2M

δ
) (38)

k ≥ 1024

(ηf∗(Xs)(Xs)− max
i ̸=f∗(Xs)

ηi(Xs))2
72 log log(

32s2M

δ
) (39)
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k ≥ 4
73728e

(ηf∗(Xs)(Xs)− max
i ̸=f∗(Xs)

ηi(Xs))2
log log

 √
73728e

ηf∗(Xs)(Xs)− max
i ̸=f∗(Xs)

ηi(Xs)

 (40)

We will prove the following claim: if k satisfies (38), (39), (40), and ηf∗(Xs)(Xs) − max
i ̸=f∗(Xs)

ηi(Xs) ≥ 1
4∆

then the right-hand side term in (37) is ≥ than 4bk,s. Additionally, it is easy to see that k̃ϵ,δs satisfies (38),
(39), (40).

• Firstly, let us prove that max
i̸=f∗(Xs)

ηi(Xs) − ηj(Xs) ≥ 0 when k satisfies (38), (39), (40). Let us assume

that k satisfies (38), (39), (40) and max
i ̸=f∗(Xs)

ηi(Xs)−ηj(Xs) < 0. In this case, by Lemma A.7, (by taking

m = ek and u = 73728e
(ηf∗(Xs)(Xs)− max

i̸=f∗(Xs)
ηi(Xs))2

which imply m ≥ 1 and u ≥ 20) (40) leads to

k ≥ 1024

(ηf∗(Xs)(Xs)− max
i ̸=f∗(Xs)

ηi(Xs))2
72 log log(ek). (41)

As max
i ̸=f∗(Xs)

ηi(Xs) − ηj(Xs) < 0, we necessarily have j = f∗(Xs), and l̂s,k ̸= f∗(Xs) (by definition of

j). Then:

0 ≤ η̂k,l̂s,k(Xs)− η̂k,f∗(Xs)(Xs) ≤ η̄k,l̂s,k(Xs)− η̄k,f∗(Xs)(Xs) + 2bk,δs

≤ ηl̂s,k(Xs)− ηf∗(Xs)(Xs) +
62

1024
∆ + 2bk,δs

≤ 62

1024
∆− (ηf∗(Xs)(Xs)− ηl̂s,k(Xs)) +

1

2
(ηf∗(Xs)(Xs)− ηl̂s,k(Xs))

=
62

1024
∆− 1

2
(ηf∗(Xs)(Xs)− ηl̂s,k(Xs))

≤ 62

1024
∆− 1

8
∆

< 0,

which leads to a contradiction, then max
i̸=f∗(Xs)

ηi(Xs)− ηj(Xs) ≥ 0.

• Secondly, let us prove that

ηf∗(Xs)(Xs)− max
i ̸=f∗(Xs)

ηi(Xs)− 2

√
2 log(32Ms2

δ )

k
− 62

1024
∆ ≥ 2bδs,k,

when k satisfies (38), (39), (40). As previously, we can easily see (by using Lemma A.7) that if k satisfies
(38), (39), (40), then

k ≥ 1024

(ηf∗(Xs)(Xs)− max
i ̸=f∗(Xs)

ηi(Xs))2

[
54 log(

32s2M

δ
) + 24. log log(

32s2M

δ
) + 24. log log(ek)

]
. (42)
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As ηf∗(Xs)(Xs)− max
i̸=f∗(Xs)

ηi(Xs) ≥ 1
4∆, we obtain:

(ηf∗(Xs)(Xs)− max
i ̸=f∗(Xs)

ηi(Xs))− 2

√
2 log(32Ms2

δ )

k
− 62

1024
∆ ≥ (1− 248

1024
)(ηf∗(Xs)(Xs)− max

i̸=f∗(Xs)
ηi(Xs))

− 2

√
2 log( 32Ms2

δ )

k

≥ 776

1024
(ηf∗(Xs)(Xs)− max

i ̸=f∗(Xs)
ηi(Xs))

− 2

√
2 log( 32Ms2

δ )

k

≥ 4bδs,k by using (42)

• Finally, we can easily see that k̃(ϵ, δs) satisfies (38), (39), (40). Additionally, when ζ(η(Xs)) =
ηf∗(Xs)(Xs)− max

i ̸=f∗(Xs)
ηi(Xs) ≥ 1

4∆, we have k̃(ϵ, δs) ≤ k(ϵ, δs).

Consequently, when ζ(η(Xs)) ≥ 1
4∆, , the subroutine ConfidentLabel(Xs) ends after at most k̃(ϵ, δs) label

requests. Let us denote by k̄s = k̄(ϵ, δs) the minimum value of k that satisfies:

ζ(η̂k(Xs)) = η̂k,l̂s,k(Xs)− max
i ̸=l̂s,k

η̂k,i(Xs) ≥ 4bδs,k. (43)

Let us prove that on A′
2 ∩A′′

2 ∩A1, f
∗(Xs) = l̂s,k̄s .

If f∗(Xs) ̸= l̂s,k̄s , then we have:

ηl̂s,k̄s
(Xs)− max

i ̸=f∗(Xs)
ηi(Xs) ≥ ηl̂s,k̄s (Xs)− ηf∗(Xs)(Xs) +

1

4
∆

≥ η̄k̄s,l̂s,k̄s (Xs)− η̄k̄s,f∗(Xs)(Xs)−
62

1024
∆ +

1

4
∆ by the smoothness assumption

≥ η̂k̄s,l̂s,k̄s (Xs)− η̂k̄s,f∗(Xs)(Xs) +
97

512
∆− 2bδs,k̄s by (30)

≥ η̂k̄s,l̂s,k̄s (Xs)− max
i̸=l̂s,k̄s

η̂k̄s,i +
97

512
∆− 2bδs,k̄s because f∗(Xs) ̸= l̂s,k̄s

≥ 97

512
∆ > 0 by (43).

This contradicts the fact that f∗(Xs) ̸= l̂s,k̄s , then we necessarily have f∗(Xs) = l̂s,k̄s . By setting A2 =
A′

2 ∩A′′
2 , we have P (A2) ≥ 1− δ/8 and on A1 ∩A2, the item 1 and item 2 hold simultaneously.

A.2.3 Sufficient condition to be a non-informative point

Lemma A.8.
Let ϵ, δ ∈ (0, 1), r > 0. Let us assume that w satisfies (21).

There exists an event A3, such that P (A3) ≥ 1− δ/16, we have, on A3, for all s ≤ w:
If there exists 1 ≤ s′ < s, such that Xs′ is an informative point, and (Xs′ , Ŷs′ , ℓ̂s′) ∈ Ŝ(1) (the current set Ŝ(1)

just before attaining Xs defined in MKAL (Algorithm(1))), and that satisfies:(
p̂Xs′ ≤

75

94

(
1

64LC3
db

ℓ̂s′

)d/α
or p̂Xs ≤

75

94

(
1

64LC3
db

ℓ̂s′

)d/α)
, (44)



Multi-class classification in nonparametric active learning

where

p̂Xs′ := Estprob(Xs′ , ρ(Xs, Xs′),

(
1

64LC3
db

ℓ̂s′

)d/α
, 50, δs)

and

p̂Xs := Estprob(Xs, ρ(Xs, Xs′),

(
1

64LC3
db

ℓ̂s′

)d/α
, 50, δs);

then

min(PX(B(Xs, ρ(Xs′ , Xs))), PX(B(Xs′ , ρ(Xs′ , Xs)))) ≤
(

1

64LC3
db

ℓ̂s′

)d/α
. (45)

Otherwise, if (44) does not hold, i.e:

min(p̂Xs′ , p̂Xs) >
75

94

(
1

64LC3
db

ℓ̂s′

)d/α
,

then

min(PX(B(Xs, ρ(Xs′ , Xs))), PX(B(Xs′ , ρ(Xs′ , Xs)))) ≥
28

47

(
1

64LC3
db

ℓ̂s′

)d/α
. (46)

Proof.
By following the scheme of subroutine Estprob, this Lemma is a direct application of Lemma A.3 by taking

for all s ≤ w, t = 50, ϵo =
(

1
64LC3

db
ℓ̂s′
)d/α

, δ′ = δ/32s2, r = ρ(Xs, Xs′), A3,s := A′. And then, if we set

A3 = ∩s≥1A3,s, we have P (A3) ≥ 1 − δ/16, and on the event A3, we can easily deduce (45) and (46) in each
case.

On the other hand, for all s ≤ w, the number of draws in Estprob(Xs, ρ(Xs, Xs′),
(

1
64LC3

db
ℓ̂s′
)d/α

, 50, δs) (re-

spectively Estprob(Xs′ , ρ(Xs, Xs′),
(

1
64LC3

db
ℓ̂s′
)d/α

, 50, δs)) is always lower than w. Indeed, by Lemma A.3, the

number of draws is at most:

N :=
400 log(12800s

2

δψ )

ψ
where ψ = max((

1

64LC3
db

ℓ̂s′)
d/α,

75

94
PX(B(Xs, ρ(Xs, Xs′)))).

Then we have:

N ≤
400 log

(
12800s2

δ( 1

64LC3
db

ℓ̂s′ )
d/α

)
( 1
64LC3

db
ℓ̂s′)

d
α

≤
400 log

(
12800s2

δ( 1

64LC3
db

c̄bδ
s′ ,|Qs′ |

)d/α

)
( 1
64LC3

db
c̄bδs′ ,|Qs′ |)

d/α
(as ℓ̂s′ ≥ c̄bδs′ ,|Qs′ |, with c̄ = 0.1) (47)

≤
400 log

(
12800w2

δ( 1

64LC3
db

c̄ϕn)d/α

)
( 1
64LC3

db
c̄ϕn)d/α

(we can easily see that bδs′ ,|Qs′ | ≥ ϕn)

≤ w (by (21)).

In equation (47), bδs′ ,|Qs′ | is defined by (A.1), and |Qs′ | represents the number of label requests used in the
subroutine ConfidentLabel (Algorithm 5) at the stage s′.
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A.2.4 Label the instance space

Theorem A.4.
Let ϵ, δ ∈ (0, 1). Let

Tϵ,δ =
1

p̃ϵ
log(

8

δ
), and p̃ϵ =

(
∆

128LC3
db

)d/α
, with ∆ = max(

ϵ

2
,
( ϵ
C

) 1
β+1

). (48)

Let I the set of indexes of informative points used in MKAL (Algorithm 1 in the main document). Let us consider
its last update in MKAL and also denoted it by I.

Then, set sI = max I the index of the last informative point. Let Ŝac = Ŝ
(1)
ac ∪ Ŝ(2)

ac be the active set obtained in
MKAL and denote by f̂n,w the output 1-NN(Ŝac). There exists an event A4 such that P (A4) ≥ 1 − δ/8, and on
A1 ∩A2 ∩A3 ∩A4, we have

1.
sup

x∈supp(PX)

min
X̄∈{X1,...,XTϵ,δ}

PX(B(x, ρ(X̄, x))) ≤ p̃ϵ. (49)

2. If w satisfies (27) and (21) and the following condition holds

sI ≥ Tϵ,δ, (50)

then, for all x ∈ supp(PX) such that ζ(η(x)) > 1
2∆, there exists s := s(x) ∈ I such that:

ζ(η(Xs)) ≥
1

4
∆ (51)

and

f∗(x) = f∗(Xs). (52)

In addition, we have
f̂n,w(x) = f∗(x). (53)

Proof.
This proof is based on results from (Hanneke, 2018), (Reeve and Brown, 2017) with some additional modifications.

1. Let us begin by proving the first part of Theorem A.4.
For x ∈ supp(PX), let us introduce

rp̃ϵ(x) = inf{r > 0, PX(B(x, r)) ≥ p̃ϵ}.

By Lemma A.5, we have PX(B(x, rp̃ϵ(x)) ≥ p̃ϵ. Then each X̄ ∈ {X1, . . . , XTϵ,δ} belongs to B(x, rp̃ϵ(x))

with probability at least p̃ϵ. If we denote P̂ the probability over the data, we have:

P̂ (∃X̄ ∈ {X1, . . . , XTϵ,δ}, PX(B(x, ρ(x, X̄)) ≤ p̃ϵ)

= 1− P̂ (∀X̄ ∈ {X1, . . . , XTϵ,δ}, PX(B(x, ρ(x, X̄)) > p̃ϵ)

= 1−
Tϵ,δ∏
i=1

P̂ (PX(B(x, ρ(x,Xi)) > p̃ϵ)

≥ 1−
Tϵ,δ∏
i=1

P̂ (ρ(x,Xi) > rp̃ϵ(x))

= 1−
Tϵ,δ∏
i=1

(1− P̂ (ρ(x,Xi) ≤ rp̃ϵ(x)))

≥ 1− (1− p̃ϵ)Tϵ,δ

≥ 1− exp(−Tϵ,δp̃ϵ)
= 1− δ/8.
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Then, there exists an event A4, such that P (A4) ≥ 1 − δ/8 and (49) holds on A4. Thus we can easily
conclude the first part.

2. For the second part of Theorem A.4, let x ∈ supp(PX). By (49), on A4 there exists Xx ∈ {X1, . . . , XTϵ,δ}
such that:

PX(B(x, ρ(Xx, x))) ≤ p̃ϵ. (54)

Let us consider the following inequality, which will be very useful: let y1, y2 ∈ Y, for all t, z ∈ X , we have:

|ηy1(t)− ηy2(t) + ηy2(z)− ηy1(z)| ≤ 2 ∥ η(t)− η(z) ∥∞ . (55)

By assumption (H2) from the main manuscript and equation (54), we have:

∥ η(x)− η(Xx) ∥∞≤
1

128
∆. (56)

By applying (55) with η(x) and η(Xx), altogether, using (56) and the fact that ζ(η(x)) ≥ 1
2∆ we have:

∀ y ̸= f∗(x),

{
ηf∗(x)(Xx)− ηy(Xx) ≤ ( 12 + 1

32 )(ηf∗(x)(x)− ηy(x))
( 12 −

1
32 )∆ ≤ ηf∗(x)(Xx)− ηy(Xx).

(57)

Because sI ≥ Tϵ,δ, there exists s′ such that Xx := Xs′ and Xs′ passes through the subroutine Reliable.

We have to consider two cases:

a) Xs′ is uninformative. Then there exists s < s′, such that Xs ∈ Ŝ(1)
ac , and

min(p̂Xs , p̂Xs′ ) ≤
75

94

(
1

64LC3
db

ℓ̂s

)d/α
,

where p̂Xs := Estprob(Xs, ρ(Xs, Xs′),
(

1
64LC3

db
ℓ̂s

)d/α
, 50, δs ), and

p̂Xs′ := Estprob(Xs′ , ρ(Xs, Xs′),
(

1
64LC3

db
ℓ̂s

)d/α
, 50, δs). Then by Lemma A.8,

min(PX(B(Xs, ρ(Xs, Xs′))), PX(B(Xs′ , ρ(Xs, Xs′)))) ≤
(

1

64LC3
db

ℓ̂s

)d/α
. (58)

Necessary, we have ηf∗(x)(Xs)− max
j ̸=f∗(x)

ηj(Xs) ≥ 1
4∆.

Indeed, if

ηf∗(x)(Xs)− max
j ̸=f∗(x)

ηj(Xs) <
1

4
∆, (59)

then on A1 ∩ A2 ∩ A3, by denoting k̄s the number of request labels in ConfidentLabel(Xs) :=
ConfidentLabel(Xs, k(ϵ, δs), δs), we have:

∥ η(Xx)− η(Xs) ∥∞ ≤
1

64
(ℓ̂s)

=
1

64
(ζ(η̂k̄(Xs))− 2bk̄s,δs).

Let îs = argmax
j∈Y

η̂k̄s,j(Xs), then:

∥ η(Xx)− η(Xs) ∥∞ ≤
1

64
(η̂k̄s ,̂is(Xs)−max

j ̸=îs
η̂k̄s,j(Xs)− 2bk̄s)

≤ 1

64
(η̄k̄s ,̂is(Xs)−max

j ̸=îs
η̄k̄s,j(Xs)) By (30)

≤ 1

64
(ηîs(Xs)−max

j ̸=îs
ηj(Xs)) +

62

64 ∗ 1024
∆ by assumption (H2).
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• If ηîs(Xs) −max
j ̸=îs

ηj(Xs) ≤ 1/4∆, then by using (57) and applying (55) with η(Xs) and η(Xx), we

have for all y ̸= f∗(x),

ηf∗(x)(Xs)− ηy(Xs) ≥ 0.459∆ >
1

4
∆,

which contradicts (59).

• If ηîs(Xs)−max
j ̸=îs

ηj(Xs) > 1/4∆, then by applying (55) with η(Xx) and η(Xs), we have

ηîs(Xx)−max
j ̸=îs

ηj(Xx) >
1

4
(1− 1

32
− 62

8 ∗ 1024
)∆.

Then altogether with (57), we have îs = f∗(Xx) = f∗(x) and consequently ηf∗(x)(Xs) −
max

j ̸=f∗(x)
ηj(Xs) > 1/4∆ which contradicts (59).

Finally, we have ηf∗(x)(Xs)− max
j ̸=f∗(x)

ηj(Xs) ≥ 1
4∆ and then f∗(x) = f∗(Xs).

b) Xx is informative. In this case, s = s′ and then by using (57) we always obtain (51) and (52).

Now, let us prove (53).

Let X
(1)
x be the nearest neighbor of x in Ŝac = Ŝ

(1)
ac ∪ Ŝ(2)

ac . Additionally, let Xx which satisfies (54). Without
loss of generality, let us suppose that Xx is uninformative (does not pass through Reliable subroutine),
otherwise it is easy to obtain (53). In this case, we have previously seen that there exist s < s′ ≤ sϵ,δ such
that Xx = Xs′ and (58) holds. Without loss of generality, we can assume that:

PX(B(Xs, ρ(Xs, Xs′))) = min(PX(B(Xs, ρ(Xs, Xs′))), PX(B(Xs′ , ρ(Xs, Xs′)))). (60)

Otherwise, we can use the relation:

PX(B(Xs′ , ρ(Xs, Xs′))) ≤ PX(B(Xs, 2ρ(Xs, Xs′))) ≤ CdbPX(B(Xs, ρ(Xs, Xs′))).

By the smoothness assumption, we have:

∥ η(x)− η(X(1)
x ) ∥∞ ≤ L.PX(B(x, ρ(x,Xs)))

α/d

≤ L.PX(B(x, ρ(x,Xs)))
α/d

≤ C3
dbL.PX(B(x,

1

8
ρ(x,Xs)))

α/d. (61)

Without loss of generality, we assume that x ̸= Xs, otherwise (53) obviously holds. By (49), we have:

ρ(x,Xs′) ≤ rp̃ϵ(x). (62)

Additionally, using (58),(60), (51), (52), (30), we have:

L.PX(B(Xs, ρ(Xs, Xs′)))
α/d ≤ 1

64C3
db

ℓ̂s

≤ 1

64C3
db

(ζ(η(Xs)) +
62

1024
∆)

≤ 1

64C3
db

(ηf∗(x)(Xs)− max
j ̸=f∗(x)

ηj(Xs) +
62

1024
∆). (63)

However, using (55), we have for all j ̸= f∗(x),

ηf∗(x)(Xs)− ηj(Xs) ≤ 2L.PX(B(Xs, ρ(Xs, Xs′)))
α/d + ηf∗(x)(Xs′)− ηj(Xs′)

≤ 1

32
(ηf∗(x)(Xs)− ηj(Xs) +

62

1024
∆) + ηf∗(x)(Xs′)− ηj(Xs′)

≤ 1

32
(ηf∗(x)(Xs)− ηj(Xs) +

62

1024
∆) + (

1

2
+

1

64
)(ηf∗(x)(x)− ηy(x)) by (57)
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Then,

ηf∗(x)(Xs)− ηj(Xs) ≤
32

31

4255

8192
(ηf∗(x)(x)− ηj(x)),

and (63) becomes

L.PX(B(Xs, ρ(Xs, Xs′)))
α/d ≤ 3

128C3
db

ζ(η(x)),

which implies
ρ(Xs, Xs′) ≤ r∧(x)(Xs), (64)

where

∧(x) =
(

3

128LC3
db

ζ(η(x))

)d/α
.

By the triangular inequality, we have:

1

4
ρ(x,Xs) <

1

2
ρ(x,Xs) ≤

1

2
(ρ(x,Xs′) + ρ(Xx′ , Xs)) , (65)

which implies (by using (62), (64)).

1

4
ρ(x,Xs) < max(rp̃ϵ(x), r∧(x)(Xs)) (66)

We will consider two situations:

• rp̃ϵ(x) ≥ r∧(x)(Xs): in this case, (61) becomes

∥ η(x)− η(X(1)
x ) ∥∞≤

1

128
∆. (67)

• rp̃ϵ(x) < r∧(x)(Xs): in this case, (61) becomes

∥ η(x)− η(X(1)
x ) ∥∞ ≤ C3

dbL.PX(B(x,
1

8
ρ(x,Xs)))

α/d

≤ C3
dbL.PX(B(Xs,

1

4
ρ(x,Xs)))

α/d

≤ 3

128
ζ(η(x)).

Because ζ(η(x)) > 1
2∆, we obtain in both cases that

∥ η(x)− η(X(1)
x ) ∥∞≤

3

128
ζ(η(x))

Furthermore, by using (55), we have for all j ̸= f∗(x),

ηf∗(x)(X
(1)
x )− ηj(X(1)

x ) ≥ (ηf∗(x)(x)− ηj(x))−
6

128
ζ(η(x))

≥ 1

4
∆.

Then f∗(X
(1)
x ) = f∗(x) and by Theorem A.3, the subroutine ConfidentLabel (X

(1)
x ) outputs

Ŷ (1)
x = f∗(X(1)

x ). (68)

We easily deduce that:
fn,w(x) = Ŷ (1)

x = f∗(X(1)
x ) = f∗(x).
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A.2.5 Label complexity of MKAL

Lemma A.9.
Let us assume that w satisfies (27), (21), and w ≥ Tϵ,δ. Then, there exists an event A5 such that P (A5) ≥ 1−δ/8,
and on A1 ∩A2 ∩A3 ∩A5. The condition (19) is sufficient to guarantee (50).

Before beginning the proof, let us define a notion that will be used through the proof.

Definition A.1 (p-probability-packing).
Let a set F ⊂ supp(PX). Let {x1, . . . , xm} ⊂ F and p ∈ (0, 1]. We say that the set {x1, . . . , xm} is a p-
probability-packing set of F if:

∀s, s′ ≤ m, s ̸= s′ =⇒ ρ(xs, xs′) > rp(xs) ∨ rp(xs′), (69)

where rp is defined by (15), and a ∨ b = max(a, b) for a, b ∈ R.

This notion of p-probability-packing comes from the Definition 1.4 in (Edgar, 2000). It will be used on a particular
set of the form {x ∈ supp(PX), γ ≤ ζ(η(x)) ≤ γ′}, where 0 < γ < γ′. This allows us to upper bound the number
of informative points whose labels are inferred with very high confidence.

Proof.
Let us consider the last update of I, the set of indexes of informative points used in MKAL (Algorithm 1 in the
main document).
Set sI = max I, the index of the last informative point. We consider two cases:

1. First case: sI = w: we can easily see that (50) is satisfied, and we trivially have that the condition (19) is
sufficient to guarantee (50).

2. Second case: sI < w: then the total number of label requests up to sI is:∑
s∈I
|Qs|, (70)

where |Qs| is the number of label requests used in the subroutine ConfidentLabel (Algorithm(5)) with
input Xs. Let s ∈ I. For brevity, let us denote ConfidentLabel(Xs):=ConfidentLabel(Xs, k(ϵ, δs), δs). If
s < sI , the subroutine ConfidentLabel(Xs) implicitly assumes that the process of label request does not
takes into account the constraint related to the budget n (very large budget with respect to k(ϵ, δs)). Then
we have:

n >
∑
s∈I
s<sI

|Qs|. (71)

On the other hand, we want to guarantee the condition (50). For this, necessarily for all s ∈ I such that
s ≤ Tϵ,δ and s < sI at the end of the subroutine ConfidentLabel(Xs), the budget n is not yet reached and
then we can replace the relation (71) by

n >
∑
s∈I
s<sI
s≤Tϵ,δ

|Qs|. (72)

Then, necessarily, (50) holds when (72) holds.
Also, for s ∈ I, by Theorem A.3, if we assume that ζ(η(Xs)) ≥ 1

4∆, we have that |Qs| ≤ k̃(ϵ, δs), and the
subroutine ConfidentLabel(Xs) terminates when the cut-off condition (31) is satisfied. The right-hand side
of (72) is equal to:

∑
s∈I
s<sI
s≤Tϵ,δ

ζ(η(Xs))≥ 1
4∆

|Qs|+
∑
s∈I
s<sI
s≤Tϵ,δ

ζ(η(Xs))≤ 1
4∆

|Qs|. (73)
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Firstly, let us consider the first term in (73) and denote it by T1. Let us denote by Bs the event:

Bs = {ζ(η(Xs)) ≥
1

4
∆}.

We have

1Bs =

mϵ∑
j=1

1Bs,j , (74)

where

Bs,j = {2j−1 1

4
∆ ≤ ζ(η(Xs)) ≤ 2j

1

4
∆} and mϵ =

⌈
log2

(
1

1
4∆

)⌉
.

Then,

T1 ≤
∑
s∈I
s<sI
s≤Tϵ,δ

ζ(η(Xs))≥ 1
4∆

k̃(ϵ, δs) by Theorem A.3

=
∑
s∈I
s<sI
s≤Tϵ,δ

mϵ∑
j=1

k̃(ϵ, δs)1Bs,j . (75)

On Bs,j ,

k̃(ϵ, δs) ≤
4c

22j∆2

[
log(

32Ms2

δ
) + log log(

32Ms2

δ
) + log log

(
512
√
e

2j∆

)]
≤ 4c

22j∆2

[
2 log(

32Ms2

δ
) + log log

(
512
√
e

∆

)]
. (76)

Then (75) becomes:

T1 ≤
4c

∆2

[
2 log(

32MT 2
ϵ,δ

δ
) + log log

(
512
√
e

∆

)] mϵ∑
j=1

2−2j
∑
s∈I
s≤sI
s≤Tϵ,δ

1Bs,j . (77)

In (77), the term Nj =
∑
s∈I
s≤sI
s≤Tϵ,δ

1Bs,j represents the numbers of informative points that belong to the set

Ij = {x, γj−1 ≤ ζ(η(Xs)) ≤ γj}, (78)

where γj = 2j .∆4 , j = 1 . . . ,mϵ. We will prove that

Nj ≤ O
(
(γj)

β− d
α

)
, (79)

and proceed in two steps:

• The set of informative points that belong to Ij forms a pj-probability-packing set (for pj well chosen)
of Ij .

• The cardinal of any pj-probability-packing set satisfies (79).

(a) Let us begin with first step:
Let Xs, Xs′ any two informative points that belong to Ij . Without loss of generality, let us assume that
s < s′. As Xs ∈ Ij , we have ζ(η(Xs)) ≥ ∆

4 and by Theorem A.3, the number of label requests k̄s used
in ConfidentLabel(Xs) satisfies:
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ζ(η̂k̄s(Xs)) ≥ 4bδs,k̄s , (80)

where η̂k̄s(Xs) and bδs,k̄s are respectively defined by (16) and (A.1).

Then Xs ∈ Ŝ(1)
ac . Additionally, as Xs and Xs′ are both informative points, by Lemma A.8, we necessary

have on event A3 (see Lemma A.8), that

min(p̂X , p̂X′) ≥ 75

94

(
1

64LC3
db

ℓ̂s

)d/α
. (81)

On the event A3, equation (81) necessary implies:

min(PX(B(Xs, ρ(Xs′ , Xs))), PX(B(Xs′ , ρ(Xs′ , Xs)))) ≥
28

47

(
1

64LC3
db

ℓ̂s

)d/α
. (82)

Using the quantity η̄k̄s(Xs) defined by (16), we have by Theorem A.3, on the event A2,

∥ η̄k̄s(Xs)− η̂k̄s(Xs) ∥∞≤ bδs,k̄s .

Then using also the smoothness assumption, on the event A1∩A2, we have simultaneously for all l ≤M :{
ηl(Xs) ≤ η̄k̄s,l(Xs) +

31
1024∆

ηl(Xs) ≥ η̄k̄s,l(Xs)− 31
1024∆,

(83)

and {
η̂k̄s,l(Xs)− η̄k̄s,l(Xs) ≤ bδs,k̄s
η̂k̄s,l(Xs) ≥ η̄k̄s,l(Xs)− bδs,k̄s .

(84)

Additionally, by Theorem A.3, we have f∗(Xs) = argmax
l∈Y

η̂k̄s,l(Xs) and then, by using (83), (84), we

have:

ζ(η̂k̄s(Xs)) ≥
225

256
ζ(η(Xs))− 2bδs,k̄s . (85)

Therefore, we have on A1 ∩A2:

ℓs = ζ(η̂k̄s(Xs))− 2bδs,k̄s

= ζ(η̂k̄s(Xs))−
8

3
bδs,k̄s +

2

3
bδs,k̄s

≥ 1

3
ζ(η̂k̄s(Xs)) +

2

3
bδs,k̄s by using (80)

≥ 1

3

(
225

256
ζ(η(Xs))− 2bδs,k̄s

)
+

2

3
bδs,k̄s by using (85)

=
225

768
ζ(η(Xs))

≥ 225

768
γj−1 as Xs ∈ Ij

=
225

1536
γj . (86)

Then, the equation (86) becomes:

min(PX(B(Xs, ρ(Xs′ , Xs))), PX(B(Xs′ , ρ(Xs′ , Xs)))) ≥
28

47

(
1

L

225

52224C3
db

γj

)d/α
. (87)

In the same way, we also obtain (87) if s′ < s.
Then, if we set

pj =
28

47

(
1

L

225

52224C3
db

γj

)d/α
, (88)
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we have that, by (15) and (87):

ρ(Xs′ , Xs) ≥ rpj (Xs) ∨ rpj (Xs′). (89)

Therefore, the set of informative points that belong to Ij = {x, γj−1 ≤ ζ(η(x)) ≤ γj} forms an
pj-probability-packing set.

(b) As second step, let us determine an upper bound of the cardinal of any pj-probability-packing set of
Ij . Let Λj = {x1, . . . , xFj} any pj-probability-packing set of Ij .
For all s, s′ ≤ Fj , we obviously have:

s ̸= s′ =⇒ B(xs,
rpj (xs)

2
) ∩B(xs′ ,

rpj (xs′)

2
) = ∅. (90)

Then, we have:

PX(

Fj⋃
s=1

B(xs, rpj (xs)/2)) =

Fj∑
s=1

PX(B(xs, rpj (xs)/2))

≥ Cdb
Fj∑
s=1

PX(B(xs, rpj (xs)))

by assumption (H3) from the main manuscript

≥ CdbFjpj (91)

by (15).

On the other hand, if z ∈ B(xs, rpj (xs)/2) for some s ≤ Fj , by assumption (H2) from the main
manuscript and equation (15), we have:

∥ η(z)− η(xs) ∥∞≤ c0γj , (92)

where c0 = 28
47

α/d 225
52224C3

db
.

Furthermore, as ζ(η(xs)) ≥ 1
2γj , by using (55), we can easily see that f∗(z) = f∗(xs). Let js be defined

as:
js = argmax

j ̸=f∗(xs)

ηj(xs).

Thus

ζ(η(z)) ≤ ηf∗(xs)(z)− ηjs(z)
≤ ηf∗(xs)(xs)− ηjs(xs) + 2 ∥ η(z)− η(xs) ∥∞ by (55)

≤ γj + 2c0γj = c̃γj by (92),

where c̃ = 1 + 2c0.

Now we can upper bound Fj by using assumption (H1) from the main manuscript,

CdbFjpj ≤ PX(

Fj⋃
s=1

B(xs, rpj (xs)/2)) ≤ PX(z; ζ(η(z)) ≤ c̃γj)

≤ C(c̃γj)β . (93)

Then,

Fj ≤
C

Cdb

(c̃γj)
β

pj

= b̃(γj)
β− d

α . (94)

Then the cardinal of any pj-probability-packing set of Ij is upper bounded by O
(
(γj)

β− d
α

)
, conse-

quently, equation (79) holds.
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Equation (77) becomes:

T1 ≤
16cb̃

∆2

[
2 log(

32MT 2
ϵ,δ

δ
) + log log

(
512
√
e

∆

)] mϵ∑
j=1

2−2j(γj)
β− d

α

= 4
d
α−β+2cb̃∆β− d

α−2

[
2 log(

32MT 2
ϵ,δ

δ
) + log log

(
512
√
e

∆

)] mϵ∑
j=1

2(−2+β− d
α )j

≤ b0
(
1

ϵ

) 2α+d−αβ
α(β+1)

[
2 log(

32MT 2
ϵ,δ

δ
) + log log

(
512
√
e

∆

)]
mϵ, (95)

where b0 = 4
d
α−β+2cb̃(C)

2α+d−αβ
α(β+1) . Equation (95) holds because we have αβ ≤ d, ∆ = max

(
ϵ
2 ,
(
ϵ
C

) 1
β+1

)
.

Now, it remains to upper bound the second term in (73), which is denoted by T2. By Lemma A.1, equa-
tion (25), there exists an event A5 such that P (A5) ≥ 1− δ/8, and on A5, we have:

T2 ≤
∑
s≤Tϵ,δ

|Qs|1B̃s ≤ k(ϵ, δ
′)

(
1 +

4

PX(B̃)Tϵ,δ
log

(
8

δ

))
PX(B̃)Tϵ,δ,

because |Qs| ≤ k(ϵ, δ′) (according to the subroutine ConfidentLabel) for all s ≤ Tϵ,δ and where B̃ =
{x, ζ(η(x)) ≤ ∆

4 }, δ
′ = δ

32MT 2
ϵ,δ

and k(ϵ, δ′) is defined in (A.1).

Consequently, we have:

T2 ≤ k(ϵ, δ′)
(
PX(B̃)Tϵ,δ + 4 log

(
8

δ

))
≤ k(ϵ, δ′)

(
Tϵ,δ

1

4β
C∆β + 4 log

(
8

δ

))
by assumption (H1) from the main manuscript

= k(ϵ, δ′)

((
128LC3

db

∆

)d/α
log

(
8

δ

)
1

4β
C∆β + 4 log

(
8

δ

))
by (48)

= k(ϵ, δ′) log

(
8

δ

)(
C

3d/α
db (128)

d/α−β
32βC

(
1

∆

)d/α−β
+ 4

)
. (96)

As αβ ≤ d, ∆ ≤ 1, C ≥ 1, the term C
3d/α
db (128)

d/α−β
32βC

(
1
∆

)d/α−β
in (96) is greater than 1. Thus, (96)

becomes:

T2 ≤ 5k(ϵ, δ′) log

(
8

δ

)
C

3d/α
db (128)

d/α−β
32βC

(
1

∆

)d/α−β
= 5c

[
log(

1

δ′
) + log log(

1

δ′
) + log log

(
512
√
e

∆

)]
log

(
8

δ

)
C

3d/α
db (128)

d/α−β
32βC

(
1

∆

)d/α−β+2

≤
(
1

ϵ

) 2α+d−αβ
α(β+1)

[
2 log(

1

δ′
) + log log

(
512
√
e

∆

)]
log

(
8

δ

)
ũ, (97)

where ũ = 5c (C)
2α+d−αβ
α(β+1) C

3d/α
db (128)

d/α−β
32βC. Equation (97) holds by using the definition of ∆ (17).

By combining (97) and (95), the term obtained in (73) is less than:

b0

(
1

ϵ

) 2α+d−αβ
α(β+1)

[
2 log(

32MT 2
ϵ,δ

δ
) + log log

(
512
√
e

∆

)]
mϵ+

(
1

ϵ

) 2α+d−αβ
α(β+1)

[
2 log(

1

δ′
) + log log

(
512
√
e

∆

)]
log

(
8

δ

)
ũ.
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Thus, if the label budget n satisfies

n ≥ 2b0

(
1

ϵ

) 2α+d−αβ
α(β+1)

[
2 log

(
32MT 2

ϵ,δ

δ

)
+ log log

(
512
√
e

∆

)]
max

(
mϵ, log

(
8

δ

)
ũ

)
, (98)

we have that n satisfies (72), and (50) is necessary satisfied.

A.2.6 Proof of Theorem 5.1

Lemma A.10 (Proof of Equation (22)).
Let η̂ be the estimator of the regression function η provided by our algorithm MKAL (Algorithm 1 from the main
document). Let us assume that the condition (19) holds. Then, on the event A1 ∩A2 ∩A3 ∩A4 ∩A5, we have:

∥ η(x)− η̂(x) ∥∞≤
∆

2
,

for all x ∈ supp(PX) such that ζ(η(x)) ≤ 1
2∆.

Proof.
The idea consists in a bias-variance decomposition. Let x̂ be the nearest neighbor of x in the final active set

Ŝac = Ŝ
(1)
ac ∪ Ŝ(2)

ac . Thus, we have:

∥ η(x)− η̂(x) ∥∞ =∥ η(x)− η̂kx̂(x̂) ∥∞
≤ ∥ η(x)− η(x̂) ∥∞︸ ︷︷ ︸

B1

+ ∥ η(x̂)− η̄kx̂(x̂) ∥∞︸ ︷︷ ︸
B2

+ ∥ η̄kx̂(x̂)− η̂kx̂(x̂) ∥∞︸ ︷︷ ︸
V

, (99)

where kx̂ is the number of label requests used in the subroutine ConfidentLabel(x̂) (Algorithm 5 from the
main document).

On the event A1, the quantity B2 can be bounded as:

∥ η(x̂)− η̄kx̂(x̂) ∥∞≤
31

1024
∆. (100)

Now, let us give a bound on the quantity B1. By Theorem A.4, on the event A4, there existsXx ∈ {X1, . . . , XTϵ,δ}
such that:

PX(B(x, ρ(x,Xx))) ≤ p̃ϵ, (101)

where p̃ϵ =
(

∆
128LC3

db

)d/α
. We consider two cases depending on whether Xx passes through the Reliable subrou-

tine or not.

1. If Xx passes through Reliable.
In this case,

∥ η(x)− η(x̂) ∥∞ ≤ L.PX(B(x, ρ(x, x̂)))α/d

≤ L.PX(B(x, ρ(x,Xx)))
α/d

≤ ∆

128
. (102)

2. If Xx does not pass through Reliable.
The point Xx can be seen as Xx := Xs′ , with s′ ≤ w. By definition of MKAL (Algorithm 1 in the main

document), there exists Xs (s < s′) with ℓ̂s > 0 such that on the event A3 we have:

PX(B(Xs, ρ(Xs, Xs′))) ≤

(
ℓ̂s

64LC3
db

)d/α
(103)
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Let ks be the number of label requests used in ConfidentLabel(Xs) subroutine (Algorithm 5 in the main
document) and îks = argmax

l≤M
η̂ks,l. We have on A1 ∩A2:

ℓ̂s = ζ(η̂ks(Xs))− 2bδs,ks

= η̂ks ,̂iks
(Xs)− max

j ̸=îks
η̂ks,j(Xs)− 2bδs,ks

≤ η̄ks ,̂iks (Xs)− η̄ks,j(Xs) for all j ̸= îks

≤ ηîks (Xs)− ηj(Xs) +
62

1024
∆ for all j ̸= îks . (104)

Using (55), we have for all j ̸= îks :

ηîks
(Xs)− ηj(Xs) ≤

32

31

(
ηîks

(Xx)− ηj(Xx) +
62

32 ∗ 1024
∆

)
. (105)

If ηîks
(Xx) − ηj(Xx) ≥ 35

64∆ for all j ̸= îks , then f∗(Xx) = îks . By using (55) and (101), we have for all

j ̸= f∗(Xx):

ηf∗(Xx)(x)− ηj(x) ≥ ηf∗(Xx)(Xx)− ηj(Xx)−
1

64
∆ (106)

≥ 17

32
∆, (107)

which implies f∗(Xx) = f∗(x) and then ζ(η(x)) ≥ 17
32∆, which contradicts the fact that ζ(η(x)) ≤ 1

2∆.

Then there exists jo ̸= îks such that ηîks
(Xx)− ηjo(Xx) ≤ 35

64∆. In this case, (104) becomes

ℓ̂s ≤
311

512
∆, (108)

and

PX(B(Xs, ρ(Xs, Xx)) ≤
(

311

512 ∗ 64LC3
db

∆

)d/α
. (109)

Then,
ρ(Xs, Xx) ≤ rp̂ϵ(Xs), (110)

where p̂ϵ =
(

311
512∗64LC3

db
∆
)d/α

. Likewise, by (101), we have:

ρ(x,Xx) ≤ rp̃ϵ(x). (111)

Furthermore, we have:

PX(B(x, ρ(x,Xs)) ≤ C3
dbPX(B(x,

1

8
ρ(x,Xs)), (112)

and 1
8ρ(x,Xs) ≤ 1

8 (ρ(x,Xx) + ρ(Xx, Xs)) ≤ 1
4 max(rp̃ϵ(x), rp̂ϵ(Xs)). We consider two cases:

• If rp̃ϵ(x) ≥ rp̂ϵ(Xs): then we have

PX(B(x, ρ(x,Xs) ≤ C3
dbPX(B(x,

1

4
rp̃ϵ(x)))

≤ C3d/α
db p̃ϵ.

Then,

∥ η(x)− η(x̂) ∥∞ ≤ L.PX(B(x, ρ(x, x̂)))α/d

≤ L.PX(B(x, ρ(x,Xs)))
α/d

≤ 1

128
∆.
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• If rp̃ϵ(x) ≤ rp̂ϵ(Xs): then we have

PX(B(x, ρ(x,Xs) ≤ C3
dbPX(B(x,

1

8
ρ(x,Xs)))

≤ C3
dbPX(B(Xs,

1

4
ρ(x,Xs)))

≤ C3
dbPX(B(Xs,

1

2
rp̂ϵ(Xs)))

≤ C3d/α
db p̂ϵ.

Then,

∥ η(x)− η(x̂) ∥∞ ≤ L.PX(B(x, ρ(x, x̂)))α/d

≤ L.PX(B(x, ρ(x,Xs)))
α/d

≤ 311

512 ∗ 64
∆.

Finally, we have that the term B1 is bounded by 1
128∆.

Now, let us find a bound on V (see (99)). The point x̂ can be seen as x̂ = Xs′ with s
′ ≤ w. By Theorem A.3,

we have:

∥ η̂kx̂(x̂)− η̄kx̂(x̂) ∥∞≤ bδs′ ,kx̂ . (113)

We consider two cases depending on whether kx̂ reaches k(ϵ, δs′) or not in the ConfidentLabel(x̂) subroutine
(Algorithm 5 in the main document).

(a) If kx̂ = k(ϵ, δs′): then we can easily (by also using Lemma A.7) see that bδs′ ,kx̂ ≤
1

512
√
e
∆.

(b) If kx̂ < k(ϵ, δs′), then necessarily (by definition of our algorithm MKAL), we have ζ(η̂kx̂(x̂)) ≥ 4bδs′ ,kx̂ .
In this case, we have on the event A1 ∩A2,

bδs′ ,kx̂ ≤
1

2
(ζ(η̂kx̂(x̂))− 2bδs′ ,kx̂)

≤ 1

2
(ηî,kx̂(x̂)− ηj,kx̂(x̂) +

62

1024
∆) for all j ̸= î, (114)

where î = argmax
j∈{1...,M}

η̂kx̂,j(x̂). Previously, we have proven that:

∥ η(x)− η(x̂) ∥∞≤
1

128
∆. (115)

Then, if ηî(x̂) − ηj(x̂) >
33
64∆ for all j ̸= î, we have î = f∗(x̂) and f∗(x) = f∗(x̂) by using (55) and

(115).
Let jx be defined as argmax

j ̸=f∗(x)

ηj . We have:

33

64
∆ < ζ(η(x̂)) ≤ ηf∗(x)(x̂)− ηjx(x̂)

≤ ηf∗(x)(x)− ηjx(x) +
1

64
∆ by (55)

≤ 1

2
∆ +

1

64
∆ =

33

64
∆,

which leads to a contradiction. Thus, there exists jo ̸= î such that ηî(x̂)− ηjo(x̂) ≤
33
64∆. In this case,

(114) becomes:

bδs′ ,kx̂ ≤
295

1024
∆.
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By considering the two previous cases, V can be bounded by 295
1024∆. Finally, (99) becomes:

∥ η(x)− η̂(x) ∥∞≤
1

128
∆ +

31

1024
∆ +

295

1024
∆ ≤ 1

2
∆.

Proof of Equation (23):

Let f̂n,w be the classifier provided by MKAL and η̂ the corresponding estimator of the regression function. Let us
assume the conditions (19), (27), (21) hold. We have on the event A1 ∩A2 ∩A3 ∩A4 ∩A5:

R(f̂n,w)−R(f∗) = EX(ηf∗(X)(X)− ηf̂n,w(X)(X))

= EX((ηf∗(X)(X)− ηf̂n,w(X)(X))1ζ(η(X))>∆/2) + EX((ηf∗(X)(X)− ηf̂n,w(X))(X)1ζ(η(X))≤∆/2)

= EX((ηf∗(X)(X)− ηf̂n,w(X))(X)1ζ(η(X))≤∆/2) by Theorem A.4

≤ ϵ by using Proposition 5.1, Lemma A.10, Assumption (H1) .

B ADDITIONAL EXPERIMENTS

In this Section we present some additional computer simulations that were conducted to test our algorithm, and
that were not included in the main manuscript to avoid overloading it.

As in the main manuscript, we start first with binary datasets (Section B.1) and then consider multiclass ones
(Section B.2). For each dataset, we generate 100000 points as a training set for the algorithm, and 30000 points
as a test set. The points are equally distributed between classes. The confidence and accuracy parameters (δ
and ϵ, respectively) have both been set to 0.1 for the experiments presented here.

Compared to the main manuscript, experiments are systematically repeated 10 times and the average results are
shown, along with their standard deviation.

For the curves showing the test error as a function of the number of labels used (Figures 3, 5, 7 and 9) the
inserts show the envelope of the mean and standard deviation for the passive 1-NN and 5-NN algorithms (blue
and green curves, respectively). The corresponding curves for the MKAL algorithm are superimposed as such,
because the number of labels used at each step of the algorithm is different for each of the 10 rounds, making
averages more cumbersome.

The results are briefly summarized and discussed in Section B.3.

B.1 Binary datasets

We used the same binary datasets as in the main manuscript, and reported the results of the 10 repetitions in
Figure 3.

B.2 Multiclass datasets

We generate points from a mixture model with M > 2 classes corresponding to isotropic gaussian distributions.

B.2.1 M = 3 classes

In the main manuscript, we presented results with the centers of the gaussian distributions chosen randomly and
a standard deviation is set to 0.2.

Here to make the results more easily reproducible and to repeat the same experiments 10 times, the centers are
initially set to (-0.5, 0.5), (0, 0.5) and (0.5, -0.5), and the generated data are then rescaled to fit in [−1, 1]2. The
standard deviation σ is set to 0.25 to create a substantial overlap between classes.
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Figure 3: Comparison of the test errors for the binary datasets of for the MKAL algorithm (red) and the passive
1-NN counterpart (blue), as well as a 5-NN passive learning (green).

Figure 4: Selection of informative points by MKAL for a dataset composed of 3 gaussian distributions (σ = 0.25),
with the points colored according to their class label. The yellow crosses indicate the points that have been
considered informative, and the black dots the points that have been considered as non-informative by the
Reliable subroutine.

B.2.2 M = 5 classes

As in the M = 3 case, the results in the main manuscript correspond to randomly chosen centers of the gaussian
distributions with a standard deviation is set to 0.2.

Here to make the results more easily reproducible and to repeat the same experiments 10 times, the centers are
initially set to (0.5, 0), (-0.5, 0), (0, 0.5), (0.25, -0.5) and (-0.25, -0.5), and the generated data are then rescaled

to fit in [−1, 1]2. The standard deviation σ is first set to 0.25 to create overlap between classes, then to 0.1 to
reduce it considerably.

To study the influence of the noise on the results, we repeated the experiments with σ = 0.1, which considerably
reduces the overlap between classes, thus making the classification problem easier. Figure 6 shows that many
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Figure 5: Comparison of the test errors on a dataset composed of 3 gaussian distributions for the MKAL algorithm
(red) and the passive 1-NN counterpart (blue), as well as a 5-NN passive learning (green).

Figure 6: Selection of informative points by MKAL for a dataset composed of 5 gaussian distributions (σ = 0.25,
top and σ = 0.1, bottom), with the points colored according to their class label. The yellow crosses indicate
the points that have been considered informative, and the black dots the points that have been considered as
non-informative by the Reliable subroutine.

points have been identified as non-informative by our algorithm in this case, but Figure 7 (bottom) indicates
nevertheless that the advantage of our MKAL algorithm is less pronounced. Indeed, choosing appropriately the
informative points is less important in such case, where the classification is easier, and all classifiers considered
reach an error close to 0.
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Figure 7: Comparison of the test errors on a dataset composed of 5 gaussian distributions for the MKAL algorithm
(red) and the passive 1-NN counterpart (blue), as well as a 5-NN passive learning (green). The top graph
corresponds to σ = 0.25 and the bottom one to σ = 0.1.

B.2.3 M = 10 classes

We present here additional results with 10 gaussian distributions whose centers have been equally spread around
a circle of radius 0.5.

Figure 8: Selection of informative points by MKAL for a dataset composed of 10 gaussian distributions (σ = 0.25),
with the points colored according to their class label. The yellow crosses indicate the points that have been
considered informative, and the black dots the points that have been considered as non-informative by the
Reliable subroutine.
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Figure 9: Comparison of the test errors on a dataset composed of 10 gaussian distributions for the MKAL algorithm
(red) and the passive 1-NN counterpart (blue), as well as a 5-NN passive learning (green).

B.3 Summary and discussion

The results in Section B, in particular Figures 3, 5, 7 and 9 confirm that our algorithm performs better than
its passive 1-NN and 5-NN counterparts in a statistically consistent manner. However, there is clearly more
variability in the MKAL algorithm (red curves in the aforementioned Figures), which reflects a sensitivity to the
(random) choice of the initial point. If this point is close to a boundary between classes, it increases the number
of points whose labels must be queried to find its label (parameter k(ϵ, δs) in the MKAL algorithm, which is used
by the confidentLabel subroutine). The variability in the passive 1-NN and 5-NN classifiers is much lower, as
shown in the inserts.

A summary of the final test errors after convergence of the algorithm is presented in Table 1. This shows that our
MKAL algorithm outperforms the passive 1-NN and 5-NN classifiers on most datasets, except the dataset with 5
gaussian distributions and σ = 0.1, which is the less noisy dataset. This shows that our algorithm is particularly
well suited for difficult classification problems.

dataset active MKAL passive 1-NN passive 5-NN
first binary 0.182 ± 0.002 0.251 ± 0.002 0.207 ± 0.002
second binary 0.298 ± 0.002 0.374 ± 0.002 0.335 ± 0.002
3 gaussians (σ = 0.25) 0.114 ± 0.001 0.162 ± 0.002 0.129 ± 0.001
5 gaussians (σ = 0.25) 0.230 ± 0.002 0.318 ± 0.002 0.260 ± 0.001
5 gaussians (σ = 0.1) 0.005 ± 0.001 0.007 ± 0.001 0.005 ± 0.001
10 gaussians (σ = 0.25) 0.224 ± 0.002 0.309 ± 0.002 0.247 ± 0.001

Table 1: Summary of the test errors (mean ± standard deviation computed on 10 repetitions of each experiment)
reached after convergence of the algorithms on several datasets.



Multi-class classification in nonparametric active learning

References

Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. The Annals of
statistics, 35(2):608–633, 2007.

Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In International Confer-
ence on Computational Learning Theory, pages 35–50. Springer, 2007.

Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. Journal of Computer
and System Sciences, 75(1):78–89, 2009.

Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true sample complexity of active
learning. Machine learning, 80(2-3):111–139, 2010.

Christopher Berlind and Ruth Urner. Active nearest neighbors in changing environments. In International
Conference on Machine Learning, pages 1870–1879, 2015.

Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted active learning. In Proceedings
of the 26th annual international conference on machine learning, pages 49–56, 2009.

Gérard Biau and Luc Devroye. Lectures on the nearest neighbor method. Springer, 2015.

Rui M Castro and Robert D Nowak. Minimax bounds for active learning. IEEE Transactions on Information
Theory, 54(5):2339–2353, 2008.

Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for nearest neighbor classification. In Advances
in Neural Information Processing Systems, pages 3437–3445, 2014.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on information theory,
13(1):21–27, 1967.

Sanjoy Dasgupta. Two faces of active learning. Theoretical computer science, 412(19):1767–1781, 2011.

Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A general agnostic active learning algorithm. Citeseer,
2007.
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