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Abstract

Gaussian smoothing (GS) is a derivative-free opti-
mization (DFO) algorithm that estimates the gra-
dient of an objective using perturbations of the
current parameters sampled from a standard nor-
mal distribution. We generalize it to sampling
perturbations from a larger family of distributions.
Based on an analysis of DFO for non-convex func-
tions, we propose to choose a distribution for per-
turbations that minimizes the mean squared error
(MSE) of the gradient estimate. We derive three
such distributions with provably smaller MSE
than Gaussian smoothing. We conduct evalua-
tions of the three sampling distributions on lin-
ear regression, reinforcement learning, and DFO
benchmarks in order to validate our claims. Our
proposal improves on GS with the same computa-
tional complexity, and are competitive with and
usually outperform Guided ES (Maheswaranathan
et al., 2019) and Orthogonal ES (Choromanski
et al., 2018), two computationally more expen-
sive algorithms that adapt the covariance matrix
of normally distributed perturbations.

1. Introduction

In many practical applications, machine learning is com-
plicated by the lack of analytical gradients of the objective
with respect to the parameters of the predictor. For example,
a search and rescue robot could have complex mechanics
that may be impossible to accurately model even with full
knowledge of the terrain, and without a model of the system
dynamics, the analytical gradients of the success rate with
respect to the policy parameters would not be available. On
the other hand, noisy evaluations of the objective, such as
Booleans indicating success, are inexpensive to obtain. The
problem of optimizing a function with only zeroth-order
evaluations is called derivative-free optimization (DFO).
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Gaussian smoothing (GS) (Matyas, 1965; Nesterov &
Spokoiny, 2017) is a DFO algorithm that estimates the gra-
dient using evaluations at perturbations of the parameters,
randomly sampled from the standard normal distribution
and computing finite differences. Current extensions of
GS add post-processing. Polyak (1987) and Flaxman et al.
(2005) normalize the perturbations; Orthogonal ES (Choro-
manski et al., 2018) orthogonalizes them. Guided ES (Ma-
heswaranathan et al., 2019) rotates the perturbations to be
better aligned with recent gradient estimates; LMRS (Sener
& Koltun, 2019) rotates them to a learned subspace. The
last three approaches increase the computational complexity
as they require the Gram-Schmidt process.

Although Gaussian smoothing is shown to be effective, the
choice of standard normal distribution is rather arbitrary. In
this paper, we generalize GS to sample perturbations from
arbitrary distributions. We can choose distributions that
optimize any desired property thanks to the proposed gener-
alization. Specifically, we show that a convergence bound
for stochastic gradient descent for smooth non-convex func-
tions is proportional to the mean squared error (MSE) of the
gradients. Therefore, we select a distribution with reduced
MSE of the gradient estimate, computing the MSE under
the assumption that the entries of the perturbations are IID
with mean zero.

Our first algorithm to reduce the MSE is Bernoulli Smooth-
ing (BeS), which replaces the standard normal distribution
with a standardized Bernoulli distribution with probability
0.5. After fixing the distributional family of perturbations
to be Gaussian or Bernoulli, we obtain distributions that
approximately minimize the MSE. The distributions have
simple analytical forms and do not require any information
about the objective. In fact, they are scaled versions of GS
and BeS, with smaller variance, and so we call the resulting
algorithms GS-shrinkage and BeS-shrinkage. Due to the
IID assumption of the entries of the perturbations, BeS, GS-
shrinkage, and BeS-shrinkage have the same computational
complexity as GS.

To validate the theory, we empirically evaluate our proposed
methods for derivative-free optimization on linear regression
since the analytical gradients are available to compute vari-
ous statistics. Results confirm that GS-shrinkage and BeS-
shrinkage lead to gradient estimates with smaller MSE. We
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further conduct an empirical evaluation on high-dimensional
reinforcement learning (RL) benchmarks, based on locomo-
tion or manipulation, with various budgets for trajectory
simulation in the environment and linear policies. Gener-
ally, BeS learns a superior policy to GS. For the locomotion
environments, GS-shrinkage and BeS-shrinkage usually out-
perform BeS; which one is better depends on the environ-
ment and the budget. Lastly, we evaluate on noisy DFO
benchmarks, and observe that when the number of perturba-
tions sampled at each iteration is smaller than the problem
dimension, BeS outperforms GS at the start of optimiza-
tion. However, BeS and GS outperform GS-shrinkage and
BeS-shrinkage. Overall, our algorithms are computationally
more efficient and competitive with and often outperform
Guided ES and Orthogonal ES. These conclusions remain
when a neural network replaces the linear policy in RL.

2. Related work

Derivative-free optimization is a research field that includes
Bayesian optimization, genetic algorithms, and random
search; see Conn et al. (2009) and Custddio et al. (2017) for
surveys. We review in more detail literature most related to
our work, Gaussian smoothing and evolutionary strategies.

Gaussian smoothing GS (Matyas, 1965; Nesterov &
Spokoiny, 2017) is a random search algorithm that esti-
mates the gradient of an objective using its values at random
perturbations of the parameters sampled from the standard
normal distribution. Many variants exist. Polyak (1987) and
Flaxman et al. (2005) normalize the perturbations, obtaining
samples from the uniform distribution on the unit sphere
instead of the standard normal. More recently, methods have
been proposed to improve GS by modifying the distribution
of the perturbations, at the expense of greater computa-
tional complexity, which we have included as baselines in
the experiments. Choromanski et al. (2018) orthogonal-
izes the perturbations, by either the Gram-Schmidt process
or constructing random Hadamard-Rademacher matrices,
which decreases the MSE of the gradient estimate. Mah-
eswaranathan et al. (2019) changes the covariance matrix of
the perturbations to be aligned with the subspace spanned by
recent gradient estimates, again requiring the Gram-Schmidt
process, and Sener & Koltun (2019) proposes a similar al-
gorithm for the special case where the objective lies on a
learned low-rank manifold.

Our methods do not increase the computational complexity
compared to GS, as we still assume that the entries of the
perturbations are IID. We explicitly minimize the MSE of
the gradient estimate with respect to the distribution of the
perturbations. Chen & Wild (2015) adopts a similar strategy
to learn the optimal spacing for the finite difference in GS;
unlike ours, their algorithms depend on characteristics of
the objective.

Evolutionary strategies Evolutionary strategies (ES), a
class of genetic algorithm, mathematically looks similar
to Gaussian smoothing but is orthogonally motivated. ES
minimizes the expected objective of a distribution over the
parameter space, which is equivalent to minimizing the ob-
jective if the distribution is allowed to degenerate to a delta
distribution. More concretely, if the distribution were Gaus-
sian optimization would be done with respect to both the
mean and variance. On the other hand, Gaussian smoothing
and its relatives optimize only the mean; the variance is
utilized purely to estimate the gradient. Due to the differ-
ence in the algorithmic structure, we decided not to include
ES algorithms as baselines in the experiments. Popular ES
algorithms are CMA-ES (Hansen et al., 2003), where the
distribution is anisotrophic Gaussian, and NES (Wierstra
et al., 2014), which performs natural gradient descent for
arbitrary distributions.

GS for policy search Several of the previous works evalu-
ate on reinforcement learning benchmarks. Salimans et al.
(2017) applies GS to MuJoCo locomotion and Atari envi-
ronments with MLP policies, showing performance compet-
itive with policy gradient algorithms. However, it requires
objective shaping, which Choromanski et al. (2018) and
subsequent works were able to remove. For linear poli-
cies, ARS (Mania et al., 2018) showed that the MuJoCo
lomotion benchmarks can be solved by GS after adding
observation and reward standardization; Sener & Koltun
(2019) substantially speeds up learning on the more difficult
environments. We remark that the ARS gradient estima-
tor is mathematically similar to GS-shrinkage. However,
it treats the variance of the perturbation distribution as a
hyperparameter to be tuned through grid search, and so we
do not include it as a baseline. In contrast, we propose to set
it to a value that approximately minimizes the MSE of the
gradient estimate, without any knowledge of the objective
or optimization needed.

3. Preliminaries

We first present the notation used in the paper and provide
some background on Gaussian smoothing. Then, we show
that the convergence bound for stochastic gradient descent
(SGD) is proportional to the MSE of the gradient estimate,
thereby providing the motivation behind the algorithms pro-
posed in Section 4.

3.1. Notation

We are interested in an unconstrained scalar minimization
objective F(f) : R? — R. Suppose that it can only
be accessed via a random evaluation f(6,&) satisfying
Ecf(0,£) = F(6). For example, in supervised learning,
the random evaluation could be the loss at a data point, and
in reinforcement learning the negative of a trajectory reward.
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First-order optimization methods estimate the gradient of the
objective using samples from a gradient oracle Vg f (6, &).
Alternatively, as described next, the gradient of the objective
may be estimated using only random evaluations, which are
generally inexpensive.

3.2. Gaussian smoothing

Gaussian smoothing (GS) (Nesterov & Spokoiny, 2017) es-
timates the gradient of a function by generating a direction
from a standard normal distribution, computing the direc-
tional derivative along the direction using function evalua-
tions, and then multiplying the directional derivative with
the direction. The estimate can be plugged into any gradient-
based optimization method, making Gaussian smoothing a
widely applicable zero-order approach.

Specifically, the Gaussian smoothing gradient estimator is

1
VoF(0) = EF(G + cee,

e~N(0,I). (1)
It may be interpreted as a Monte Carlo estimate of the gra-
dient of the following modified objective, after smoothing
by a standard normal random variable:

Fc(e) £ IEefv./\/(O,I) [F(9 + CE)]? c>0

The gradient of the modified objective is given by

1
V(;Fc(g) = ]EeNN(O,I) |:CF(0 + CE)€:| (2)
Because V¢ F'“%(0) often has high variance in practice, pop-
ular alternatives are the forward-difference (FD) estimator
and the antithetic (AT) estimator, which incorporate control
variates: for e ~ N(0,I),

1
VoFFP(0) = = [F(6 + ce) — F(0)] €
c

3)
1

VoFAT(9) = % [F'(0+ ce) — F(0 — ce)| e

c

The variance of each estimator can be reduced by averaging
over multiple directions. We focus on the FD estimator due

to its simplicity and lower computational burden.

When F() enjoys some mild regularity conditions and
¢ — 0, Nesterov & Spokoiny (2017) shows that iterative
optimization using gradients estimated via (3) converges to
a stationary point for non-convex objectives and the optimal
point for convex ones.

3.3. Convergence of biased SGD

The estimators in (3) are unbiased for the gradient of the
modified objective F.(6), but are biased for the gradient of
the objective of interest F'(6). Therefore, the usual conver-
gence guarantees for iterative optimization, which generally

assume unbiased gradient estimates, do not directly hold.
Recent works have analyzed the convergence properties of
SGD with biased gradient estimates, for convex (Hu et al.,
2016) and smooth (Chen & Luss, 2018; Ajalloeian & Stich,
2020) objectives. In Theorem 3.1, we provide a convergence
guarantee on SGD with biased gradient estimates that, in
contrast to those works, depends on the MSE of the gradient
estimates. The proof is given in Appendix A.

Theorem 3.1. Assume that i) F(0) is differentiable, -
smooth ', and is bounded by N ii) the bias and the MSE
of the gradient estimates g* satisfy |E[gt] — Vo F(0%)]2 <
B||VoF(0Y)||2 and E[||g' — Vo F(0)|13] < M, respectively
iii) iterative updates are applied via '™ = 0 —ng(6?) for
T steps. Then, if B < 0.5, letting n = 1/uvT,

1 M+ 4Ap
= VoF(OH|2 < —————_,
T L IVeF O < Tt

This guarantee suggests that we may improve convergence
by reducing the MSE of the gradient estimates. Ideally, we
would minimize the entire bound, but doing so is impractical
as it requires knowledge of p and A.

The assumptions in Theorem 3.1 are standard in the analysis
of convergence of iterative optimization for non-convex
functions, but are fairly strong. In particular, the objective
is not bounded for linear regression. However, we only use
that assumption to bound the difference between the initial
function value F'(6°) and the optimal one F'(6*). Hence, it
may be replaced with an assumption that the initialization
has bounded distance from the optimal solution.

4. Generalized smoothing

Our main idea is that by generalizing GS to be able to sample
from arbitrary distributions, not just the standard normal, we
may select the distribution to optimize any criterion. In this
paper, we propose to select the distribution that minimizes
the MSE of the gradient estimates (3), aiming to improve
the convergence of SGD using those gradient estimates.

In this section, we present our proposed algorithms, with
all proofs in Appendix B. We focus on the forward differ-
ence gradient estimator where the objective is estimated via
Monte Carlo sampling random evaluations; derivations for
the antithetic gradient estimator are the same (see Appendix
B.5). Mathematically, given N random evaluations &; and
L 1ID sampled directions ¢;, our estimator of interest is

R 1
Ve FFP () =

Z(f(9 + e, &) — f(8,&6))e.
1
4

IF(Q) is u-SmOOth if HVQF(91)7VQF(92)H2 S ,th91792||2
for any 0 and 65 in the domain of F'(9).
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We also make the following assumption:

Assumption 4.1. The entries of ¢, {€;; };l:l,

ples from a distribution with expectation 0.

are IID sam-

4.1. MSE of the FD estimator

We start by computing the MSE of Vy F'FP ().

Lemma 4.2. Suppose that i) the first-order Taylor expan-
sions of F(0) and f(0,-) satisfy a regularity condition *
it) assumption 4.1 holds. Then, as ¢ — 0, the MSE of
Vo F¥P(0) approaches

(007 + T+ k-2 IVeF @I ©

4

+ T+ k= 1) tr(Vare[Vof(6.9)),  (6)

where o? and k are the variance and kurtosis of €1j. The
bias of Vo F¥P(0) approaches (6 — 1)V F(6).

Notice that GS makes the same assumptions as Lemma 4.2,
except for (i). For the rest of this section, we operate in the
setting where ¢ — 0.

4.2. Bernoulli Smoothing

There is a very simple choice of ¢;; that reduces the MSE of
VoETP (). For GS, ¢;; ~ N(0,1),s0 0> = 1and k = 3
(Weisstein, b), and the MSE of Vy F'F'? (0) equals

d+1 , d+2
IV PO+ T

tr(Vare[Vo f(0,€)]).

Observe that if 02 = 1 is fixed (and the gradient estimate re-
mains asymptotically unbiased), the MSE of VP (6)
decreases with smaller kurtosis k. Since the Bernoulli
distribution has the smallest kurtosis of any distribution
(DeCarlo, 1997), a natural proposal to reduce the MSE is
€15 ~ (Bo.s — 0.5)/0.5, where By 5 follows the Bernoulli
distribution with probability 0.5. In other words, ¢;; is a
standardized fair Bernoulli random variable with expecta-
tion 0, 02 = 1, and k = 1 (Weisstein, a), and the MSE of
Vg F P (6) would equal

L -1 i tr(
L LN
smaller than its MSE for GS.

IVeF (0)]13 + Vare[Vo f(6,)]),

We call this proposal Bernoulli Smoothing (BeS). It remains
unknown whether there is a direct correspondence to the
gradient of a smoothed objective, like for GS. Note that
the bias B remains zero, so the corresponding convergence
bound in Theorem 3.1 is smaller than that of GS; experi-
mental results in Section 5 confirm that BeS is always at
least competitive with, and usually outperforms, GS.

2See Appendix B for details.

4.3. Shrinkage gradient estimators

We next take a more principled approach to reduce the MSE
of Vo PP () and find the distribution of €;; that minimizes
it. For mathematical tractability, we restrict to a certain
distribution type (Gaussian or Bernoulli). This method can
easily be extended to other distribution types.

Gaussian Since a Gaussian distribution is determined by
its expectation and variance, has kurtosis 3, and we assume
that ¢;; has expectation 0, we search over the variance o2
In particular, we minimize only the larger term of the MSE,
(5), since minimizing the entire MSE requires the gradients
of F'(#) and f (0, £); then, the problem reduces to solving

4

. 2 2, 9
-1 —(d+1 7
min (0% —1)"+ —(d+1) @)
Doing so is reasonable for learning from mini-batch samples
because (6) is O(1/N) smaller than (5), where N is the
batch size. Moreover, the problem is simplified as (7) is

quadratic in o2 and thus has an analytic solution.

Theorem 4.3. The solution to (7) isA o = L/L+d+1. When
e1j ~ N(0,0%), the MSE of Vo FT'P(0) is smaller than
when ¢;; ~ N (0, 1).

Notice that the variance of ¢;; has been shrunk towards
zero, and the shrinkage increases as the data dimension d
increases. We call setting €;; ~ N (0, 02*) GS-shrinkage.

Bernoulli Extending BeS, we consider €;,; ~ (B, — p)/m,
where B, follows the Bernoulli distribution with probability
p, and search over p and m. ¢;; is centered, with variance
p(1 — p)/m? and Kurtosis 3 + 1-6p(1=p)/p(1—p). As with
the Gaussian case, we minimize only (5), and the problem
reduces to solving

min (p(l—p) _1>2

pe(0,1),m>0 m2 )
2 2
p°(1—p) 1—6p(1 —p)
T om < M p(1—p)

Because (8) is quadratic in p(1 — p) for fixed m, it can be
solved analytically.

Theorem 4.4. Assume L + d > 5. The solution to (8)
is p* = 0.5 and m* = \/L+d=1/ar. When €;; ~ (B, —
p*)/m*, the MSE of Vo FF'P(6) is smaller than when €;; ~
(Bo.5 — 0.5)/0.5.

Notice that the variance of ¢;; has been shrunk towards zero,
but the kurtosis is unchanged; again the amount of shrinkage
increases as the data dimension d increases. Therefore, we
call setting €;; ~ (B, — p*)/m” BeS-shrinkage.

Table 1 summarizes our three proposed algorithms and GS,
and compare the corresponding MSEs of V, F'¥'P(6). All
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three have the advantage that the distributions of ¢;; are
objective-independent. Assumption 4.1 ensures that BeS,
GS-shrinkage, and BeS-shrinkage have the same computa-
tional complexity to sample the directions as GS, O(Ld).

While the variance of ¢;; are similar for GS-shrinkage and
BeS-shrinkage, the difference in the MSEs depends on L,
N, d and the magnitude of the gradients of F'(#) and (0, £)
and may be substantial. In particular, for high-dimensional
problems like those considered in Section 5, BeS-shrinkage
has smaller MSE at the beginning of optimization when
Vo F(0) is large, while GS-shrinkage has smaller MSE at
the end of optimization (see Appendix B.4 for further de-
tails). This suggests that BeS-shrinkage could lead to better
sample efficiency for online reinforcement learning, where
new trajectories are generated at each optimization iteration.

S. Experiments

We conduct experiments to i) validate the theoretical claims
in Sections 3 and 4 ii) compare the three proposed algo-
rithms to GS and two previous algorithms, guided ES (Mah-
eswaranathan et al., 2019) and orthogonal ES (Choromanski
et al., 2018), and iii) investigate the impact of increasing
the dimension d or of using the antithetic gradient estimator
instead of the forward difference gradient estimator. The
optimizer is SGD using the gradient estimator (4) (or in (iii),
its antithetic version). The learning rate and spacing c are
chosen by grid search, to maximize the test performance at
the end of optimization 3. Details are found in Appendix C.

5.1. Validating theory

To validate the theoretical claims, we evaluate GS, BeS,
GS-shrinkage, and BeS-shrinkage on linear regression with
squared error loss, where analytical formulas for the gradi-
ent of the objective are available. Our data model is from
Gao & Sener (2020):

y=7Tr+e e~N(0,0%) z~N(0Q)
7~ U(0,2%) o® ~U([0,2]) ©
Q = Vdiag(7)VT V ~ U(SO(d))

We show results for d = 100 in the online setting, where N
new data points are sampled from the model at each opti-
mization iteration. The first row of Figure 1 plots the MSEs
of the gradient estimator (4) as optimization progresses, for
the four algorithms over a range of values for L and N.
The second row plots the corresponding losses on a test set,
generated from (9). Appendix C.1 contains similar plots
for more values of L and N. We control for L and N since
they directly affect the MSE, as seen from Lemma 4.2; the

3The learning rate suggested by Theorem 3.1 is not practical to
compute since it includes the smoothness of the objective.

average is taken over five randomly generated seeds and the
bands indicate one standard deviation.

The MSE of the gradient for GS-shrinkage and BeS-
shrinkage is always substantially smaller than for GS and
BeS; the differences between GS and BeS and between
GS-shrinkage and BeS-shrinkage are not statistically signif-
icant. In terms of the test loss, the story is mixed, but the
main difference is between GS/BeS and GS-shrinkage/BeS-
shrinkage. For L = 2, N = 5, standard errors are large
and GS & BeS appear to outperform GS-shrinkage & BeS-
shrinkage. However, for L =2 & N =15and L =6 &
N = 15, GS-shrinkage & BeS-shrinkage statistically sig-
nificantly outperform GS & BeS; BeS-shrinkage appears to
be slightly better in the first case, while the two are com-
petitive in the second case. This suggests that the lower
MSE of BeS-shrinkage compared to GS-shrinkage at the
beginning of optimization may indeed translate to better test
performance.

5.2. Online reinforcement learning

The remaining experiments compare BeS, GS-shrinkage,
and BeS-shrinkage to GS and two algorithms from the liter-
ature that also aim to improve GS by choosing the distribu-
tion from which the directions are sampled to satisfy some
criterion. In order to speed up convergence, Guided ES
(Maheswaranathan et al., 2019) samples from a Gaussian
distribution whose covariance matrix incorporates previ-
ous gradient estimates during optimization. Orthogonal ES
(Choromanski et al., 2018) samples from a standard normal
distribution and then orthogonalizes the directions, which
reduces the MSE of the gradient estimate compared to GS.

We experiment on four RL benchmarks based on the Muo-
JoCo physics simulator (Todorov et al., 2012). Two envi-
ronments are classic locomotion environments, where the
goal is to learn a policy that successfully walks: i) Ant and
ii) Walker2d from OpenAl Gym (Brockman et al., 2016).
The other two environments are from meta-RL, where the
goal is to learn a policy that succeeds over a distribution
of tasks: iii) MLI-Reach: Introduced in Yu et al. (2019),
tasks correspond to moving a robot arm to random loca-
tions. iv) HalfCheetahRandVel (Finn et al., 2017): tasks
correspond to HalfCheetah locomotion robots with random
target velocities. We use the version provided in the reposi-
tory for Rothfuss et al. (2018). Experiments on additional
environments are in Appendix C.2.

Concretely, the objective is the episodic reward of a linear
policy. Following Mania et al. (2018), during optimization
we standardize the observations, divide the rewards at each
iteration by their standard deviation, and remove the sur-
vival bonus of Ant and Walker2d. Dividing the rewards
at each iteration by their standard deviation stabilizes the
optimization and removes the need for a tuned learning rate
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Table 1. Comparison of our proposed algorithms and GS for gradient estimation via (4). Recall that €;; is the random variable that each
entry of the direction is sampled from, L is the number of sampled directions, d is the dimension of the parameter space, and B, is a

Bernoulli random variable with probability p.

ALGORITHM DISTRIBUTION OF € SMALLER MSE THAN
GS N(0,1)

BES (Bo.s —0.5)/0.5 GS
GS-SHRINKAGE ~ N(0, L/L+d+1) GS
BES-SHRINKAGE  (Bg.s — 0.5)/m*, m* = /L+d=1/41, BES
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Figure 1. For linear regression with various L and N: MSE of the gradient (row 1) and test loss (row 2).

schedule, but may also diminish the benefit conferred by a
decrease in gradient estimate MSE; therefore, GS has an
advantage here. Figure 2 plots the episodic reward of the
learned policy, tested on reinitializations of the environment
(which includes the task for meta-RL); the horizontal axis is
the number of trajectories generated in the simulator. Since
the total number of evaluations to compute the gradient esti-
mate is 2L N, we see from Lemma 4.2 that given a budget
of evaluations that we can obtain at one time, having L be
as large as possible minimizes the MSE. Thus, we show
results for a range of values of L and N = 1, averaging
over five randomly generated seeds; in this setting L would
correspond to the number of robots available to collect data
in the real world.

Table 2 displays the average computation time required
to sample the directions in each optimization iteration for
each algorithm on HalfCheetahRandVel, using L Intel Xeon

E7-8890 v3 CPUs; these numbers only depend on the pa-
rameter dimension d. We do not include the time required
to generate the trajectories in the simulator, as it would
be the same for all algorithms and vary between different
simulators. BeS, GS-shrinkage, and BeS-shrinkage have
the same computational complexity as GS, but Guided ES
and Orthogonal ES have higher complexity because they re-
quire Gram-Schmidt orthonormalization. As expected, BeS,
GS-shrinkage, and BeS-shrinkage have similar direction
sampling time to GS, while Orthogonal ES takes at least 3 x
more time and Guided ES at least 10x more time.

In the majority of cases in Figure 2, BeS learns more quickly
and achieves higher reward than GS. GS-shrinkage and BeS-
shrinkage are even better in the three locomotion environ-
ments, in particular when fewer trajectories are generated at
each iteration. For Ant, GS-shrinkage and BeS-shrinkage
outperform the other algorithms by a large margin, albeit
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Figure 2. For RL with various L: test episodic reward

with some instability, which may be reduced by adding
momentum to the optimization. Guided ES is the only
other algorithm that learns, but achieves lower reward. For
Walker2d L = 2 and L = 6, BeS-shrinkage outperforms all
other algorithms, closely followed by GS-shrinkage; when
L = 20, BeS and Orthogonal ES are the best. For HalfChee-
tahRandVel, BeS-shrinkage and GS-shrinkage learn a suc-
cessful policy the fastest, but BeS and GS are able to catch
up by the end of optimization for L = 6 and L = 20. How-

ever, for ML1-Reach, a manipulation environment, BeS
and Orthogonal ES are the best algorithms, outperform-
ing the others in two out of three cases. Overall, Guided
ES is nearly always beaten by BeS, GS-shrinkage, or BeS-
shrinkage. Likewise, Orthogonal ES is at most competitive
with those three algorithms, with the exception of ML1-
Reach and Walker2d L = 20 at the end of optimization.
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Table 2. Time (10~° s) to sample directions in each optimization
iteration for each algorithm, on HalfCheetahRand Vel.

ALGORITHM L=2 L=6 L =20
GES 7.5+0.1 13.1+0.1 19.9+0.1
BES 89+0.1 13.5+0.1 21.6 £0.2
GES-SHRINKAGE 8540.1 13.6 = 0.1 24.0 £0.2
BES-SHRINKAGE 8.7+0.1 14.2 +£0.1 19.1+£0.1
ORTHOGONAL ES 22.1+0.1 50.8 £ 0.2 96.4+ 0.5
GUIDED ES 193.0+£1.9 228.0+1.8 222.0+2.2
5.3. Ablations

Our next experiment studies whether the conclusions in the
previous subsection generalize to using i) a neural network
policy or ii) the antithetic gradient estimator. We repeat the
set-up of Section 5.2, but only on Ant with L = 20. Figure
3 plots the test episodic reward of the learned policy against
the number of trajectories generated during optimization.

Neural network policy Instead of a linear policy, we use
a MLP policy with one hidden layer of 32 nodes and tanh
activations, which is popular in the policy gradient RL liter-
ature (Finn et al., 2017). GS-shrinkage and BeS-shrinkage
outperform the other algorithms, with BeS-shrinkage learn-
ing statistically significantly faster. Guided ES falls behind
GS, BeS, and Orthogonal ES, which start out strong but
deteriorates, indicating difficulty with tuning learning rates.

Antithetic gradient estimator Instead of the forward differ-
ence gradient estimator (4), we use the antithetic gradient
estimator (10). We show in Appendix B.5 that doing so
does not affect the validity of BeS, GS-shrinkage, and BeS-
shrinkage, but may be helpful depending on characteristics
of the objective (Choromanski et al., 2018). We see that this
is indeed true, the performance of all algorithms improve.
However, their qualitative behavior remains the same; GS-
shrinkage and BeS-shrinkage achieve the highest reward by
far, with Guided ES the only other algorithm that learns.

5.4. DFO benchmarks

Finally, we experiment on the noisy benchmark from Never-
grad (Rapin & Teytaud, 2018), a DFO library. It consists of
four classical minimization objectives, sphere, rosenbrock,
cigar, hm, with only noisy evaluations available during opti-
mization. We consider data dimensions d = 10 or d = 100
and a range of values of L for computing the gradient esti-
mate at each iteration. As in Section 5.2, we show results
for N = 1 averaged over five randomly generated seeds.

Figure 4 plots the objective as the optimization progresses
for the six algorithms. In most cases, none of the algorithms
were able to minimize cigar, possibly because it is too ill-
conditioned to find good perturbation directions without

— G5
— BeS
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—— BeS-shrinkage

—— Orthogonal ES
—— Guided ES

1400
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Figure 3. For Ant with L = 20

very large L. Therefore, we do not include it in our plots.

The qualitative results are similar for all three objectives;
GS, BeS, and Orthogonal ES are the best algorithms. When
L < d (first two columns), BeS often outperforms GS and
Orthogonal ES at the beginning of optimization, but is over-
taken by them at the end of optimization. When L = d (last
column), GS and BeS are not statistically significantly dif-
ferent, and outperform Orthogonal ES, which now behaves
similarly to GS-shrinkage and BeS-shrinkage.

5.5. Discussion

The experiments show that by designing the distribution of
the directions to minimize the MSE of the gradient, we are
often able to obtain superior test performance to GS while re-
maining as computationally efficient, especially when there
are few data points available at each iteration. Moreover,
we are competitive with, and in many cases outperform, pre-
viously proposed algorithms to improve GS that are more
computationally expensive.

One limitation of our work is that GS-shrinkage and BeS-
shrinkage do not always outperform GS and BeS, although
they have smaller gradient estimate MSE. We hypothesize
that this is due to a form of the bias-variance trade-off. Theo-
rem 3.1 shows that the convergence bound includes the bias
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Figure 4. For noisy DFO benchmark: objective values. When L = 1, GS is the same as Orthogonal ES.

of the gradient estimate as well as the MSE in a non-linear
and problem-dependent way. GS and BeS have smaller
bias than GS-shrinkage and BeS-shrinkage but larger vari-
ance, so it is not surprising that their relative effectiveness
is problem-dependent. Exploring how to adaptively balance
the trade-off is an exciting avenue for future work.

The assumptions made highlight other potential directions
for future work. We may allow the directions to have depen-
dent entries, learn the distribution type instead of fixing it, or
consider how different optimization algorithms may affect
the nature of the optimal distribution. We could also de-
sign algorithms that, instead of minimizing only the largest
term of the MSE (5), apply Follow the Regularized Leader
(Borsos et al., 2018) to minimize the entire MSE over all
optimization iterations using estimates of the gradients of
the objective and the random evaluation.

6. Conclusion

In this paper, we generalize Gaussian smoothing to sample
directions from arbitrary distributions. Doing us enables
us to choose distributions that minimize the MSE of the
gradient estimates and speed up optimization convergence.
We construct three distributions that lead to lower MSE than
the standard normal without needing any information about
the objective. Experiments on linear regression confirm our
theoretical results and experiments on reinforcement learn-
ing and DFO benchmarks show that the derived algorithms
often improve over GS.
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A. Proofs for Section 3
A.1. Proof of Theorem 3.1

Since F'(0) is differentiable and p-smooth,
F(0™) < F(0") —nVeF(0")Tg(0") + 2 H ([t

For convenience, let b* and v* be the bias and variance of g%, respectively. Taking the expectation with respect to the
randomness in ¢?,

E[F(0")] < F(0") = nVoF(0')T(VoF(0") +b') + %F(IIVeF(t‘)t) +3 + tr(vt))

2
= PO = nVoF (O3 = nVoPO)H + L0003+ L3 4+ Vo (0T + 2 ()
The first inequality uses the definition of variance.

Since 7 < 1/u, we have

E[F(0")] < F(0") - IIVeF(é’*)llz + 7M +a(pun — 1)VeF (07)TH

F(0") - IIVeF(9t)|I2+ 5 M+nB||VeF(9t)II2

where the first line follows from the fact that the MSE of an estimate can be decomposed into the sum of the trace of the
variance and the squared norm of the bias (Lebanon, 2010) and the second line follows from the assumption on the norm of
the bias of g°.

1
Rearranging, we obtain for B < 3

1 2
n(5 = BIVeF (@)} < F(6") —ELF(67)] + 511
1 4A unM
= F Y12 <
T zt: IVeF(O%)llz < n(1—2B)T " 1-2B

M+ 4Ap for m — 1
(1—2BWWT | w/T
B. Proofs for Section 4

We first present a lemma that will be useful for subsequent proofs.

Lemma B.1. Suppose that the d entries of a vector € are IID samples from a distribution with expectation 0, variance o2,

and kurtosis k. For any matrix A, tr(E.(eeT AeeT)) = o*(d + k — 1) tr(A).

Proof. It suffices to sum the diagonal entries of E. (eeT AeeT). The j entry is

E(eeT AeeT);; = E( ZAab%ﬁb

= ( )A” +E Gb ZAbb
b#j
= ko'Aj; + o' (tr(A) — Ajy) = o (tr(A) + (k — 1)Aj;)

Summing up over 7,

tr(Ec(eeT AeeT)) = a*(dtr(A) + (k — 1) tr(A)) = o*(d + k — 1) tr(A)



Generalizing Gaussian Smoothing for Random Search

B.1. Proof of Lemma 4.2
The MSE of an estimator can be decomposed as the sum of the squared norm of its bias and the trace of its variance
(Lebanon, 2010). Thus, we compute the bias and the variance of V¢ F'¥'P(§) separately.

Bias

1

E[VoFT™P(0)] =Eeg |

D (0 +cer &) — f(0,6)e
13

=E. ClL ;(F(é) + cep) — F(e))q]

—_

=E.|=(F(0 + ce) — F(Q))e]

o

—_

=E. |~ (cVoF(0)Te + c2eTh(0 + ce)e)e}

o

where the last equality follows from Taylor’s Theorem (Zeidler, 1986) and h is some scalar-valued function such that
h(y) > 0asy — 0.

E[VoFTP ()] = E, [e(eTVoF(0) + ceTh(6 + ce)e)]
= 0?VoF () + cE[eeTh(0 + ce)e]

where o2 is the variance of each entry of e. If the Dominated Convergence Theorem (Billingsley, 1995) holds, i.e.
|eeTh(0 + ce)e| is upper bounded by some integrable function of ¢, then as ¢ — 0,

E[VoFFP(0)] — 02V F(8),
and the squared norm of the bias of Vo F'P(6) is (02 — 1)2|| Vo F(6)]|3.

Variance Using the law of total variance (Billingsley, 1995),

Var[Ve FE'P(0)] = Var (B¢ [Vo EFP(0) | €]) + Eo(Vare[Vo FEP(0) | €])

1 1
= Var | — ;(F(ﬂ +ce) — F(0))e | +E. <c2L Varg

_ i Var, [(F(0 + ce) — F(6))e] + ﬁx&e (

1
=27 Var. [e(ceTVoF(6) + c*€Th(6 + ce)e)]

% Z(f(@ +ce, &) — f(8,&))e | e})

Varg [(f(0 + ce,€) — f(0,8))e | €])

+ Ee (Vare [e(ceTVg f(0,€) + P€TR' (6 + ce,&)e)])

1
c2LN

- %Vare (T F(0) + ceTh(0 + c)e)] + ——E, (Vare [e(eTVof(6,€) + ceTh' (6 + ce, £)e)))

TIN

where the next-to-last equality follows from Taylor’s Theorem and A’ is some scalar-valued function with the same condition
as h. Assuming that the Dominated Convergence Theorem holds again, as ¢ — 0,

Var[Vo P2 (6)] — %Vare [TV F(0)] + Vare [TV £(6, €)])

1
mEe (
= %Eg [eeTVeF(0)VyF(0)TecT] — %EE [TV F(0)] Ec [eeTVo F(0)]7

1
+ e (ee™ Vare [Vo f(6,€)] e€™)
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Using Lemma B.1, as ¢ — 0,
. 1 1
tr (Var[VgFFD(H)]) = 204 (d+k = 1) tx(VoF(0)VoF(0)T) — 1 tr(o* Vo F(0)VF(0)T)

+ ﬁa‘l(d +k — 1) tr(Vare [Vo f(6,6)])
= T (d+ k= 2)[VaF (0)[} + 15 (d+ k= 1) tr(Vare [Va £(6,)])

Thus, the MSE of V, EFD(9) is (02 — 1) + %(d +k—2)|VeF(0)]32 d+k — 1) tr(Vare[Vo £(0,))).

LN
B.2. Proof of Theorem 4.3

We first make a change of variable. Let = o2. Then, (7) becomes

min O(z) £ (z — 1)% +

x>0 L v

d+1 . . .
Simplifying, O(z) = (1 + i Jz? — 2z + 1. It s clear that O(z) is a convex quadratic function, with minimum at
L L
*= ————>0.Thus, 0> = ———.
YT Iyd+1 S P

By definition, o** minimizes (5). Since 0** < 1 and k = 3 for both (0, 1) and (0, 7**), it follows that the value of (6)
is smaller for €;; ~ N (0, 0*) than for ¢;; ~ N(0,1). Hence, the MSE of Vo F'¥'P (6) is smaller for ;; ~ N'(0,0%*) than
for e;; ~ N(0,1).

B.3. Proof of Theorem 4.4

We first make a change of variable. Let = p(1 — p) and y = m?. Then, (8) becomes

T 2 22 1—6x
i O 221 “—(d+1 .
2€(0.0.23],50 () <y > * y2L < T )

Simplifying,

2 2z 22d—5 T

O = a4y T4
2> L+d—5 1—2yL
= — 1
A A
L . . . .. 29L —1

which is convex in z for fixed y if L 4+ d > 5. Next, we solve for z in terms of y, obtaining x* = m if z were
unconstrained.

However, since z is constrained to (0, 0.25], there are three cases:

1
1. Ify < YA The lower constraint is active. * = 0 and O(z*,y) = 1.

L+d—-3
2. Ify > —1_47L: The upper constraint is active. z* = 0.25 and
L+d—5 1-2yL 1 L+d-1
Oz, y)=1 =1- —
(@y) =1+ =6 + 4o 2y 16,21
<1 1 n yL+2 1 n 1
2y 16y2L 4y  8y?L

where the inequality in the second line follows from the condition on y.
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1 L+d—-3 2yL —1
3. Ify > 3L andy < ;: Neither constraint is active. * = i

AL 3L+d—5)

O ) =1 (1-2yL)* /A(L+d-5) _  (1-2yL)
Y yIL2 v2L 42L(L +d—5)

(yL-1)? _ | 2yL-1 1 1

= 4y2L(4yL—-2) 8y2L 4y + 8y2L

L+d—-3

where the inequality in the second line follows from y < N7

1
Incases 2and 3,y > —, so 1 — — + —— < 1. Therefore, the smallest possible value of O(z*,y) occurs in case 2,
2L 4y = 8y?L
L+d-3 1 L+d-1

ith 2* = 0.25, , and =0 y)=1— -+~
with 2 y>——p —adQy) = 0@",y) 5y " 16471

L+d—-3

1
i Observe that Q(y) is a convex quadratic function of —, so

Finally, we minimize Q(y) restricted to y >

1 AL . L+d-1

v Lid—1%Y T T 4r

L+d-1 [L+d—1
Thus, z* = 0.25 and y* = —27[/, corresponding to p* = 0.5 and m* = —’—47L

L+d—1 B —p* B-—0.5
Lra-2 minimizes (5). The kurtosis of Zp TP is the same as that of =25~
4L m* 0.5

p

By definition, p* = 0.5 and m* =

however, it has smaller variance since m* > 0.5. Hence, the MSE of V4 F'F'P(6) is smaller for €;; ~ than for
Bi.—05

0.5

élj

B.4. GS-shrinkage or BeS-shrinkage?

To analyze whether GS-shrinkage or BeS-shrinkage is superior, we compare their MSEs for the gradient estimator (4), using
Lemma 4.2. The MSE for GS-shrinkage is
(d+1)2 L3(d+1) )
VoF (0
(L+d+1?2 " L(L+d+1)? IVeF @)1z +
(d+1)2+L(d+1)

L(d+2)
_ 2
T (L+d+1)2 IVoF(©)ll2 + N(L+d+1)?

The MSE for BeS-shrinkage is

2
m tr(Vare[Vo £(6,)))

tr(Varg[Vo f(6,€)])

MSE(GSs) = (

4L 2 16L%(d — 1 )
MSE(BeSs) = ((1— 4(L+dl)> + 16L(Lid)1)2> Vo F(9)|l3

d(16L?)
6LN(L 1 d— 12 FVarelVe /(6:))

_ <(L(id i)1)2 n (LLJ(rdd_liF) Ve F ()2 + N(Lffz—w r(Vare[Vo £(6, €)))

Therefore,

MSE(GSs) — MSE(BeSs)

:||WF(9)||§< d+1 d—1 )+tr(Vars[Vef(9,€)])L <( d+2 d )

L+d+1 L+4d-1 N L+d+1)? (L+d—1)?
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A+ D)(L+d=1)—(d—1)(L+d+1)
ETES YY)
L(d+2)(L+d—1)?—-d(L+d+1)?
Ltrdr12(L+d—1)
2L 9L [?—2L+2— (d+1)?
Trarn@ra—y ~rVaeVef O O) T T e a2

B 2L L2 - 2L +2— (d+1)°
T (L+d-D)(IT+d+1) (||V9F(9)|§ TNCTd- DT td+) “(V&rf[v‘)f(e’@]))

= [VoF(0)I3

+ tr(Varg[Vo f(6, f)])

= [VoF (0)II3

At the beginning of optimization, ||V F ()3 is large. If it is large compared to tr(Varg [V f(6,€)])/N, since L? — 2L +
2 — (d + 1)? < 0 for high-dimensional problems, M SE(GSs) > MSE(BeSs).

At the end of optimization, |V F(6)||3 ~ 0. Then, since L? — 2L + 2 — (d + 1)? < 0 for high-dimensional problems,
MSE(GSs) < MSE(BeSs).
B.5. Algorithms for the antithetic gradient estimator

Suppose that instead of the forward difference gradient estimator, we use the antithetic gradient estimator. Mathematically,
given N samples from the oracle ¢; and L IID sampled directions ¢;, let

1

AT
Vo1 (0) = 2¢LN

D (f(0+cea, &) — [0 ca,&))e (10)

l,i
Under Assumption 4.1, we compute the MSE of V F'A7 (§), with the same strategy as for Vo F'F'P (9) (Lemma 4.2).

Bias

E[VoFAT(0)] = Ece ﬁ Z(f(e +ce, &) — f(0 —cer, &))er
1

=E. 2(;% ;(F(é) + ce) — F(6 — cel))el]

=E. _216( (0 + ce) — F(@—cel))e}

1
=E. (2cV9F Te+ 3 Z (0 + ce)e)e
|a]1=3

where the last equality follows from Taylor’s Theorem, « is a d-dimensional vector of non-negative integers, ¢* indicates
element-wise power, and h,, is some scalar-valued function such that h, (y) — 0 asy — 6.

E[VoEAT(0)] = Ec [e(€TVF(0) +¢® > ha(f+ ce)e®)
|Oé‘1 3

= 0?VoF(0) + Eele D> ha(0+ ce)e”]
|a\1_5

where ¢ is the variance of each entry of e. If the Dominated Convergence Theorem (Billingsley, 1995) holds, then as
c— 0,

E[VoEAT(0)] — 02VeF(0),

and the squared norm of the bias of V¢ 47 (0) is the same as that of Vo F'FP(0).
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Variance Using the law of total variance (Billingsley, 1995),

Var[Vo FAT(9)] = Var (E¢[Vo FAT(0) | €]) + E(Vare[Vo FAT(9) | €])

5 LZ (0 + cep) F(G—cq))el]

1
+ ]Ee (M Varg

Var, [(F(0 + ce) — F(6 — ce))e] + ﬁﬂﬂs (Vare [(f(0 4 ce, &) — f(8 —ce,€))e | €])

= Var,

& SO+ &) = 10— e €)e | D

_ 1
T 4L

Var, |e(2ceTVoF(6) + Z ha (0 + ce)e®)

la|1=3

_ 1
T 4L

1
[ 1) 2ceT !
+402LN e | Vare [e(2ce™Vof(6,6) + |Z3h (0 + ce)e”)

1
=7 Var, |e(e"VF(0) + c‘ |ZS ha (0 + ce)e®)

—I—LNIE Vare [e(e"Vof(6,6) +c¢ Z h.,(0 + ce)e®)
leel1=3

where the next-to-last equality follows from Taylor’s Theorem and /'’ is some scalar-valued function with the same condition
as h. Assuming that the Dominated Convergence Theorem holds again, as ¢ — 0, the limit of Var[Vy FAT(6)] is the same
as that of Var[V, F'F'P(9)].

Thus, the MSE of Vo FAT (6) is the same as that of Var[VyFTP(6)]. It follows that any algorithm to minimize the MSE of
Vo F'AT (0) must be the same as an algorithm to minimize the MSE of Vo FF'P(9).

C. Experimental details

C.1. Validating theory on linear regression

Computing the gradient of the objective The objective is the squared error loss. For our data model (9), it is

()

El(y — 072)*/2] = E[(y"2 — 07z + €)?/2]

ElyT2zazTy/2 4+ 0TzxT0/2 + €2 /2 — yT2xT0 — 0T xe + T el
E[0TxxT0/2 — yTxaTO — 0T x€]

E[0TQ0/2 —17Q0] = 0TE[Q]6/2 — E[yTQJ6

where in the third line we have ignored terms that do not include 6.

The gradient of the objective is Vg F'(0) = E(Q)0 — E(Qy) = 0 — E(Q~), since

E(Q) = Ev[E,(V diag(7)VT [ V)] = Ey[VE,(diag(7)) V]
=Ev[VVT] =1 since E(7) is a vector of ones 14 and V is orthogonal

Prior to the start of optimization, E(Q~) is estimated via Monte Carlo with 1000 samples. The estimate is plugged into
V¢ F(0) to obtain the gradient of the objective.

Optimization and testing We first sample 1000 data points from (9) to serve as the test set and initialize the parameters
6 by sampling from A (0, I). There are 100 rounds. Each round consists of i) 10 optimization iterations of SGD with the
gradient estimated from (4) on N newly sampled data points from (9) and L newly sampled directions ¢; ii) computation of
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Table 3. Hyperparameters for GS and BeS in linear regression.

(L,N) c LEARNING RATE (L,N) c LEARNING RATE
(2,5) 0.01 0.001 (2,5) 0.01 0.001
(6,5) 0.01 0.001 (6,5) 0.1 0.001
(20,5) 0.01 0.001 (20,5) 0.01 0.001
(2,15)  0.01 0.001 (2,15)  0.01 0.001
(6,15) 0.01 0.001 (6,15) 0.1 0.001
(20,15)  0.01 0.01 (20,15)  0.01 0.01
(2,50) 0.01 0.001 (2,50) 0.01 0.001
(6,50)  0.01 0.01 (6,50)  0.01 0.01
(20,50) 0.01 0.01 (20,50) 0.01 0.01

(L,N) c LEARNING RATE (L,N) c LEARNING RATE
(2,5) 0.01 0.01 (2,5) 0.01 0.01
(6,5) 0.1 0.01 (6,5) 0.1 0.01
(20,5)  0.01 0.01 (20,5)  0.01 0.01
(2,15)  0.01 0.1 (2,15)  0.01 0.1
(6,15)  0.01 0.1 (6,15) 0.1 0.1
(20,15) 0.1 0.01 (20,15) 0.1 0.01
(2,50)  0.01 0.1 (2,50)  0.01 0.1
(6,50) 0.1 0.1 (6,50) 0.01 0.1
(20,50)  0.01 0.1 (20,50)  0.01 0.1

the squared error loss over the test set. The MSE of the gradient estimate is computed at each iteration and the average is
taken over the 10 iterations per round. Note that f(6,&;) is the squared error loss on data point 4.

Hyperparameter search We ran this experiment for L = {2,6,20} and N = {5, 15,50}, and a selection was shown in the
main paper due to space constraints. Hyperparameters are the spacing ¢, chosen from {0.01, 0.1}, and the SGD learning
rate 7, chosen from {0.001,0.01,0.1}. The values chosen are the ones that minimize the test loss at the end of the 100
rounds, averaged over 3 randomly generated seeds different from those used in Figure 1. Tables 3 and 4 show the chosen
hyperparameters for each algorithm and combination of L and N.

Full results Figures 5 and 6 contain the complete results for the MSE of the gradient estimate and test loss, respectively. We
see that in all cases, the MSE of the gradient is substantially smaller for GS-shrinkage and BeS-shrinkage than GS and BeS.
The story is less clear for the test loss, but usually the test loss of GS-shrinkage and BeS-shrinkage is lower than that of GS
and BeS. See Section 5.1 for further discussion.

C.2. Comparing to baselines on RL

Baselines Orthogonal ES is the same as GS, but with an application of the Gram-Schmidt process to the directions after
1—

they are sampled. Guided ES samples directions from the distribution A/(0, 32), where ¥ = %I + TOZUUT and U is

an orthonormal basis for the k previous gradient estimates; computing the basis also requires the Gram-Schmidt process.

Following recommendations in Maheswaranathan et al. (2019) and Sener & Koltun (2019), we set & = 0.5 and k£ = 50 and

let o = 1 for the first k iterations.

Optimization and testing Our code roughly follows the same structure as Mania et al. (2018), parallelizing trajectory
generation and standardizing the observations. The parameters of the linear policy 0 is initialized at zero. There are 100
rounds, each consisting of 10 optimization iterations and one test step. In more detail, every optimization iteration has the
following steps:

1. Sample L directions ¢;.

2. For each direction, reinitialize the environment, generate one trajectory using the parameters 6 + c¢; and another using
the parameters 6. For those environments with a survival bonus, remove it.
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Table 5. c and learning rate for Ant.

ALGORITHM L=2 L=6 L=20 ALGORITHM L=2 L=6 L=20
GS 0.1 0.1 0.1 GS 0.0001 0.0001  0.0001
BES 0.1 0.1 0.1 BES 0.0001 0.0001 0.0001
GS-SHRINKAGE 0.1 0.1 0.01 GS-SHRINKAGE 0.001 0.001 0.0001
BES-SHRINKAGE 0.1 0.01 0.01 BES-SHRINKAGE 0.001 0.0001  0.0001
ORTHOGONAL ES 0.1 0.1 0.1 ORTHOGONAL ES  0.0001  0.0001  0.0001
GUIDED ES 0.1 0.1 0.1 GUIDED ES 0.0001 0.0001  0.0001

Table 6. c and learning rate for Walker2d.

ALGORITHM L=2 L=6 L=20 ALGORITHM L=2 L=6 L=20
GS 0.01 0.01 0.01 GS 0.0001 0.0001 0.0001
BES 0.1 0.01 0.01 BES 0.001  0.0001 0.0001
GS-SHRINKAGE 0.1 0.01 0.01 GS-SHRINKAGE 0.0001  0.0001  0.0001
BES-SHRINKAGE 0.1 0.01 0.1 BES-SHRINKAGE 0.001 0.0001 0.01

ORTHOGONAL ES 0.01 0.01 0.01 ORTHOGONAL ES  0.0001 0.0001 0.0001
GUIDED ES 0.1 0.1 0.01 GUIDED ES 0.001 0.0001  0.0001

3. Using the 2L rewards, compute the gradient estimate (4) with NV = 1, dividing by the standard deviation of the rewards.

4. Take a gradient ascent step on # with learning rate 7.
and each test step has the following steps:

1. For 1000 trials: Reinitialize the environment and generate a trajectory. Record the total reward.

2. Compute the average and standard deviation of the reward over the trials.

Hyperparameter search Ant and Walker2d have horizon 1000, ML1-Reach 150, and HalfCheetahRandVel 200. We ran
this experiment for L = {2, 6, 20}. Hyperparameters are the spacing ¢, chosen from {0.01, 0.1}, and the learning rate 7,
chosen from {0.0001,0.001,0.01}. The values chosen are the ones that maximize the test reward at the end of the 100
rounds, averaged over 3 randomly generated seeds different from those used in Figure 2. Tables 5 — 8 show the chosen
hyperparameters for each algorithm in the four environments discussed in the main paper.

Additional environments We conducted the above experiment on two additional environments, Hopper and ML1-Push.
Hopper is another locomotion environment, similar to Ant and Walker2d, and ML1-Push is a meta-RL manipulation
environment similar to ML.1-Reach, where the goal is to push an object to some location. The selected hyperparameters are
given in Tables 9 and 10 and the plots of the test reward against the number of generated trajectories during optimization
are given in Figure 7. For L = 2 and L = 6, the qualitative results are similar to ML1-Reach; overall BeS is the best
algorithm, although the standard errors are very large. For L = 20, GS outperforms the other algorithms. We suspect that
this change may be due to the fact that standardizing the rewards during optimization and searching over a grid of learning
rates compensates for errors in the magnitude of the gradient estimate, and thus gives a bigger advantage to GS.

C.3. Ablations

The experimental setup is the same as described for the main online RL experiments, in Appendix C.2. For brevity, we
restrict to the Ant environment and set L = 20. The selected hyperparameters are given in the two parts of Table 11, for i) a
MLP policy instead of linear policy and ii) antithetic gradient estimator instead of forward difference gradient estimator.

C.4. Comparing to baselines on DFO benchmarks

Optimization and testing The parameters are initialized by sampling from A (0, I). There are 100 rounds, each consisting
of 10 optimization iterations and one test step. In more detail, every optimization iteration has the following steps:
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Table 7. c and learning rate for HalfCheetahRand Vel.

ALGORITHM L=2 L=6 L=20 ALGORITHM L=2 L=6 L=20
GS 0.1 0.01 0.01 GS 0.001  0.0001 0.0001
BES 0.01 0.01 0.01 BES 0.0001 0.0001 0.0001
GS-SHRINKAGE 0.1 0.1 0.01 GS-SHRINKAGE 0.001 0.01 0.001
BES-SHRINKAGE 0.1 0.1 0.01 BES-SHRINKAGE 0.001 0.01 0.001
ORTHOGONAL ES 0.1 0.01 0.01 ORTHOGONAL ES 0.001 0.0001  0.0001
GUIDED ES 0.1 0.1 0.1 GUIDED ES 0.001 0.01 0.01
Table 8. c and learning rate for ML1-Reach.
ALGORITHM L=2 L=6 L=20 ALGORITHM L=2 L=6 L=20
GS 0.1 0.1 0.01 GS 0.001  0.001  0.0001
BES 0.1 0.1 0.1 BES 0.001  0.001 0.01
GS-SHRINKAGE 0.1 0.1 0.1 GS-SHRINKAGE 0.001 0.001 0.01
BES-SHRINKAGE 0.1 0.1 0.01 BES-SHRINKAGE 0.001 0.001 0.0001
ORTHOGONAL ES 0.1 0.1 0.1 ORTHOGONAL ES  0.001 0.001 0.01
GUIDED ES 0.1 0.1 0.1 GUIDED ES 0.001 0.001 0.01

1. Sample L directions ¢;.

2. For each direction, obtain a noisy evaluation at the parameters 6 + ce; and another at the parameters 6.

3. Using those 2L numbers, compute the gradient estimate (4) with N = 1.

4. Take a gradient descent step on 6 with learning rate 7.

and at each test step, compute the objective at the current parameters.

Hyperparameter search We ran this experiment for L = {10,100} and N = 1, setting the noise level in Never-
grad to 0.1. Hyperparameters are the spacing ¢, chosen from {0.01,0.1}, and the SGD learning rate 7, chosen from
{0.000001, 0.00001, 0.0001,0.001,0.01}. The values chosen are the ones that minimize the objective at the end of the 100
rounds, averaged over 3 randomly generated seeds different from those used in Figure 4. Tables 12 — 14 show the chosen

hyperparameters for each algorithm in the three objectives discussed in the main paper.
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Table 9. c and learning rate for Hopper.

ALGORITHM L=2 L=6 L=20 ALGORITHM L=2 L=6 L=20
GS 0.1 0.01 0.01 GS 0.001  0.0001 0.0001
BES 0.1 0.01 0.01 BES 0.001  0.0001 0.0001
GS-SHRINKAGE 0.1 0.1 0.01 GS-SHRINKAGE 0.001 0.01 0.0001
BES-SHRINKAGE 0.1 0.1 0.01 BES-SHRINKAGE 0.001 0.001 0.0001
ORTHOGONAL ES 0.1 0.01 0.01 ORTHOGONAL ES  0.001  0.0001 0.0001
GUIDED ES 0.1 0.1 0.1 GUIDED ES 0.001 0.01 0.001

Table 10. c and learning rate for ML1-Push.

ALGORITHM L=2 L=6 L=20 ALGORITHM L=2 L=6 L=20
GS 0.1 0.1 0.1 GS 0.001  0.001 0.01
BES 0.1 0.1 0.1 BES 0.001  0.001 0.01
GS-SHRINKAGE 0.1 0.1 0.1 GS-SHRINKAGE 0.001  0.001 0.01
BES-SHRINKAGE 0.1 0.1 0.1 BES-SHRINKAGE 0.001 0.001 0.01
ORTHOGONAL ES 0.1 0.1 0.1 ORTHOGONAL ES  0.001 0.001 0.01
GUIDED ES 0.1 0.1 0.1 GUIDED ES 0.001 0.001 0.01

Table 11. Selected hyperparameters for Ant, L = 20, with MLP policy (left) or antithetic gradient estimator (right).

ALGORITHM c LEARNING RATE ALGORITHM c LEARNING RATE
GS 0.01 0.0001 GS 0.1 0.0001
BES 0.01 0.0001 BES 0.1 0.0001
GS-SHRINKAGE 0.1 0.01 GS-SHRINKAGE 0.01 0.0001
BES-SHRINKAGE 0.1 0.01 BES-SHRINKAGE 0.01 0.0001
ORTHOGONAL ES  0.01 0.0001 ORTHOGONAL ES 0.1 0.0001
GUIDED ES 0.01 0.0001 GUIDED ES 0.1 0.0001

Table 12. c and learning rate for sphere.

ALGORITHM d=10,L=1 d=100,L =10 d=100,L =100
GS 0.1 0.1 0.1

BES 0.1 0.1 0.1
GS-SHRINKAGE 0.1 0.1 0.1
BES-SHRINKAGE 0.1 0.1 0.1
ORTHOGONAL ES 0.1 0.1 0.1
GUIDED ES 0.1 0.1 0.1
ALGORITHM d=10,L=1 d=100,L =10 d=100,L =100
GS 0.001 0.001 0.001

BES 0.001 0.001 0.001
GS-SHRINKAGE 0.01 0.001 0.001
BES-SHRINKAGE 0.01 0.001 0.001
ORTHOGONAL ES 0.001 0.001 0.001

GUIDED ES 0.001 0.001 0.01
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Figure 5. For linear regression with various L and N: MSE of the gradient at each round averaged over the 10 iterations.
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Figure 6. For linear regression with various L and N: Test loss at each round.
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Figure 7. RL with various L, additional environments

Table 13. c and learning rate for rosenbrock.

ALGORITHM d=10,L=1 d=100,L =10 d=100,L =100
GS 0.1 0.1 0.1
BES 0.1 0.1 0.1
GS-SHRINKAGE 0.1 0.1 0.1
BES-SHRINKAGE 0.1 0.1 0.1
ORTHOGONAL ES 0.1 0.1 0.1
GUIDED ES 0.1 0.1 0.1
ALGORITHM d=10,L=1 d=100,L=10 d=100,L =100
GS 0.000001 0.000001 0.000001
BES 0.000001 0.000001 0.000001
GS-SHRINKAGE 0.000001 0.000001 0.000001
BES-SHRINKAGE 0.000001 0.000001 0.000001
ORTHOGONAL ES 0.000001 0.000001 0.000001

GUIDED ES 0.000001 0.000001 0.00001
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Table 14. c and learning rate for hm.

ALGORITHM d=10,L=1 d=100,L =10 d=100,L =100
GS 0.1 0.1 0.1

BES 0.1 0.1 0.1
GS-SHRINKAGE 0.1 0.1 0.1
BES-SHRINKAGE 0.1 0.1 0.1
ORTHOGONAL ES 0.1 0.1 0.1
GUIDED ES 0.1 0.1 0.1
ALGORITHM d=10,L=1 d=100,L=10 d=100,L =10
GS 0.001 0.0001 0.001

BES 0.001 0.0001 0.001
GS-SHRINKAGE 0.001 0.0001 0.001
BES-SHRINKAGE 0.001 0.0001 0.001
ORTHOGONAL ES 0.001 0.0001 0.001
GUIDED ES 0.001 0.0001 0.001




