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Abstract

Although machine learning (ML) algorithms are
widely used to make decisions about individuals
in various domains, concerns have arisen that (1)
these algorithms are vulnerable to strategic manip-
ulation and “gaming the algorithm”; and (2) ML
decisions may exhibit bias against certain social
groups. Existing works have largely examined
these as two separate issues, e.g., by focusing on
building ML algorithms robust to strategic manip-
ulation, or on training a fair ML algorithm. In this
study, we set out to understand the impact they
each have on the other, and examine how to char-
acterize fair policies in the presence of strategic
behavior. The strategic interaction between a deci-
sion maker and individuals (as decision takers) is
modeled as a two-stage (Stackelberg) game; when
designing an algorithm, the former anticipates the
latter may manipulate their features in order to
receive more favorable decisions. We analytically
characterize the equilibrium strategies of both,
and examine how the algorithms and their result-
ing fairness properties are affected when the deci-
sion maker is strategic (anticipates manipulation),
as well as the impact of fairness interventions on
equilibrium strategies. In particular, we identify
conditions under which anticipation of strategic
behavior may mitigate/exacerbate unfairness, and
conditions under which fairness interventions can
serve as (dis)incentives for strategic manipulation.
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1. Introduction
As machine learning (ML) algorithms are increasingly be-
ing used to make high-stake decisions in domains such as
hiring, lending, criminal justice, and college admissions, the
need for transparency increases in terms of how decisions
are reached given input. However, given (partial) informa-
tion about an algorithm, individuals subject to its decisions
can adapt their behavior by strategically manipulating their
data in order to obtain favorable decisions. This strategic
behavior in turn hurts the performance of ML models and di-
minishes their utility. Such a phenomenon has been widely
observed in real-world applications, and is known as Good-
hart’s law, which states “once a measure becomes a target, it
ceases to be a good measure” (Strathern, 1997). For instance,
a hiring or admissions practice that heavily depends on GPA
might motivate students to cheat on exams; not accounting
for such manipulation may result in disproportionate hiring
of under-qualified individuals. A strategic decision maker is
one who anticipates such behavior and thus aims to make
its models robust to strategic manipulation.

A second challenge facing ML algorithms is the growing
concern over bias in their decisions, and various notions
of fairness (e.g., demographic parity (Barocas et al., 2019),
equal opportunity (Hardt et al., 2016b)) have been proposed
to measure and remedy biases. These measures typically
impose an (approximate) equality constraint over certain
statistical measures (e.g., positive rate, true positive rate,
etc.) across different groups when building ML algorithms.

In this paper, we study (fair) machine learning in the pres-
ence of strategic manipulation. Specifically, we consider
a decision maker whose goal is to select individuals that
are qualified for certain tasks based on a given set of fea-
tures. Given knowledge of the selection policy, individuals
can tailor their behavior and manipulate their features in
order to receive favorable decisions. We shall assume that
this feature manipulation does not affect an individual’s
true qualification state. We say the decision maker (and its
policy) is strategic if it anticipates such manipulation; it is
non-strategic if it does not take into account individuals’
manipulation in its policies.

We adopt a two-stage (Stackelberg) game setting where the
decision maker commits to its policies, following which
individuals best-respond. A crucial difference between this
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study and existing models of strategic interaction is that
existing models typically assume features and their manip-
ulation are deterministic so that the manipulation cost can
be modeled as a function of the change in features (Hardt
et al., 2016a; Dong et al., 2018; Milli et al., 2019; Hu et al.,
2019; Braverman & Garg, 2020; Brückner & Scheffer, 2011;
Haghtalab et al., 2020; Kleinberg & Raghavan, 2019; Chen
et al., 2020; Miller et al., 2020); by contrast, in our setting
features are random variables whose realizations are un-
known prior to an individual’s manipulation decision. In
fact, this is the case in many important applications, moti-
vating examples are presented in Sec. 3.

Moreover, among these existing works, only (Milli et al.,
2019; Hu et al., 2019; Braverman & Garg, 2020) studied the
disparate impact of ML decisions on different social groups,
where the disparity stems from different manipulation costs
and different feature distributions. No fairness intervention
was considered in these works. In contrast, we study the
impact of fairness intervention on different groups in the
presence of strategic manipulative behavior, and explore
the role of fairness intervention in (dis)incentivizing such
manipulation. We aim to answer the following questions:
how does the anticipation of individuals’ strategic behavior
impact a decision maker’s utility, and the resulting policies’
fairness properties? How is the Stackelberg equilibrium
affected when fairness constraints are imposed? Can fair-
ness intervention serve as (dis)incentives for individuals’
manipulation?

Our main contributions and findings are as follows.

1. We formulate a Stackelberg game to model the interac-
tion between a decision maker and strategic individuals
(Sec. 3). We characterize both strategic (fair) and non-
strategic (fair) optimal policies of the decision maker,
and individuals’ best response (Sec. 4, Lemmas 4.2-4.7).

2. We study the impact of the decision maker’s anticipation
of individuals’ strategic manipulation by comparing non-
strategic with strategic policies (Sec. 5):
• We show that compared to non-strategic policy, strate-

gic policy always disincentivizes manipulation; it over
(resp. under) selects when a population is majority-
qualified (resp. majority-unqualified)1(Thm. 5.3).

• We show that the anticipation of manipulation can
worsen the fairness of a strategic policy: when one
group is majority-qualified while the other is majority-
unqualified (Thm. 5.4); on the other hand, when both
groups are majority-unqualified, we show the possibil-
ity of using a strategic policy to mitigate unfairness
and even flip the disadvantaged group (Thm. 5.5).

3. We study the impact of fairness interventions on policies

1A group is majority-(un)qualified if a decision maker would
receive positive(negative) utility upon accepting all individuals in
that group.

and individuals’ manipulation (Sec. 6).

• If a decision maker lacks information to anticipate
manipulative behavior (but which in fact exists), we
identify conditions under which such non-strategic de-
cision maker benefits from using fairness constrained
policies rather than unconstrained policies (Thm. 6.1).

• By comparing individuals’ responses to strategic pol-
icy with and without fairness intervention, we iden-
tify scenarios under which a strategic fair policy can
(dis)incentivize manipulation compared to an uncon-
strained strategic policy (Theorems 6.2-6.4).

4. We examine our theoretical findings using both synthetic
and real-world datasets (Sec. 8).

2. Related Work
Our work closely connects to the literature on classification
problems in the presence of strategic manipulation. Hardt
et al. (2016a) formulated such problem as a Stackelberg
competition between the decision maker and individuals,
where the decision maker publishes the classifier first, and
individuals after observing the classifier can manipulate
their features at costs to maximize their utilities. Different
from the Stackelberg formulation in our work, manipulation
cost in (Hardt et al., 2016a) is modeled as a deterministic
function of change in features before and after manipula-
tion. The decision maker aims to find an optimal classifier
such that the classification accuracy is maximized when
individuals best respond, and the learning algorithms are
developed in (Hardt et al., 2016a). Dong et al. (2018) ex-
tended this strategic classification to an online setting, where
data arrives sequentially and only the manipulated data is
revealed. An online convex classification learning algorithm
was designed such that the averaged regret diminishes in
the long run. (Milli et al., 2019; Hu et al., 2019) extended
(Hardt et al., 2016a) by assuming individuals from the dif-
ferent social groups have different costs in manipulation,
and the disparate impacts on different groups were studied.
Braverman & Garg (2020) explored the role of randomness
in strategic classification and focused on randomized clas-
sifiers. They showed that randomness can improve classifi-
cation accuracy and mitigate the disparate effects incurred
by manipulation costs across different groups in strategic
settings. Sundaram et al. (2021) generalized (Hardt et al.,
2016a) by allowing individuals’ heterogeneous preferences
over classification outcomes and studied PAC-learnability
of strategic classification.

Note that the manipulation does not affect an individual’s un-
derlying label in the works mentioned above, i.e., strategic
manipulation is viewed as gaming. In contrast, another line
of research (Haghtalab et al., 2020; Kleinberg & Raghavan,
2019; Coate & Loury, 1993; Alon et al., 2020) considers a
setting where the individual’s label (qualification) changes
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in accordance with the strategic behavior. Specifically, the
goal of the decision maker is to design a mechanism such
that individuals are incentivized to behave toward direc-
tions that improve the underlying qualifications (Haghtalab
et al., 2020; Kleinberg & Raghavan, 2019; Alon et al., 2020).
(Chen et al., 2020; Miller et al., 2020; Shavit et al., 2020;
Bechavod et al., 2021) consider both types of strategic be-
havior: gaming without changing labels and improvement.
Specifically, Chen et al. (2020) developed classifiers that
disincentivize manipulation while incentivizing improve-
ment. Miller et al. (2020) proposed a causal framework for
distinguishing between gaming and improvement. Shavit
et al. (2020) considered a strategic regression problem and
suggested improving individuals’ underlying states using
causal interventions through decision rules. Bechavod et al.
(2021) studied strategic interactions in an online regression
setting and showed that the decision-maker can identify
meaningful variables (i.e., features whose values affact the
true label) from a sequence of strategic interactions.

In Stackelberg game formulations, the decision maker al-
ways moves first and individuals respond after decision
maker’s action has been disclosed. Instead, (Coate & Loury,
1993; Liu et al., 2020; Brückner et al., 2012) consider sce-
narios where both individuals and the decision maker act
simultaneously. They formulate the strategic interaction be-
tween individuals and decision maker as a game and study
the Nash equilibria of the game. In particular, Coate &
Loury (1993) considered a setting where individuals are
from two social groups which are identical in nature but one
group suffers from the negative stereotype. They showed
that such stereotype results in different equilibria of two
groups. The impact of demographic parity fairness is also
examined in (Coate & Loury, 1993). Liu et al. (2020) stud-
ied a similar game, but assumed two groups can be different
in feature distributions and manipulation costs.

3. Problem Formulation
Consider two groups Ga, Gb distinguished by a sensitive
attribute S ∈ {a, b} (e.g., gender), with fractions ns =
Pr(S = s) of the population. An individual from either
group has observable features X ∈ Rd and a hidden qual-
ification state Y ∈ {0, 1}. Let αs = PY |S(1|s) be the
qualification rate of Gs. A decision maker makes a deci-
sion D ∈ {0, 1} ( “0” being negative/reject and “1” posi-
tive/accept) for an individual using a group-dependent policy
πs(x) = PD|XS(1|x, s)2. An individual’s action is denoted
by M ∈ {0, 1}, with M = 1 indicating manipulation and
M = 0 otherwise. Note that in our context manipulation
does not change the true qualification state Y . It is the

2We use group-dependent policies to ensure that perfect fair-
ness can be attained under fairness intervention; this allows us to
study the impact of fairness constraints more precisely.

qualification state Y , sensitive attribute S, and manipulation
action M together that drive the realizations of features X .

Best response. An individual in Gs incurs a random cost
Cs ≥ 0 when manipulating its features, with probability
density function (PDF) fs(c) and cumulative density func-
tion (CDF) FCs(c) =

∫ c
0
fs(z)dz. The realization of this

random cost is known to an individual when determining its
action M ; while the decision maker only knows the overall
cost distribution of each group. Thus the response that the
decision maker anticipates (from the group as a whole or
from a randomly selected individual) is expressed as fol-
lows, whereby given policy πs, an individual in Gs will
manipulate its features if doing so increases its utility:

wPD|YMS(1|y, 1, s)− Cs ≥ wPD|YMS(1|y, 0, s).

Here w > 0 is a fixed benefit to the individual associated
with a positive decision D = 1 (the benefit is 0 otherwise);
without loss of generality we let w = 1. In other words, the
best response the decision maker expects from individuals of
Gs with qualification y is their probability of manipulation,
denoted by pys := PM |Y S(1|y, s) and written as:

pys(πs) = Pr
(
Cs ≤ PD|YMS(1|y, 1, s)− PD|YMS(1|y, 0, s)

)
.

We assume that individuals manipulate by imitating the
features of those qualified, e.g., students cheat on exams
by hiring a qualified person to take exams (or copying
answers of those qualified), job applicants manipulate re-
sumes by mimicking those of the skilled employees, loan
applicants fool the lender by using/stealing identities of
qualified people, etc. This is inspired by the imitative
learning behavior observed in social learning, whereby
new behaviors are acquired by copying social models’ ac-
tions (Ganos et al., 2012; Gergely & Csibra, 2006). Un-
der this assumption, the qualified individuals will not have
incentives to manipulate (as manipulation brings no ad-
ditional benefit but only cost) and only those unqualified
may choose to manipulate, i.e., p1

s(πs) = 0. To sim-
plify the notation, we will use PX|Y S(x|y, s) to denote
the distributions before manipulation. The feature distri-
bution of those unqualified after manipulation becomes
(1− p0

s(πs))PX|Y S(x|0, s) + p0
s(πs)PX|Y S(x|1, s).

Motivating Example: The above formulation is fundamen-
tally different from existing literature: 1) the manipulated
outcomes are not deterministic where individuals only have
probabilistic knowledge of how features may change upon
manipulation; 2) the manipulation cost is fixed and known,
as opposed to being a function of the actual change in the
feature before and after manipulation. A prime example is
cheating on an exam by paying for someone else to take
it, where the exam score is treated as feature (in admis-
sions or employment decisions): (i) here individual’s own
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feature (unrealized score) and the manipulated feature out-
come (actual score received by an imposter) are random,
but individuals have a good idea from past experience what
those score distributions would be like; (ii) the cost of hiring
someone is more or less fixed, determined by the (expected)
outcome (the fake score) rather than the difference in score
improvement. As the true test score was never realized
(those who hire someone do not take the exam themselves),
it can be hard to compute precisely how much the feature
has improved and put a price on it even after the fact.

In addition to the above, there are many other real-world
scenarios where manipulation outcome is not deterministic:
athletes may choose to dope but how much performance
(feature) improvement they get is not guaranteed; purchas-
ing a stolen credit card number (or SSN) from hackers where
the improved feature (e.g., purchase/cash limit) is random as
the card is drawn from many stolen cards. Existing models
do not capture such inherent randomness.

Optimal (fair) policy. The decision maker receives a true-
positive (resp. false-positive) benefit (resp. penalty) u+

(resp. u−) when accepting a qualified (resp. unqualified) in-
dividual. Its utility, denoted by R(D,Y ), is R(1, 1) = u+,
R(1, 0) = u−, R(0, 0) = R(0, 1) = 0. The decision maker
aims to find optimal policies for the two groups such that its
expected total utility E[R(D,Y )] is maximized.

There are two types of decision makers, strategic and non-
strategic: A strategic decision maker anticipates strategic
manipulation, has perfect information on the manipulation
cost distribution and accounts for this in determining poli-
cies, while a non-strategic decision maker ignores manipu-
lative behavior in determining its policies. Either type may
further impose a fairness constraint C, to ensure that πa and
πb satisfy the following:

EX∼PCa [πa(X)] = EX∼PCb [πb(X)] , (1)

wherePCs is some probability distribution overX associated
with fairness constraint C. Many fairness notions can be
written in this form (Zhang et al., 2019; 2020a; Zhang & Liu,
2021; Khalili et al., 2021a), e.g., equal opportunity (EqOpt)
(Hardt et al., 2016b) where PEqOpt

s (x) = PX|Y S(x|1, s),
or demographic parity (DP) (Barocas et al., 2019) where
PDP
s (x) = PX|S(x|s).

The above leads to four types of optimal policies a decision
maker can use, which we consider in this paper: 1) non-
strategic policy; 2) non-strategic fair policy; 3) strategic
policy; 4) strategic fair policy. These are detailed in Sec. 4.

The Stackelberg game. The interaction between the deci-
sion maker and individuals consists of the following two
stages in sequence: (i) The former publishes its policies
(πa, πb), which may be strategic or non-strategic, and may
or may not satisfy a fairness constraint, and (ii) the latter,

while observing the published policies and their realized
costs, decide whether to manipulate their features.

4. Four types of (non-)strategic (fair) policies
Non-strategic policy. A decision maker who does not ac-
count for individuals’ strategic manipulation maximizes the
expected utility Ûs(πs) over Gs defined as follows:
∫
X

[
u+αsPX|Y S(x|1, s)− u−(1− αs)PX|Y S(x|0, s)

]
πs(x)dx.

Define Gs’s qualification profile as γs(x) = PY |XS(1|x, s).
Then, we can show that the non-strategic policy π̂UNs =

argmaxπsÛs(πs) is in the form of a threshold policy, i.e.,
π̂UNs (x) = 1

(
γs(x) ≥ u−

u++u−

)
(Appendix F.1). Throughout

the paper, we will present results in the one dimensional
feature space. Generalization to high dimensional spaces is
discussed in Appendix A.

Assumption 4.1. PX|Y S(x|1, s), PX|Y S(x|0, s) are con-
tinuous and satisfy the strict monotone likelihood ratio prop-
erty, i.e., PX|Y S(x|1,s)

PX|Y S(x|0,s) is increasing in x ∈ R.

Assumption 4.1 is relatively mild and can be satisfied by dis-
tributions such as exponential and Gaussian, and has been
widely used (Zhang et al., 2020b; Jung et al., 2020; Barman
& Rathi, 2020; Khalili et al., 2021b; Coate & Loury, 1993).
It implies that an individual is more likely to be qualified
as their feature value increases. Under Assumption 4.1, the
threshold policy can be written as πs(x) = 1(x ≥ θs) for
some θs ∈ R. Throughout the paper, we assume Assump-
tion 4.1 holds and focus on threshold policies. We will
frequently use θs to denote policy πs. Then, the thresholds
for non-strategic policies are characterized as follows.

Lemma 4.2. Let (θ̂UNa , θ̂
UN
b ) be the non-strategic optimal

thresholds. Then PX|Y S(θ̂UNs |1,s)
PX|Y S(θ̂UNs |0,s)

= u−(1−αs)
u+αs

.

Non-strategic fair policy. Denoted as (π̂Ca , π̂
C
b ), this is

found by maximizing the total utility subject to fairness
constraint C, i.e., (π̂Ca , π̂

C
b ) = argmax(πa,πb)

naÛa(πa) +

nbÛb(πb) such that Eqn (1) holds. It can be shown that for
EqOpt and DP fairness, the optimal fair policies are also
threshold policies and can be characterized by the following.

Lemma 4.3 ((Zhang et al., 2020b)). Let (θ̂Ca , θ̂
C
b ) be thresh-

olds in non-strategic optimal fair policies. These satisfy

∑

s=a,b

ns

(
u+αsPX|Y S(θ̂Cs |1, s)− u−(1− αs)PX|Y S(θ̂Cs |0, s)

PCs (θ̂Cs )

)
= 0.

Strategic policy. Let p0
s := PM |Y S(1|0, s) be the probabil-

ity that unqualified individuals in Gs manipulate.3 Under

3Because individuals manipulate by imitating those qualified
(Sec.3), qualified individuals do not have incentives to manipulate.
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a policy πs(x) = 1(x ≥ θ), the strategic decision maker’s
expected utility Us(θ) over Gs is as follows:

Ûs(θ)− u−(1− αs)
(
FX|Y S(θ|0, s)− FX|Y S(θ|1, s)

)
p0
s

where Ûs(θ) is the expected utility under non-strategic pol-
icy, FX|Y S(x|y, s) =

∫ x
−∞ PX|Y S(z|y, s)dz denotes CDF.

Definition 4.4. Define manipulation benefit as the benefit
an individual gains from manipulation, i.e.,

∆s(θ) := FX|Y S(θ|0, s)− FX|Y S(θ|1, s).

Then, unqualified individuals’ best-response (i.e., manipula-
tion probability introduced in Sec. 3) to a policy πs(x) =
1(x ≥ θ) can be equivalently written as

p0
s(θ) := p0

s(πs) = FCs(∆s(θ)).

The detailed derivation is in Appendix F.1. Let x∗s be such
that PX|Y S(x∗s|1, s) = PX|Y S(x∗s|0, s), which is unique
under Assumption 4.1. Then the manipulation probabil-
ity p0

s(θ) is single-peaked with maximum occurring at x∗s ,
and limθ→−∞ p0

s(θ) = limθ→+∞ p0
s(θ) = 0, meaning that

when the threshold is sufficiently low or high, unqualified
individuals are less likely to manipulate their features. Plug-
ging this in the decision maker’s utility, we have

Us(θ) = Ûs(θ)− u−(1− αs)∆s(θ)FCs(∆s(θ))︸ ︷︷ ︸
term 2:=Ψs(∆s(θ))

. (2)

Define a function Ψs(z) := u−(1−αs)FCs(z)z, then term
2 in Eqn. (2) can be written as Ψs(∆s(θ)), and can be inter-
preted as the additional loss incurred by the decision maker
due to manipulation (equivalently, the average manipulation
gain by group Gs). Further, let Ψ′s(z) be denoted as the first
order derivative of Ψs(z).
Definition 4.5. Ψ′s(∆s(θ)) indicates the decision maker’s
marginal loss caused by strategic manipulation (equiva-
lently, the marginal manipulation gain of Gs).

The thresholds for strategic policies are as follows.
Lemma 4.6. For (θUNa , θ

UN
b ), the strategic optimal thresh-

olds, PX|Y S(θUNs |1,s)
PX|Y S(θUNs |0,s)

=
u−(1−αs)−Ψ′s(∆s(θ

UN
s ))

u+αs−Ψ′s(∆s(θUNs )) .

Strategic fair policy. Strategic fair thresholds (θCa , θ
C
b ) are

found by maximizing the total expected utility subject to fair-
ness constraint C, i.e., (θCa , θ

C
b ) = argmax(θa,θb)

naUa(θa)+
nbUb(θb) such that Eqn. (1) holds. They can be character-
ized by the following.
Lemma 4.7. Let (θCa , θ

C
b ) be the thresholds in strategic op-

timal fair policies. These satisfy

∑

s=a,b

ns

(PX|Y S(θCs |0, s)− PX|Y S(θCs |1, s)
PCs (θCs )

Ψ′s(∆s(θ
C
s )) +

u+αsPX|Y S(θCs |1, s)− u−(1− αs)PX|Y S(θCs |0, s)
PCs (θCs )

)
= 0.

Note that besides (θUNa , θ
UN
b ) and (θCa , θ

C
b ), equations in Lem-

mas 4.6 and 4.7 may be satisfied by other threshold pairs
that are not optimal. We will discuss this in the next section.

5. Impact of anticipating manipulations
Impact on the optimal policy & utility function. We first
compare strategic policy θUNs with non-strategic policy θ̂UNs ,
and examine how the policy and the decision maker’s ex-
pected utility differ. Let ∆s := maxθ ∆s(θ) be defined as
the maximum manipulation benefit an individual in Gs may
gain from all possible policies.

Assumption 5.1. ∀s ∈ {a, b}, the marginal manipulation
gain of Gs, Ψ′s(z) <∞, is non-decreasing over [0,∆s].

Assumption 5.1 says that a group’s marginal manipulation
gain does not decrease as manipulation benefit increases.
It implies that when each individual benefits more from
manipulation (increased ∆s(θ)), more are incentivized to
manipulate and the total loss of the decision maker caused by
manipulation (or group’s total manipulation gain) increases
faster. This a very natural assumption: the incentives for
manipulation increases when manipulation benefit increases.
Examples (e.g., beta/uniformly distributed cost) satisfying
this can also be found in Appendix B. We assume it holds
in Sections 5 and 6.
Remark 5.2. Ψ′s(0) = 0 and Ψ′s(∆s(θ)) is single-peaked
with maximum occurring at x∗s .

For simplicity, let δu = u−
u−+u+

, νs = max{u+αs, u−(1−
αs)}. Define set Z = {z|Ψ′s(∆s(z)) = νs} whose cardi-
nality |Z| ∈ {0, 1, 2} depends on the maximum marginal
manipulation gain Ψ′s(∆s(x

∗
s)): if Ψ′s(∆s(x

∗
s)) > νs, then

|Z| = 2 and denote Z = {zs, zs} where zs < x∗s < zs (see
Fig. 1 (top) for an illustration).

Theorem 5.3. 1. If αs = δu, then θUNs = θ̂UNs = x∗s when
|Z| ≤ 1, otherwise θUNs ∈ Z .

2. If αs < δu (resp. αs > δu), then θUNs > θ̂UNs > x∗s (resp.
θUNs < θ̂UNs < x∗s). Moreover, if |Z| = 2, then θ̂UNs > zs
(resp. θ̂UNs < zs) and Us(θ) may have additional extreme
points in (zs, x

∗
s) (resp. (x∗s, zs)); otherwise θ̂UNs is the

unique extreme point of Us(θ).

Thm. 5.3 shows that as compared to a non-strategic pol-
icy θ̂UNs , a strategic policy θUNs over(under) selects when a
group is majority-(un)qualified4. In either case, as shown by
Thm. 5.3, this means θ̂UNs is always closer to x∗s (the single

4We say Gs is majority-unqualified (resp. majority-qualified) if
αs < δu (resp. αs > δu): if Gs is majority-qualified, then the total
utility the decision maker receives by accepting all individuals in
Gs is αsu+ − (1− αs)u− > 0. Intuitively, it measures a group’s
overall qualification level in terms of potential benefit it could
bring to the decision maker.
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peak of p0
s(θ)) compared to θUNs . Therefore, the strategic

policy always disincentivizes manipulative behavior, i.e.,
manipulation probability p0

s(θ
UN
s ) < p0

s(θ̂
UN
s ).

zs zsx∗
s

Ψ
′ s
(∆

s
(θ

)) νs

zs zsx∗
s

U
s
(θ

)

Figure 1. Illustration of func-
tions: Ψ′s(∆s(θ)), Us(θ)

Moreover, Thm. 5.3 states that
Us(θ) has multiple extreme
points if maximum marginal
manipulation gain Ψ′s(∆s(x

∗
s))

is sufficiently large, and it
also specifies the range of
those extreme points. In
other words, although both
Ûs(θ) (non-strategic utility)
and Ψs(∆s(θ)) are single-
peaked with unique extreme
points, their difference Us(θ)
(Eqn. (2)) may have multiple
extreme points. As we will
see later, this results in strate-
gic and non-strategic policies
having different properties in many aspects.

An example of Us(θ) is shown in Fig. 1 (bottom), where
X|Y = 0, S = s and X|Y = 1, S = s are both Gaussian
distributed with the same variance, and manipulation cost
Cs is beta distributed, αs > δu. The red star is the optimal
threshold θUNs < zs; two magenta dots are other extreme
points of Us(θ), which are in (x∗s, zs).

Impact on fairness. The characterization of a strategic pol-
icy (θUNa , θ

UN
b ) and a non-strategic policy (θ̂UNa , θ̂

UN
b ) allows

us to further compare them against a given fairness criterion
C ∈ {EqOpt,DP}. Suppose we define the unfairness of
a threshold policy (θa, θb) as EC(θa, θb) = EX∼PCa [1(x ≥
θa)] − EX∼PCb [1(x ≥ θb)] = FCb (θb) − FCa(θa), where the

CDF FCs (θ) =
∫ θ
−∞ PCs (x)dx. Define the disadvantaged

group under a policy (θa, θb) as the group with the larger
FCs (θs), i.e., the group with the smaller selection rate (DP) or
the smaller true positive rate (EqOpt). Define group index
−i := {a, b}\i. Note that we measure unfairness EC(θa, θb)
over the original feature distributions PX|Y S(x|y, s) before
manipulation.

We first identify distributional conditions under which the
strategic optimal policy worsens unfairness.

Theorem 5.4. If αi > δu > α−i (i.e., Gi(G−i) is
majority-(un)qualified) and G−i is disadvantaged under
the non-strategic policy, then the strategic policy (θUNa , θ

UN
b )

has worse unfairness than the non-strategic (θ̂UNa , θ̂
UN
b ),

i.e.,
∣∣EC(θUNa , θUNb )

∣∣ >
∣∣EC(θ̂UNa , θ̂UNb )

∣∣, C ∈ {EqOpt,DP}.
Moreover, the disadvantaged group under (θUNa , θ

UN
b ) and

(θ̂UNa , θ̂
UN
b ) is the same.

Thm. 5.4 is applicable when one group is majority-qualified
while the other majority-unqualified and disadvantaged un-

der a non-strategic policy, a common occurrence in the real
world as the less qualified group is typically less selected
and disadvantaged. Because the majority-(un)qualified
Gi(G−i) is over(under)-selected under a strategic policy (by
Thm.5.3), G−i becomes more disadvantaged while Gi be-
comes more advantaged, i.e., the unfairness gap is wider
under the strategic policy.

We next identify conditions on the manipulation cost, under
which a strategic policy (θUNa , θ

UN
b ) can lead to a more equi-

table outcome or flip the (dis)advantaged group compared
to a non-strategic (θ̂UNa , θ̂

UN
b ).

Theorem 5.5. If αa, αb < δu (i.e., both groups are
majority-unqualified) and G−i is disadvantaged under non-
strategic policy, then given any G−i, there always exists cost
Ci for group Gi such that its maximum marginal manipula-
tion gain Ψ′i(∆i(x

∗
i )) is sufficiently large and

1. (θUNa , θ
UN
b ) mitigates the unfairness; or

2. (θUNa , θ
UN
b ) flips the disadvantaged group from G−i to Gi.

Intuitively, as Gi’s manipulation cost decreases, more indi-
viduals from Gi can afford manipulation; thus a strategic
decision maker disincentivizes manipulation by increasing
the threshold θUNi . For any G−i, as FCi (θUNi ) increases, either
the unfairness gets mitigated or FCi (θUNi ) becomes larger
than FC−i(θUN−i). Proposition D.1 in Appendix D considers
a special case when PX|Y S(x|y, a) = PX|Y S(x|y, b), and
gives conditions on Ψ′s(·) under which (θUNa , θ

UN
b ) mitigates

the unfairness or flips the disadvantaged group.

6. Impact of fairness interventions
In this section, we study how non-strategic and strate-
gic policies are affected by fairness interventions C ∈
{DP,EqOpt}.

Impact of fairness intervention on non-strategic policy.
First, we consider a non-strategic decision maker and com-
pare (θ̂UNa , θ̂

UN
b ) with (θ̂Ca , θ̂

C
b ), both ignoring strategic manip-

ulation but the latter imposing a fairness criterion. Thm. 6.1
identifies conditions under which a fairness constrained
(θ̂Ca , θ̂

C
b ) yields higher utility from both groups compared

to unconstrained (θ̂UNa , θ̂
UN
b ). It is worth noting because had

strategic manipulation been absent, (θ̂UNa , θ̂
UN
b ) by definition

would attain the optimal/highest utility for decision maker.

Theorem 6.1. Let νs = max{u+αs, u−(1−αs)}. Suppose
Ψ′s(∆s(θ̂

C
s )) > νs,∀s ∈ {a, b} and G−i is disadvantaged

under the non-strategic optimal policy, then any of the fol-
lowing three cases could result in Us(θ̂Cs ) > Us(θ̂

UN
s ),∀s ∈

{a, b}:
1. αi < δu < α−i

2. αa, αb > δu and αi → δu

3. αa, αb < δu and α−i → δu
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Condition αi → δu (resp. α−i → δu) means that qualifica-
tion rate αi (resp. α−i) is sufficiently close to δu. Thm. 6.1
says that when the marginal manipulation gain of both
groups under a non-strategic fair policy (θ̂Ca , θ̂

C
b ) are suf-

ficiently large, (θ̂Ca , θ̂
C
b ) may outperform (θ̂UNa , θ̂

UN
b ) in terms

of both fairness and utility due to the misalignment of Us(θ)
and Ûs(θ) caused by manipulation. This means that if the
decision maker lacks information or awareness to antici-
pate manipulative behavior (but which in fact exists), then
it would benefit from using a fairness constrained policy
(θ̂Ca , θ̂

C
b ) rather than (θ̂UNa , θ̂

UN
b ).

Impact of fairness intervention on the strategic policy.
We now compare (θUNa , θ

UN
b ) with (θCa , θ

C
b ). We also explore

their respective subsequent impact on individuals’ manip-
ulative behavior by comparing manipulation probabilities(
p0
a(θUNa ), p0

b(θ
UN
b )
)

and
(
p0
a(θCa), p0

b(θ
C
b )
)
. The goal here is

to understand whether fairness intervention can serve as in-
centives or disincentives for strategic manipulation. Accord-
ing to Thm. 5.3, Us(θ) may have multiple extreme points
under strategic manipulation if the group’s marginal manip-
ulation gain is sufficiently large. Depending on whether
Us(θ) has multiple extreme points, different conclusions
result as outlined in Theorems 6.2 and 6.3 below, which
identifies conditions under which fairness intervention may
increase the manipulation incentive for one group while
disincentivizing the other, or it may serve as incentives for
both groups. Denote pCs := p0

s(θ
C
s ) and pUNs := p0

s(θ
UN
s ).

Theorem 6.2. When at least one of Ua(θ), Ub(θ) has mul-
tiple extreme points, then it is possible that ∀s ∈ {a, b},
θUNs > θCs or θUNs < θCs , i.e., both groups are over/under
selected under fair policies. In this case,

1. If αi > δu > α−i, then (pUNi − pCi )(pUN−i − pC−i) < 0.
2. If αa, αb > δu (or αa, αb < δu), then either pUNa < pCa ,
pUNb < pCb or (pUNa − pCa)(pUNb − pCb ) < 0.

When not accounting for strategic manipulation, Ûs(θ) has
a unique extreme point, and imposing a fairness constraint
results in one group getting under-selected and the other
over-selected. In contrast, when the decision maker an-
ticipates strategic manipulation, Us(θ) may have multiple
extreme points. One consequence of this difference is that
both Ga and Gb may be over- or under-selected when fairness
is imposed, resulting in more complex incentive relation-
ships. Specifically, if one group is majority-qualified while
the other is majority-unqualified (i.e., αi > δu > α−i), then
under-selecting (resp. over-selecting) both groups under
fair policies will increase (resp. decrease) the incentives
of the former to manipulate, while disincentivizing (resp.
incentivizing) the latter (by Case 1); if both groups are
majority-(un)qualified (i.e., αa, αb ≶ δu), then a fair policy
may incentivize both to manipulate (by Case 2).

If the marginal manipulation gain of both groups are not

sufficiently large, i.e., both Ua(θ) and Ub(θ) have unique
extreme points, then fairness intervention always results in
one group getting over-selected and the other under-selected.
However, its subsequent impact on incentives may vary
depending on PX|Y S(x|y, s), ns, as shown in Thm. 6.3.
Theorem 6.3. When both Ua(θ), Ub(θ) have unique ex-
treme points, we have θUNi > θCi and θUN−i < θC−i. Moreover,

1. If αi > δu > α−i, then ∀α−i, ∃κ, τ ∈ (0, 1) such that
∀αi > κ and ∀ni > τ , we have pUNi < pCi , pUN−i > pC−i.

2. If αa, αb > δu (resp. αa, αb < δu), then ∀α−i, there
exists κ ∈ (δu, 1) (resp. κ ∈ (0, δu)) such that ∀ αi >
κ (resp. αi < κ), we have (pUNa − pCa)(pUNb − pCb ) < 0.

Thm. 6.3 identifies two scenarios under which fair policies
incentivize one group (say Gi) while disincentivizing the
other (G−i): when Gi is majority-qualified, G−i majority-
unqualified, and Gi sufficiently qualified (αi > κ) and
represented in the entire population (ni > τ) (by Case
1); or, when both are majority-(un)qualified and one group
sufficiently (un)qualified (by Case 2).

Next, we identify conditions under which fairness interven-
tion can disincentivize both groups. Let xUNs be defined s.t.
∆s(x

UN
s ) = ∆s(θ

UN
s ) and xUNs 6= θUNs when θUNs 6= x∗s . Note

that xUNs is the point at which p0
s(x

UN
s ) = p0

s(θ
UN
s ). Because

manipulation probability is single-peaked, fairness inter-
vention incentivizes manipulative behavior of Gs if θCs falls
between xUNs and θUNs .
Theorem 6.4 (Disincentives for both groups). When both
Ua(θ) and Ub(θ) have unique extreme points. If αa, αb >
δu (resp. αa, αb < δu) and FC−i(xUN−i) < FCi (x∗i ) (resp.
FC−i(xUN−i) > FCi (x∗i )), then ∃κ, τ ∈ (0, 1) s.t. ∀αi ∈ (δu, κ)
(resp. αi ∈ (κ, δu)) and ∀ni > τ , we have pUNa > pCa and
pUNb > pCb .

Note that x∗i depends on PX|Y S(x|y, i) and xUN−i is deter-
mined by u−, u+, PX|Y S(x|y,−i) and α−i. Thm. 6.4 says
that when both groups are majority-(un)qualified, for cer-
tain population distributions and G−i, fair policies disincen-
tivize both groups if Gi is sufficiently unqualified(qualified)
and sufficiently represented in the population. For a spe-
cial Gaussian case, conditions for satisfying FC−i(xUN−i) ≶
FCi (x∗i ) in Thm. 6.4 are given in Proposition D.2 in Ap-
pendix D.

Theorems 6.2, 6.3 and 6.4 suggest that the impact of fair-
ness intervention on the individuals’ manipulative behavior
highly depends on manipulation costs, feature distributions,
group qualification and representation. This complexity
stems from the misalignment in manipulation probability
p0
s(θ), utility Us(θ), and fairness C. In particular, the manip-

ulation probability of Gs is single-peaked with maximum
at x∗s , which does not depend on group qualification and
representation, but on which the decision maker’s total util-
ity depends, as varying αs and ns will affect the policies.
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As a result, depending on which region θUNs falls into, i.e.,
smaller or larger than x∗s , and how it may change under con-
straint C, fairness intervention will have different impacts
on incentives.

Although Theorems 6.2, 6.3 and 6.4 hold for both EqOpt
and DP fairness, there are scenarios under which they have
different impact on incentives. Proposition D.3 in Ap-
pendix D considers a special case when PX|Y S(x|y, a) =
PX|Y S(x|y, b) and one group is majority-qualified while
the other majority-unqualified, in which EqOpt never dis-
incentivize both groups while DP can disincentivize both.

7. Discussion
More complicated model to capture strategic behavior. In
practice, individual strategic behavior can be much more
complicated than modeled here: those considered qualified
may also have an incentive to manipulate, and manipulation
may only lead to partial improvement in features. The latter
can be modeled by introducing a sequence of progressively
“better” distributions (each with a different manipulation
cost), and the goal of manipulation is to imitate/acquire a
distribution better than one’s own. The model studied in
this paper is essentially the two-distribution (one for the
unqualified, one for the qualified) version of this more gen-
eral model. Even in this simplified model, there exists a
complex relationship between fairness intervention and in-
centives for strategic manipulation as we have shown. Our
results provide insights and build a foundation for analyzing
more complicated models in future work.

Beyond binary settings. Our present model is limited to sce-
narios where individual qualification states and manipula-
tion actions are binary. In reality, qualification states can be
on a continuous spectrum, and individuals may face more
complex manipulation decisions such as what features to
manipulate, what types of actions to take, etc., than a binary
decision of whether to manipulate or not. Going beyond the
binary settings is also a direction of future research.

Societal impact. The paper aims to understand the impact
of being able to anticipate manipulative behavior on pol-
icy/fairness, and the relationship between fairness inter-
ventions and incentives for manipulation. We identified
conditions for each possible outcome. Our findings could
help guide decisions on when to use a strategic policy and
whether to impose fairness interventions, e.g., avoid using
a strategic policy (or fairness intervention) if it exacerbates
unfairness or incentivizes manipulation.

8. Experiments
We conduct experiments on both a Gaussian synthetic
dataset, and the FICO scores dataset (Reserve, 2007). Due
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Figure 2. αs, αb > δu, Ca = Cb ∼ Beta(10, 1), u+

u−
= 1

2
. Grey

region is (αa, αb, na) satisfying FCb (xUNb ) < FCa(x∗a) in Thm. 6.4;
meanwhile both groups are disincentivized under (θCa , θ

C
b ).

to the lack of real-world data on manipulation cost, we con-
sider manipulation costs following either uniform (Cs ∼
U [0, c]) or beta distributions (Cs ∼ Beta(v, w), smaller w
and larger v lead to larger manipulation costs, see Fig. 8 in
Appendix E).5 Note that these are examples for illustration,
our results do not rely on these choices.

Gaussian data. Suppose X|Y, S is Gaussian distributed.
Fig. 2 shows an example where fairness intervention can
serve as disincentive for manipulation for both groups. In
particular, gray dots indicate scenarios (specified by na,
αa, αb) under which strategic fair decisions discourage both
groups to manipulate; these scenarios match the condi-
tions in Thm 6.4, i.e., if αa, αb > δu, for Gb that satisfies
FCb (xUNb ) < FCa(x∗a), both groups are disincentivized when
Ga is sufficiently represented (na → 1) and unqualified
(αa → δu). Detailed parameters and more experiments
(e.g., verification of Theorems 5.4, 5.5, and 6.3) on Gaus-
sian data can be found in Appendix E.

FICO scores (Reserve, 2007). FICO scores are widely
used in the US to assess an individual’s creditworthiness.
This is a dataset pre-processed by (Hardt et al., 2016b) to
generate CDF of scores FX|S(x|s) and qualification pro-
file PY |XS(1|x, s) for different social groups (Caucasian,
African-American, Hispanic, Asian). We use these to esti-
mate the conditional feature distribution PX|Y S(x|y, s) by
fitting the simulated data to a Beta distribution. This allows
us to derive various equilibrium strategies studied in this
paper. We also calculate repayment rates αs and proportions
ns. These are summarized in Figures 15-16 and Table 3 in
Appendix E. Here we focus on beta distributed costs, results
for the uniformly distributed Ca, Cb are in Appendix E.

We first compare strategic (θUNa , θ
UN
b ) and non-strategic pol-

icy (θ̂UNa , θ̂
UN
b ) in terms of their fairness. Let Ga denote Cau-

casian, Hispanic or Asian, and Gb denote African-American.

5Uniformly distributed Cs has been adopted in (Liu et al.,
2020). In economics, a choice of generalized beta distribution is
common to model costs (e.g., healthcare costs (Jones et al., 2014)).
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Figure 3. Unfairness EC(θUNa , θUNb ) and EC(θ̂UNa , θ̂UNb ), u+
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= 1

2
,

αa, αb < δu. Perfect fairness is indicated by the black dashed line.
Cb ∼ Beta(10, 5), Ca ∼ Beta(10, w), where larger w indicates
smaller costs.

Table 1. Unfairness EC(θUNa , θUNb ) and EC(θ̂UNa , θ̂UNb ) for C ∈
{EqOpt,DP}: Gb = African-American, u+ = u−, Ca ∼
Beta(10, 2). When cost Ca 6= Cb, Cb ∼ Beta(10, 6).

Ga strategic non-strategic
Ca = Cb Ca 6= Cb

EqOpt
Caucasian 0.355 0.556 0.136
Hispanic 0.292 0.493 0.034

Asian 0.333 0.533 0.123

DP
Caucasian 0.611 0.680 0.449
Hispanic 0.421 0.490 0.242

Asian 0.634 0.703 0.522

As shown in Table 1, Gb is always disadvantaged compared
to other groups, and strategic policy worsens unfairness.
When Ca 6= Cb, the manipulation cost of Gb is shifted
lower. It further shows that this gets worse when it is less
costly for those in Gb to manipulate their features. Since
αa > δu > αb, this is consistent with Thm. 5.4.

Fig. 3 illustrates how unfairness can be mitigated and how
the disadvantaged group can gain advantage under strate-
gic policy. Let Ga,Gb be Hispanic and African-American
respectively. We fix Gb and vary Ga’s manipulation cost. It
shows while Gb is disadvantaged under non-strategic pol-
icy (EC(θ̂UNa , θ̂UNb ) > 0), unfairness can be mitigated under
strategic policy as Ga’s manipulation cost decreases, and the
disadvantaged group may gain an advantage in the process
(EC(θUNa , θUNb ) < 0). This is an example of Thm. 5.5.

Table 2. Ga = Caucasian(αa = 0.758), Gb = Asian(αb =
0.804), C = EqOpt. Cb ∼ Beta(10, 10). The first (resp. second)
row corresponds to case 1 (resp. case 2) in Thm. 6.1.

δu Ca Ua(θ̂UNa ) Ua(θ̂Ca) Ub(θ̂
UN
b ) Ub(θ̂

C
b )

0.8 Beta(10, 10) -0.190 -0.189 0.024 0.034
0.756 Beta(10, 1) 0.396 0.397 0.181 0.201

According to Thm. 6.1, under strategic manipulation, a
non-strategic fair policy (θ̂Ca , θ̂

C
b ) may yield higher utilities

from both groups compared to (θ̂UNa , θ̂
UN
b ). We verify this in
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Figure 4. Manipulation probabilities under strategic (fair) policy:
Ca = Cb ∼ Beta(v, w), v, w ∈ [1, 15].

Table 2, in which Ga, Gb denote Caucasian and Asian respec-
tively, with EqOpt as the fairness constraint. It illustrates
two cases (Case 1 & 2) in Thm. 6.1, and Ua(θ̂Ca) > Ua(θ̂UNa ),
Ub(θ̂

C
b ) > Ub(θ̂

UN
b ) hold in both cases, i.e., (θ̂Ca , θ̂

C
b ) satisfies

fairness and attains higher utility than (θ̂UNa , θ̂
UN
b ).

Lastly, we examine how fairness intervention acts as incen-
tives for manipulation. Manipulation probabilities p0

s(θ
UN
s ),

p0
s(θ

EqOpt
s ), and p0

s(θ
DP
s ) are compared under different ma-

nipulation costs in Fig. 4. Here groups have the same ma-
nipulation costs Ca = Cb ∼ Beta(v, w) and u− = u+. Ex-
periments on different manipulation costs (Ca ∼ U [0, ca],
Cb ∼ U [0, cb]) are shown in Appendix E. Black, red and
blue surfaces indicate the manipulation probabilities p0

s(θs)
under (θUNa , θ

UN
b ), (θEqOpta , θEqOptb ) and (θDPa , θ

DP
b ) policies

as manipulation costs change. It shows the complex impact
fairness constraints have on (dis)incentives: in general, fair
polices encourage one group to manipulate while disincen-
tivizing the other (blue/red surface is above black for one but
below for the other). However, when manipulation is very
costly, African-American and Hispanic groups can both be
incentivized under DP (in Fig. 4a, when Cs ∼ Beta(15, 1),
blue surface is above black for both groups). Fig. 4b also
shows the contrarian impact DP, EqOpt can have: one
serves as incentive while the other disincentive. More ex-
periments on other group pairs are in Appendix E.
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Appendix

A. Generalization to high dimensional feature space
All analysis and conclusions can be generalized to high dimensional feature space X ∈ Rd. In this case, high dimensional
features are first mapped to one dimensional qualification profile γs(x) = PY |XS(1|x, s), based on which the decision
maker makes decisions about individuals. A threshold policy is in the form of πs(x) = 1(γs(x) ≥ φs) with threshold
φs ∈ [0, 1].

Let γ−1
s (ls) ⊂ Rb be defined as the preimage of ls under qualification profile γs, then we can adjust all analysis using

γ−1
s (·). For example, the strict monotone likelihood ratio property in Assumption 4.1 can be adjusted as follows: for any two

likelihoods 0 ≤ ls < ls ≤ 1, we have γ−1
s ([ls, 1]) ⊂ γ−1

s ([ls, 1]), i.e., any individual who can get accepted under threshold
ls can also be accepted under any lower threshold ls.

Because γs(x) = PY |XS(1|x, s) = 1

1+
PX|Y S(x|0,s)
PX|Y S(x|1,s)

(1−αs)
αs

, (non-)strategic (fair) threshold φs in the space of qualification

profile can be found based on PX|Y S(θs|1,s)
PX|Y S(θs|0,s) given in Lemmas 4.2-4.7. Specifically, replace PX|Y S(θs|1,s)

PX|Y S(θs|0,s) with 1−αs
αs

φs
1−φs ,

and ∆s(θs) with
∫
x∈γ−1

s ([φs,1])
PX|Y S(x|1, s)−PX|Y S(x|0, s)dx in Lemmas 4.2-4.7. Then the consequent policy πs(x) =

1(γs(x) ≥ φs) is the optimal policy.

In multi-dimensional space, manipulation cost Cs should be regarded as the sum total of effort/investment an individual
makes to imitate features of a qualified individual. Specifically, an individual needs to manipulate multiple features to mimic
a qualified individual’s features; manipulation of each feature can induce some cost (which may or may not be correlated)
and the overall effect is captured by the sum of all component costs, which is the total manipulation cost in our model.

B. Assumption 5.1: Ψ′
s(z) <∞ is non-decreasing over [0,∆s]

For simplicity, we drop subscript s in the following.

Example 1: cost C ∼ U [0, c]. In this case, Ψ′(z) = u−(1− α) 2
c z is non-decreasing.

Example 2: cost C ∼ Beta(v, w) with v ∈ [1, 10], w ∈ [1, 10].
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(a) ∆̃ that ensures Ψ′(z) to be non-decreasing over [0, ∆̃]
when C ∼ Beta(v, w), v ∈ [1, 10], w ∈ [1, 10]
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(b) ∆ for Gaussian distributed feature where X|Y = 1 ∼
N (µ, σ2), X|Y = 0 ∼ N (−µ, σ2), and µ > 0.

For Beta distributed cost and Gaussian distributed features, the following figures show that the condition “Ψ′(z) is non-
decreasing over [0,∆]” is relatively mild. For example, whenC ∼ Beta(8, 3), the left plot shows that Ψ′(z) is non-decreasing
over [0, 0.82]. For features that follow Gaussian distributions X|Y = 1 ∼ N (µ, σ2) and X|Y = 0 ∼ N (−µ, σ2), the
condition is satisfied as long as σ > 0.72µ.

Other examples: There are many other probability density distributions with support [0, 1] or [0,∞) that could satisfy this
condition, such as beta prime distribution, gamma distribution, chi distribution, chi-squared distribution, etc.
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0.4, αb = 0.6, Ca ∼ Beta(10, 2), Cb ∼ Beta(10, 1), and
fairness constraint C = EqOpt. It shows that θCs < θUNs , ∀s ∈
{a, b} and pCa > pUNa , pCb < pUNb .
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(b) X|Y = 1, S = s ∼ N (5, 9), ∀s ∈ {a, b}, X|Y =
0, S = b ∼ N (−5, 9), X|Y = 0, S = a ∼ N (−10, 9),
u− = u+, na = 0.5, αa = 0.65, αb = 0.6, Ca ∼
Beta(10, 3), Cb ∼ Beta(10, 2), and fairness constraint C =
EqOpt. It shows that θCs > θUNs and pCs > pUNs ,∀s ∈ {a, b}.

C. An example when both Ua(θ) and Ub(θ) have multiple extreme points
Because PX|Y S(x|1, a) = PX|Y S(x|1, b), under EqOpt fairness, θCa = θCb and the total utility naUa(θCa) + nbUb(θ

C
b ) can

be expressed as a function of θ = θCa = θCb .

Two examples in above figures show that when Ua(θ) and Ub(θ) have multiple extreme points, it’s possible that both
groups are over (left)/under (right) selected under strategic fair policies. When αb > δu > αa (left), fairness intervention
incentivizes Ga while disincentivizing Gb; when αa, αb > δu (right), fairness intervention incentivizes both groups to
manipulate. These results are consistent with Thm. 6.2.

D. Additional Results
Proposition D.1. Suppose PX|Y S(x|y, a) = PX|Y S(x|y, b), α−s < αs < δu, then FC−s(θ̂UN−s) > FCs (θ̂UNs ), i.e., G−s is
disadvantaged under non-strategic policy. Denote ∆(·) = ∆a(·) = ∆b(·). Given any G−s, always there exists manipulation
cost Cs for Gs s.t. Ψ′s(·) satisfies the followings:

1. Ψ′s(∆(θUN−s))−u+αs
Ψ′−s(∆(θUN−s))−u+α−s

= u−(1−αs)−u+αs
u−(1−α−s)−u+α−s

, then θUNa = θUNb and (θUNa , θ
UN
b ) mitigates unfairness.

2. Ψ′s(∆(ηC(θUN−s))) ≥ u−(1− αs), then (θUNa , θ
UN
b ) flips the disadvantaged group.

where
(
ηC(θUN−s), θ

UN
−s
)

satisfies fairness C, i.e., ηEqOpt(θUN−s) = θUN−s, η
DP(θUN−s) = (FDPs )−1FDP−s(θUN−s).

Proposition D.1 explicitly states the conditions on Ψ′s(·) under which strategic policy mitigates the unfairness or flips the
disadvantaged group. Note that these conditions are sufficient, especially for Case 1, where the perfect EqOpt fairness is
attained (i.e., EEqOpt(θUNa , θ

UN
b ) = 0) and DP fairness is improved (i.e.,

∣∣EDP(θUNa , θ
UN
b )
∣∣ <

∣∣EDP(θ̂UNa , θ̂
UN
b )
∣∣).

Proposition D.2. Suppose X|Y = y, S = s ∼ N (µys , σ
2) with 0 < µ1

s − µ0
s < µ1

−s − µ0
−s, i.e., qualified and unqualified

individuals from Gs are less distinguishable than those from G−s, then

• C = EqOpt: ∀αs > δu (resp. αs < δu), there exists ω > δu (resp. ω < δu) such that ∀α−s ∈ [δu, ω] (resp.
α−s ∈ [ω, δu]), conditions FC−s(xUN−s) ≶ FCs (x∗s) in Thm. 6.4 hold.

• C = DP: if u+ < u− (resp. u+ > u− ), then there exist ω1, ω2 > δu (resp. ω1, ω2 < δu) such that ∀αb ∈ [δu, ω1] (resp.
∀αb ∈ [ω1, δu]) and ∀αa ∈ [δu, ω2] (resp. ∀αa ∈ [ω2, δu]), conditions FC−s(xUN−s) ≶ FCs (x∗s) in Thm. 6.4 hold.

Proposition D.3. Suppose PX|Y S(x|y, a) = PX|Y S(x|y, b), if αs > δu > α−s, then

• ∀PX|Y S(x|y, s), pEqOpta < pUNa , pEqOptb < pUNb is unattainable, i.e., EqOpt never disincentivize both groups.

• ∃PX|Y S(x|y, s), (αa, αb), and na under which pDPa < pUNa , pDPb < pUNb , i.e., DP may disincentivize both groups.
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Figure 7. Examples validating Proposition D.2: black region indicates (αa, αb) satisfying condition FC−s(xUN−s) < FCs (x∗s) in Thm.6.4:
αa, αb > δu, Ca, Cb ∼ Beta(10, 1), X|Y = y, S = s ∼ N (µy

s , σ
2) with [µ0

a, µ
1
a, µ

0
b , µ

1
b ] = [−2, 2,−5, 5], σ = 4.5.

E. Additional Experiments
In the experiments, we assume manipulation costs Ca, Cb follow beta distributions Beta(v, w) or uniform distributions
U [0, c]. For a beta distributed cost Cs, Fig. 8 illustrates examples of probability density function fs(z) and scaled marginal
manipulation gain Ψ′s(z)

u−(1−αs) = FCs(z) + zf(z).
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Figure 8. Illustration of fs(z) and FCs(z) + zfs(z): Cs ∼ Beta(v, w), v ∈ {1, 4, 7, 10}, w ∈ {1, 7, 10}.

Gaussian data. We verify Thm. 5.4 by conducting 40 rounds of experiment independently. In each round of experiment,
(αa, αb) is randomly generated with αa > δu > αb. We consider EqOpt (red) or DP (blue) as fairness measure. In
Fig. 10, circles and stars represent the unfairness EC(θUNa , θUNb ) and EC(θ̂UNa , θ̂UNb ) respectively. It shows that the strategic
policy (circles) always worsens the unfairness (both EqOpt and DP) compared to non-strategic policy (stars), and Gb is
disadvantaged in all scenarios. Varying costs Cs, distributions PX|Y S(x|y, s), and u+, u−, we observe the similar results.

Similarly, we verify Thm. 5.5 by running 40 rounds of experiments independently. In each round, (αa, αb) is randomly
generated with δu > αa > αb. In Fig. 11, circles that fall below the black dashed line indicate the disadvantaged group
being flipped under strategic policy. It shows as Ga’s manipulation cost decreases, unfairness can be mitigated (circles fall
below stars) and disadvantaged group can be flipped (circles fall below black dashed line).

Figures 9 and 12 illustrate the manipulation probabilities of two groups under strategic policy (UN) and strategic fair
policy (EqOpt, DP), where u+ = u−, Cs ∼ Beta(10, 1), X|Y = 1, S = b ∼ N (5, 52), X|Y = 0, S = b ∼ N (−5, 52),
X|Y = 1, S = a ∼ N (5, 42), X|Y = 0, S = a ∼ N (−5, 42). Black, blue, red surfaces correspond to p0

s(θ
UN
s ) := pUNs ,

p0
s(θ

DP
s ) := pDPs , p0

s(θ
EqOpt
s ) := pEqOpts respectively. Fig. 9 shows that when na and αa are sufficiently large, pUNa < pCa and

pUNb > pCb hold, C ∈ {EqOpt,DP}. Fig. 12 shows when two groups are majority-(un)qualified, pUNa < pCa , pUNb > pCb or
pUNa > pCa , pUNb < pCb holds as long as one of αa, αb is sufficiently large (small). These are consistent with Thm. 6.3.

Fig. 2 shows a scenario where fairness intervention can serve as disincentives for both groups, where u+

u−
= 1

2 . In Fig. 13, we
illustrate the case when u+

u−
= 1

1.1 . In both cases, X|Y = y, S = s ∼ N (µys , 4.5
2) with [µ0

a, µ
1
a, µ

0
b , µ

1
b ] = [−2, 2,−5, 5].

FICO scores data. The data pre-processed by (Hardt et al., 2016b) is publicly available which gives group proportions ns,
CDF of scores FX|S(x|s) and qualification profiles PY |XS(1|x, s) for four groups. It doesn’t contain personally identifiable
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Figure 9. Verification of Case 1 in Thm. 6.3: αb = 0.4. Varying Ga’s
qualification αa ∈ [0.5, 1] and representation na ∈ [0.5, 1], resulting
manipulation probabilities of two groups are shown in plots.
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Figure 10. Verification of Thm. 5.4: Ca ∼ Beta(10, 1),
Cb ∼ Beta(10, 3), u− = u+, X|Y = 1, S = s ∼
N (5, 52) andX|Y = 0, S = s ∼ N (−5, 52) for s = a, b.
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(c) Ca ∼ Beta(10, 4)
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Figure 11. Cb ∼ Beta(10, 1), X|Y = 1, S = s ∼ N (5, 52), X|Y = 0, S = s ∼ N (−5, 52), s = a, b.

information or offensive content.

From these, we can obtain PDF of scores PX|S(x|s) of each group. These are shown in Fig. 15. We then simulate a
dataset based on joint probability distribution PXY |S(x, 1|s) = PY |XS(1|x, s) · PX|S(x|s). By fitting Beta distribution to
the simulated data, we can obtain conditional feature distribution PX|Y S(x|y, s) as shown in Fig. 16. We can see from

Fig. 15 that PX|Y S(x|1,s)
PX|Y S(x|0,s) is strictly increasing, it implies that Assumption 4.1 holds for FICO scores data. The details about

qualification rate αs = PY |S(1|s), conditional feature distributions PX|Y S(x|y, s), and group proportions ns of four groups
are summarized in Table 3.

Table 1 and Fig. 3 validate Thm. 5.4 and Thm. 5.5 respectively when manipulation costs follow Beta distributions. In Table
4 and Fig. 14, we present the similar results for uniformly distributed costs. These are still consistent with Thm. 5.4 and
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Figure 12. Verification of Case 2 in Thm. 6.3: na = 0.5. In the left (resp. right), varying two groups’ qualification αa, αb > δu (resp.
αa, αb < δu), the resulting manipulation probabilities of two groups are shown in the plots.
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Thm. 5.5.

Lastly, we provide additional experiments to examine the impact of fairness intervention on incentives for strategic
manipulation. First, we consider the case when both groups have the same manipulation costs Ca = Cb ∼ Beta(v, w).
Fig. 4 has shown the comparison of manipulation probabilities under strategic policy and strategic fair policy for two pairs
of groups, i.e., when (Ga,Gb) are (African-American, Hispanic) or (Caucasian, Asian). The results for other four group
pairs, i.e., (Asian, African-American), (Asian, Hispanic), (Caucasian, African-American), (Caucasian, Hispanic), are shown
in Fig. 17. For the case when manipulation costs are uniformly distributed and Ca 6= Cb, the comparisons for all group pairs
are shown in Fig. 18. These results show that when there is a significant gap in the two groups’ manipulation costs, fairness
intervention incentivizes the group with a low manipulation cost while disincentivizing the group with a high manipulation
cost.

0.00 0.25 0.50 0.75 1.00
Score

0.00

0.01

0.02

0.03

0.04
PDF of scores

Caucasian
African-American
Hispanic
Asian

0.00 0.25 0.50 0.75 1.00
Score

0.0

0.2

0.4

0.6

0.8

1.0
CDF of scores

0.0 0.2 0.4 0.6 0.8 1.0
Score

0.0

0.2

0.4

0.6

0.8

1.0
PY|X, S(1|x, s)

Caucasian
African-American
Hispanic
Asian

0.0 0.2 0.4 0.6 0.8 1.0
Score

100

1013

PX|Y, S(x|1, s)/PX|Y, S(x|0, s)
Caucasian
African-American
Hispanic
Asian

Figure 15. Illustration of PDF/CDF of scores, qualification profiles, and validation of Assumption 4.1.
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Figure 16. Fit Beta distributions to the simulated data to get PX|Y,S(x|y, s).

Table 3. Qualification rate αa = PY |S(1|s), conditional feature distributions PX|Y S(x|y, s), group proportions ns of four social groups.
x∗s satisfies PX|Y S(x∗s |1, s) = PX|Y S(x∗s |0, s).

Gs αs PX|Y S(x|0, s) PX|Y S(x|1, s) ns x∗s

Caucasian 0.758 Beta(1.23, 12.34) Beta(2.57, 1.24) 0.7651 0.277
African-American 0.338 Beta(1.18, 15.99) Beta(1.84, 2.32) 0.1050 0.174
Hispanic 0.570 Beta(1.23, 9.02) Beta(2.03, 1.90) 0.0845 0.262
Asian 0.804 Beta(0.89, 4.94) Beta(2.31, 1.38) 0.0454 0.342

Table 4. Unfairness EC(θUNa , θUNb ) and EC(θ̂UNa , θ̂UNb ) for C ∈ {EqOpt,DP}: Gb = African-American, u+ = u−, Ca ∼ U [0, 1]. When
cost Ca 6= Cb, Cb ∼ U [0, 0.5].

EqOpt DP

Ga strategic non-strategic strategic non-strategic
Ca = Cb Ca 6= Cb Ca = Cb Ca 6= Cb

U
ni

fo
rm Caucasian 0.743 0.871 0.136 0.794 0.838 0.449

Hispanic 0.722 0.850 0.034 0.684 0.727 0.242
Asian 0.738 0.866 0.123 0.825 0.868 0.522

F. Proofs
F.1. Proofs for Section 4

Non-strategic policy.
Claim F.1. The non-strategic optimal policy π̂UNs = arg maxπs Ûs(πs) is a threshold policy π̂UNs (x) = 1

(
γs(x) ≥ u−

u++u−

)
.

Proof. The non-strategic optimal policy π̂UNs = arg maxπs Ûs(πs) is given by

π̂UNs (x) =

{
1, if PX|Y S(x|1,s)

PX|Y S(x|0,s) ≥
u−(1−αs)
u+αs

0, o.w.
(3)

Re-writing based on qualification the profile γs(x) =
1

PX|Y S(x|0,s)
PX|Y S(x|1,s)

(1−αs)
αs

+ 1
, (3) is reduced to

π̂UNs (x) = 1
(
γs(x) ≥ u−

u+ + u−

)
.
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Figure 17. Manipulation probabilities under strategic (fair) policy: Ca = Cb ∼ Beta(v, w), v, w ∈ [1, 15].
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Figure 18. Manipulation probabilities under strategic (fair) policy: Cs ∼ U [0, cs], s = a, b, ca, cb ∈ [0.2, 2].
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Proof of Lemma 4.2.

Proof. Let πs(x) = 1(x ≥ θ), then Ûs(πs) := Ûs(θ) can be written as

Ûs(θ) = u+αs(1− FX|Y S(θ|1, s))− u−(1− αs)(1− FX|Y S(θ|0, s))
= u+αs − u−(1− αs) + u−(1− αs)FX|Y S(θ|0, s)− u+αsFX|Y S(θ|1, s)

∂Ûs(θ)

∂θ
= u−(1− αs)PX|Y S(θ|0, s)− u+αsPX|Y S(θ|1, s)

Under Assumption 4.1, Ûs(θ) increases over θ ≤ θ̂UNs and decreases over θ ≥ θ̂UNs . θ̂UNs is the optimal threshold and is the
unique extreme point of Ûs(θ).

Manipulation Probability.
Claim F.2. The probability of manipulation under a threshold policy πs(x) = 1(x ≥ θ) is given by p0

s(πs) =

FCs
(
FX|Y S(θ|0, s)− FX|Y S(θ|1, s)

)
.

Proof. When πs(x) = 1(x ≥ θ) is a threshold policy, we have

PD|YMS(1|y,m, s) =

∫

X

PDX|YMS(1, x|y,m, s)dx

=

∫

X

PD|XYMS(1|x, y,m, s)PX|YMS(x|y,m, s)dx

=

∫

X

πs(x)PX|YMS(x|y,m, s)dx = 1− FX|YMS(θ|y,m, s)

Therefore,

p0
s(πs) = FCs

(
PD|YMS(1|0, 1, s)− PD|YMS(1|0, 0, s)

)

= FCs
(
FX|YMS(θ|0, 0, s)− FX|YMS(θ|0, 1, s)

)

= FCs
(
FX|Y S(θ|0, s)− FX|Y S(θ|1, s)

)
.

Proof of Lemma 4.6.

Proof. Take derivative of Us(θ) w.r.t. θ, we have

∂Us(θ)

∂θ
=
(
PX|Y S(θ|0, s)

(
u−(1− αs)−Ψ′s(∆s(θ))

)
+ PX|Y S(θ|1, s)Ψ′s(∆s(θ))

)
− u+αsPX|Y S(θ|1, s)

∝
(PX|Y S(θ|0, s)
PX|Y S(θ|1, s)

(
u−(1− αs)−Ψ′s(∆s(θ))

)
+ Ψ′s(∆s(θ))

)
− u+αs

As θ → ±∞, ∆s(θ) → 0, Ψ′s(∆s(θ)) → 0 and ∂Us(θ)
∂θ ∝ u−(1 − αs)PX|Y S(θ|0,s)

PX|Y S(θ|1,s) − u+αs. Therefore, ∂Us(θ)∂θ > 0 as

θ → −∞ and ∂Us(θ)
∂θ < 0 as θ → +∞.

The strategic optimal threshold θUNs satisfies

PX|Y S(θUNs |0, s)
PX|Y S(θUNs |1, s)

=
u+αs −Ψ′s(∆s(θ

UN
s ))

u−(1− αs)−Ψ′s(∆s(θUNs ))
.
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Proof of Lemma 4.7.

Proof. To satisfy fairness constraint C,
∫∞
θa
PCa (x)dx =

∫∞
θb
PCb (x)dx should hold. Denote CDF FCs (θs) =

∫ θs
−∞ PCs (x)dx,

then for any pair (θa, θb) that is fair, we have θa = (FCa)−1FCb (θb) = ηC(θb) hold for some strictly increasing function ηC(·).
Denote u = FCb (θb) and θa = (FCa)−1(u), the following holds:

dηC(θb)

dθb
=
d(FCa)−1FCb (θb)

dθb
=
d(FCa)−1(u)

du

du

dθb
=

1

(FCa)′((FCa)−1(θb))

du

dθb
=

(FCb )′(θb)

(FCa)′(θa)
=
PCb (θb)

PCa (θa)

The total utility can be written as a function of θb, take the derivative of naUa(ηC(θb)) + nbUb(θb) w.r.t. θb, the optimal θCb
satisfies the following,

na
dUa(ηC(θb))

dθb

∣∣∣
θb=θCb

dηC(θb)

dθb

∣∣∣
θb=θCb

+ nb
dUb(θb)

dθb

∣∣∣
θb=θCb

= 0

⇐⇒ na
dUa(ηC(θb))

dθb

∣∣∣
θb=θCb

PCb (θCb )

PCa (ηC(θCb ))
+ nb

dUb(θb)

dθb

∣∣∣
θb=θCb

= 0

Simplifying above equation gives the result.

F.2. Proofs for Section 5

Proof of Theorem 5.3.

Proof. According to Lemma 4.6, (θUNa , θ
UN
b ) satisfies

PX|Y S(θUNs |0, s)
PX|Y S(θUNs |1, s)

=
u+αs −Ψ′s(∆s(θ

UN
s ))

u−(1− αs)−Ψ′s(∆s(θUNs ))
:= Ωs(θ

UN
s )

Under Assumption 4.1, ∆s(θ) is single-peaked with maximum occurring at x∗s . Define function Ωs(θ) :=
u+αs−Ψ′s(∆s(θ))

u−(1−αs)−Ψ′s(∆s(θ))
and denote Ψ′s := maxθ Ψ′s(∆s(θ)) = Ψ′s(∆s(x

∗
s)).

1. If αs = δu, then

∂Us(θ)

∂θ
∝
(PX|Y S(θ|0, s)
PX|Y S(θ|1, s) − 1

)
(u+αs −Ψ′s(∆s(θ)))

consider two cases:

• Ψ′s ≤ u−(1− αs)
θUNs = θ̂UNs = x∗s is unique optimal solution.

• Ψ′s > u−(1− αs)
Us(θ) has three extreme points where both θUNs = zs, θUNs = zs are optimal, and x∗s is the other extreme point that is
not optimal.

2. If αs < δu, then consider two cases:

• Ψ′s ≤ u−(1− αs)
Ωs(θ) decreases over θ < x∗s and increases over θ > x∗s . Ωs(θ)→ u+αs

u−(1−αs) < 1 as θ → ±∞. Under Assumption

4.1, PX|Y S(θ|0,s)
PX|Y S(θ|1,s) intersects with Ωs(θ) at one unique point, i.e., θUNs is unique and satisfies θUNs > θ̂UNs > x∗s .

• Ψ′s > u−(1− αs)
Ωs(θ) decreases from u+αs

u−(1−αs) to −∞ over θ < zs; increases from −∞ to u+αs
u−(1−αs) over θ > zs; decreases over

θ ∈ (zs, x
∗
s) and increases over θ ∈ (x∗s, zs).
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Because PX|Y S(x∗s |0,s)
PX|Y S(x∗s |1,s)

= 1 and Ωs(x
∗
s) = 1 + u−(1−αs)−u+αs

Ψ′s−u−(1−αs)
> 1, under Assumption 4.1, there exists a unique

θUNs > θ̂UNs > x∗s at which PX|Y S(θ|0,s)
PX|Y S(θ|1,s) intersects with Ωs(θ), and θUNs > zs.

Moreover, if ∃ θ s.t. PX|Y S(θ|0,s)
PX|Y S(θ|1,s) > Ωs(θ), then PX|Y S(θ|0,s)

PX|Y S(θ|1,s) will also intersects with Ωs(θ) at least two more points
over (zs, x

∗
s).

Next, we show that among all the extreme points, the one satisfying θUNs > x∗s is the optimal.
Re-organize Us(θ), we have

arg max
θ
Us(θ) = arg max

θ
∆s(θ)

(
1− FCs(∆s(θ))

)
︸ ︷︷ ︸

:=h1(θ)

+FX|Y S(θ|1, s)
(

1− u+αs
u−(1− αs)

)

︸ ︷︷ ︸
:=h2(θ)

For any extreme point θ′ ∈ (zs, x
∗
s), always there exists a point x′ > x∗s satisfying ∆s(x

′) = ∆s(θ
′), so that

h1(x′) = h1(θ′). Since x′ > θ′, h2(x′) > h2(θ′) holds so that Us(x′) > Us(θ
′). In other words, ∃ a point over

(x∗s, zs) whose utility is higher than those of extreme points in (zs, x
∗
s). Since θUNs is the optimal over (x∗s, zs). It

implies that θUNs is optimal.

3. If αs > δu, then consider two cases:

• Ψ′s ≤ u+αs
1

Ωs(θ)
decreases over θ < x∗s and increases over θ > x∗s . 1

Ωs(θ)
→ u−(1−αs)

u+αs
< 1 as θ → ±∞. Under Assumption 4.1,

PX|Y S(θ|1,s)
PX|Y S(θ|0,s) intersects with 1

Ωs(θ)
at one unique point, i.e., θUNs is unique and satisfies θUNs < θ̂UNs < x∗s .

• Ψ′s > u+αs
1

Ωs(θ)
decreases from u−(1−αs)

u+αs
to −∞ over θ < zs; increases from −∞ to u−(1−αs)

u+αs
over θ > zs; decreases over

θ ∈ (zs, x
∗
s) and increases over θ ∈ (x∗s, zs).

Because PX|Y S(x∗s |1,s)
PX|Y S(x∗s |0,s)

= 1 and 1
Ωs(θ)

= 1 + u+αs−u−(1−αs)
Ψ′s−u+αs

> 1, under Assumption 4.1, there exists a unique

θUNs < θ̂UNs < x∗s at which PX|Y S(θ|0,s)
PX|Y S(θ|1,s) intersects with Ωs(θ), and θUNs < zs.

Moreover, if ∃ θ s.t. PX|Y S(θ|0,s)
PX|Y S(θ|1,s) < Ωs(θ), then PX|Y S(θ|0,s)

PX|Y S(θ|1,s) will also intersect with Ωs(θ) at least two more points
over (x∗s, zs).
We show that among all the extreme points, the one satisfying θUNs < x∗s is the optimal.
For any extreme point θ′ ∈ (x∗s, zs), always there exists a point x′ < x∗s satisfying ∆s(x

′) = ∆s(θ
′), so that

h1(x′) = h1(θ′). Since x′ < θ′ and 1 < u+αs
u−(1−αs) , h2(x′) > h2(θ′) holds so that Us(x′) > Us(θ

′). In other words, ∃
a point over (zs, x

∗
s) whose utility is higher than those of extreme points in (x∗s, zs). Since θUNs is optimal over (zs, x

∗
s),

it implies that θUNs is optimal.

Proof of Theorem 5.4.

Proof. WLOG, let i := a and −i := b.

Because αa > δu > αb, according to Thm. 5.3, we have x∗b < θ̂UNb < θUNb and x∗a > θ̂UNa > θUNa . It implies that
FCa(x∗a) > FCa(θ̂UNa ) > FCa(θUNa ) and FCb (x∗b) < FCb (θ̂UNb ) < FCb (θUNb ).

Therefore, we have FCa(θUNa ) < FCa(θ̂UNa ) < FCb (θ̂UNb ) < FCb (θUNb ), so that EC(θUNa , θUNb ) > EC(θ̂UNa , θ̂UNb ) > 0.

Proof of Theorem 5.5.

Proof. WLOG, let s := i and −i := b.
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By Thm. 5.3, θUNa > θ̂UNa always hold. If marginal manipulation gain of Ga is sufficiently small such that Ψ′a(∆a(θ̂UNa ))→ 0,
then θUNa → θ̂UNa ; If marginal manipulation gain of Ga is sufficiently large such that Ψ′a(∆a(θ̂UNa )) → u−(1 − αa), then
θUNa � θ̂UNa .

For any given Gb, FCb (θUNb ) > FCb (θ̂UNb ) > FCa(θ̂UNa ), since any FCa(θUNa ) ∈ (FCa(θ̂UNa ), 1) is attainable by controlling manipula-
tion cost Ca, it implies that there exists Ca s.t.

∣∣EC(θUNa , θUNb )
∣∣ <

∣∣EC(θ̂UNa , θ̂UNb )
∣∣ or FCb (θUNb ) < FCa(θUNa ).

F.3. Proofs for Section 6

Proof of Theorem 6.1.

Proof. WLOG, let i := a and −i := b.

1. αa < δu < αb and FCa(θ̂UNa ) < FCb (θ̂UNb ).

Since αa < δu < αb, we have θ̂UNa > x∗a and θ̂UNb < x∗b .

Under Assumption 4.1, Ûs(θ) is non-decreasing over (−∞, θ̂UNs ) and non-increasing over (θ̂UNs ,+∞). One of the
followings must hold: (1) θ̂Ca > θ̂UNa , θ̂

C
b < θ̂UNb (2) θ̂Ca < θ̂UNa , θ̂

C
b > θ̂UNb . Because if θ̂Ca > θ̂UNa , θ̂

C
b > θ̂UNb or

θ̂Ca < θ̂UNa , θ̂
C
b < θ̂UNb holds, we can always find another pair of thresholds satisfying fairness C but achieves a higher utility∑

s=a,b nsÛs(θs) so that (θ̂Ca , θ̂
C
b ) cannot be non-strategic optimal fair policy.

Because FCa(θ̂UNa ) < FCb (θ̂UNb ) and FCa(θ̂Ca) = FCb (θ̂Cb ), θ̂Ca > θ̂UNa > x∗a, θ̂
C
b < θ̂UNb < x∗b must hold.

If Ψ′a(∆a(θ̂Ca)) > u−(1− αa) and Ψ′b(∆b(θ̂
C
b )) > u+αb, then we have θ̂Ca < za and θ̂Cb > zb, where za, zb are defined

s.t. Ψ′a(∆a(za)) = u−(1− αa) and Ψ′b(∆b(zb)) = u+αb. By Thm. 5.3, Ua(θ) is increasing over (x∗a, za) and Ub(θ) is
decreasing over (zb, x

∗
b). It implies that Ua(θ̂Ca) > Ua(θ̂UNa ) and Ub(θ̂Cb ) > Ub(θ̂

UN
b ).

2. αa, αb > δu, FCa(θ̂UNa ) < FCb (θ̂UNb ), and αa → δu.

Since αa, αb > δu, we have θ̂UNa < x∗a and θ̂UNb < x∗b .

Because FCa(θ̂UNa ) < FCb (θ̂UNb ) and FCa(θ̂Ca) = FCb (θ̂Cb ), θ̂Ca > θ̂UNa , θ̂
C
b < θ̂UNb must hold.

If αa → δu, then θ̂UNa → x∗a and θ̂UNa < x∗a < θ̂Ca hold.

If Ψ′a(∆a(θ̂Ca)) > u+αa, Ψ′b(∆b(θ̂
C
b )) > u+αb, then we have θ̂Ca < za and θ̂Cb > zb. By Thm. 5.3, Ub(θ) is decreasing

over (zb, x
∗
b) implying Ub(θ̂Cb ) > Ub(θ̂

UN
b ), and Ua(θ) may have additional extreme points over (x∗a, za). Specifically, as

αa → δu, there are two extreme points x1, x2 with x1 → x∗a, x2 → za (by Thm. 5.3), Because Ua(θ) is increasing over
[x1, x2], Ua(x2)→ Ua(θUNa ) = maxθ Ua(θ), and Ua(x1)→ Ua(x∗a), Ua(θ̂UNa )→ Ua(x∗a), we have Ua(θ̂Ca) > Ua(θ̂UNa ).

3. αa, αb < δu, FCa(θ̂UNa ) < FCb (θ̂UNb ), and αb → δu.

It can be proved similarly as Case 2 and is omitted.

Proof of Theorems 6.2-6.3.

Proof. For any pair (θa, θb) satisfying fairness C, FCa(θa) = FCb (θb) should hold. We have θa = (FCa)−1FCb (θb) = ηC(θb)
for some strictly increasing function ηC(·).

1. (Thm. 6.2) At least one of Ua(θ), Ub(θ) has multiple extreme points. WLOG, let i := a and −i := b.

• αa > δu > αb

(i) Ua(θ) has multiple extreme points while Ub(θ) has a unique extreme point.
Let x1, x2 be two extreme points over (x∗a, za) with x2 being the optimal extreme point over (x∗a, za) and x1 the
largest extreme point satisfying x1 < x2. By Thm. 5.3, θUNa < x∗a.
As nb → 1, θCb → θUNb and θCa → ηC(θUNb ). If ηC(θUNb ) ∈ (x1, x2) happens to be satisfied under groups’ feature
distributions and manipulation costs, then it’s possible that there exists a sufficiently large nb such that the a fair
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threshold pair (θCa , θ
C
b ) results in a higher total utility than that of (ηC(θUNb ), θUNb ). In this case, θCa > θUNa , θ

C
b > θUNb

and θCa ∈ (ηC(θUNb ), x2) must hold.
Because θUNa < zs, θCa < za, we have ∆a(θUNa ) < ∆a(θCa) and pCa > pUNa .
Because αb < δu, we have θUNb > x∗b . Since θCb > θUNb , it holds that pCb < pUNb .

(ii) Ua(θ) has a unique extreme point while Ub(θ) has multiple extreme points.
Similar to the reasoning in (i), let x1, x2 be two extreme points over (zb, x

∗
b) with x1 being the optimal extreme

point over (zb, x
∗
b) and x2 the smallest extreme point satisfying x1 < x2.

If (ηC)−1(θUNa ) ∈ (x1, x2) happens to be satisfied, then it’s possible to find a sufficiently large na such that the
fair pair (θCa , θ

C
b ) results in a higher utility than that of (θUNa , (η

C)−1(θUNa )). In this case, θCa < θUNa , θ
C
b < θUNb and

θCb ∈ (x1, (η
C)−1(θUNa )) must hold.

Because θCa < θUNa < x∗a and θUNb > zb, θCb > zb, we have ∆a(θUNa ) > ∆a(θCa) and ∆b(θ
UN
b ) < ∆b(θ

C
b ). As such,

pCa < pUNa , pCb > pUNb .
(iii) Both Ua(θ), Ub(θ) have multiple extreme points.

In this case, θUNa < x∗a and all other extreme points of Ua(θ) fall in (x∗a, za) with za > θUNa ; θUNb > x∗b and all other
extreme points of Ub(θ) fall in (zb, x

∗
b) with zb < θUNb .

If θCa < θUNa , θ
C
b < θUNb happens to be satisfied, then θCb ∈ (zb, x

∗
b) must hold. It implies that ∆a(θUNa ) > ∆a(θCa)

and ∆b(θ
UN
b ) < ∆b(θ

C
b ). As such, pCa < pUNa , pCb > pUNb .

Similarly, if θCa > θUNa , θ
C
b > θUNb happens to be satisfied, then θCa ∈ (x∗a, za) must hold. It implies that pCa > pUNa ,

pCb < pUNb .
• αa, αb > δu

In this case, θUNa < x∗a, θ
UN
b < x∗b and Ua(θ) (or Ub(θ)) increases over θ < θUNa (or θ < θUNb ). WLOG, let Ga has

multiple extreme points, while Gb may or may not have multiple extreme points.
Note that θCa < θUNa , θ

C
b < θUNb cannot hold, otherwise always there exists a fair threshold pair (θ′a, θ

′
b) with θ′a ∈

(θCa , θ
UN
a ) and θ′b ∈ (θCb , θ

UN
b ) whose utility is higher than that of (θCa , θ

C
b ).

In contrast, θCa > θUNa , θ
C
b > θUNb may hold. In this case, θCa ∈ (x∗a, za) must hold, while either θCb < xUNb or θCb > xUNb

holds.
Therefore, ∆a(θUNa ) < ∆a(θCa) and ∆b(θ

UN
b ) < ∆b(θ

C
b ) (or ∆b(θ

UN
b ) > ∆b(θ

C
b )) must hold so that pCa > pUNa , pCb > pUNb

(or pCb < pUNb ).
We can prove in a similar way for the case when αa, αb < δu.

2. (Thm. 6.3) Both Ua(θ) and Ub(θ) have unique extreme points.

Prove θUNa > θCa , θ
UN
b < θCb or θUNa < θCa , θ

UN
b > θCb by contradiction. Suppose θUNa > θCa , θ

UN
b > θCb , then we can always

find another pair of thresholds (θ′a, θ
′
b) that satisfies C with θCa < θ′a ≤ θUNa and θCb < θ′b ≤ θUNb . Because Us(θ) has

unique extreme point and it increases over θ < θUNs , Us(θCs ) < Us(θ
′
s),∀s ∈ {a, b} holds, i.e., (θCa , θ

C
b ) can not be the

optimal pair that satisfies the fairness. Similarly, we can show that θUNa < θCa , θ
UN
b < θCb cannot hold.

Let xUNs be defined s.t. ∆s(x
UN
s ) = ∆s(θ

UN
s ) and xUNs 6= θUNs when θUNs 6= x∗s . Note that xUNs is the point at which

p0
s(x

UN
s ) = p0

s(θ
UN
s ). WLOG, let i := a and −i := b.

Let xCa := ηC(xUNb ), i.e., (xCa , x
UN
b ) satisfies fairness constraint C. Given any fixed αb, as αa changes, xUNa , xCa , and θUNa

also change. Rewrite them as functions of αa, i.e., xUNa (αa), xCa(αa) := ηC(xUNb ;αa), and θUNa (αa).

• αa > δu > αb
xUNa (αa) increases in αa ∈ (δu, 1)

lim
αa→δu

xUNa (αa) = x∗a, lim
αa→1

xUNa (αa) = +∞

θUNa (αa) decreases in αa ∈ (δu, 1)

lim
αa→δu

θUNa (αa) = x∗a, lim
αa→1

θUNa (αa) = −∞

xCa(αa) is non-decreasing in αa

lim
αa→δu

xCa(αa) = ηC(xUNb ; δu) < +∞, lim
αa→1

xCa(αa) = ηC(xUNb ; 1) < +∞
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Therefore, ∃ κ > δu s.t. for any αa > κ, xCa(αa) ∈ (θUNa (αa), xUNa (αa)).
As na → 1, θCa → θUNa . Therefore, ∀αa ∈ (κ, 1), there exists τ ∈ (0, 1) s.t. ∀na > τ , we have θCa ∈ (θUNa , x

C
a) and

θCb < xUNb . It implies that ∆a(θCa) > ∆a(θUNa ) and ∆b(θ
C
b ) < ∆a(θUNb ) so that pCa > pUNa and pCb < pUNb .

• αa, αb > δu
From the above, ∃κ > δu s.t. ∀αa > κ, xCa(αa) ∈ (θUNa (αa), xUNa (αa)).
Since Ua(θ), Ub(θ) have unique extreme points, neither θCa > θUNa , θ

C
b > θUNb nor θCa < θUNa , θ

C
b < θUNb hold. When

αa > κ, either of the followings holds: (1) θCa < θUNa , θCb ∈ (θUNb , x
UN
b ); (2) θCb < θUNb , θCa ∈ (θUNa , x

C
a). It implies

pCb > pUNb , pCa < pUNa , or pCa > pUNa , pCb < pUNb .
• αa, αb < δu

Prove in the similar way. ∃κ < δu s.t. ∀αa < κ, xCa(αa) ∈ (xUNa (αa), θUNa (αa)).
Since Ua(θ), Ub(θ) have unique extreme points, either of the followings holds when αa < κ: (1) θCa > θUNa ,
θCb ∈ (xUNb , θ

UN
b ); (2) θCb > θUNb , θCa ∈ (xCa , θ

UN
a ). It implies pCa < pUNa , pCb > pUNb , or pCb < pUNb , pCa > pUNa .

Proof of Theorem 6.4.

Proof. First consider case when αa, αb > δu.

WLOG, let i := a and −i := b.

Define function ηC(·) := (FCa)−1FCb (·). If FCb (xUNb ) < FCa(x∗a), then ηC(xUNb ) < x∗a.

As αa → δu, θUNa → x∗a. As αa decreases, ηC(xUNb ) is non-increasing (constant w.r.t. αa for EqOpt and decreases for DP).
∃ κ > δu s.t. when αa = κ, θUNa = ηC(xUNb ). Then ∀αa < κ, ηC(xUNb ) < θUNa .

As na → 1, θCa → θUNa and limna→1 θ
C
b > xUNb . Therefore, ∃τ ∈ (0, 1) s.t. for any na > τ , we have θCa ∈ (ηC(xUNb ), θUNa )

and θCb > xUNb . It implies that pCa < pUNa , p
C
b < pUNb .

For the case when αa, αb < δu, it can be proved in a similar way and is omitted.

F.4. Proofs for Appendix D

Proof of Proposition D.1.

Proof. WLOG, let i := a, −i := b.

Since PX|Y S(x|y, a) = PX|Y S(x|y, b), denote ∆(·) = ∆a(·) = ∆b(·).

By Lemma 4.6, for s ∈ {a, b}, θ̂UNs satisfies PX|Y S(θ̂UNs |1,s)
PX|Y S(θ̂UNs |0,s)

= u−(1−αs)
u+αs

. Since PX|Y S(x|y, a) = PX|Y S(x|y, b), αb <

αa < δu, u−(1−αb)
u+αb

> u−(1−αa)
u+αa

. Under Assumption 4.1, we have θ̂UNa < θ̂UNb .

It implies that FX|Y S(θ̂UNa |1, a) < FX|Y S(θ̂UNb |1, b), so that FEqOpta (θ̂UNa ) < FEqOptb (θ̂UNb ).

Note that FDPs (θ̂UNs ) = αsFX|Y S(θ̂UNs |1, s) + (1 − αs)FX|Y S(θ̂UNs |0, s). Since FX|Y S(θ̂UNa |0, a) < FX|Y S(θ̂UNb |0, b) and
αb < αa, we have FDPa (θ̂UNa ) < FDPb (θ̂UNb ).

First, we show that the unfairness can be mitigated under some cost random variable Ca.

Given αb, Cb, θUNb is determined and satisfies PX|Y S(θUNb |0,b)
PX|Y S(θUNb |1,b)

=
u+αb−Ψ′b(∆(θUNb ))

u−(1−αb)−Ψ′b(∆(θUNb )) (by Lemma 4.6), where ∆(θ) =

FX|Y S(θ|0, b)− FX|Y S(θ|1, b) = FX|Y S(θ|0, a)− FX|Y S(θ|1, a).

Given any αa ∈ (αb, δu), if Ga’s cost Ca satisfies u+αa−Ψ′a(∆(θUNb ))
u−(1−αa)−Ψ′a(∆(θUNb )) =

u+αb−Ψ′b(∆(θUNb ))
u−(1−αb)−Ψ′b(∆(θUNb )) , i.e.,

Ψ′a(∆(θUNb )) =
u−(1− αa)− u+αa
u−(1− αb)− u+αb︸ ︷︷ ︸
>0 (since αa,αb<δu)

·
(
Ψ′b(∆(θUNb ))− u+αb

)
︸ ︷︷ ︸

<0 (by Thm. 5.3)

+u+αa < u+αa < u−(1− αa) (4)
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then PX|Y S(θUNb |0,a)

PX|Y S(θUNb |1,a) =
u+αa−Ψ′a(∆(θUNb ))

u−(1−αa)−Ψ′a(∆(θUNb )) holds and θUNa = θUNb .

Therefore, FEqOpta (θUNa ) = FX|Y S(θUNa |1, a) = FX|Y S(θUNb |1, b) = FEqOptb (θUNb ).

Because FX|Y S(θUNa |0, a) = FX|Y S(θUNb |0, b) also holds,
∣∣FDPa (θUNa )− FDPb (θUNb )

∣∣ = (αa − αb)∆(θUNb )
∣∣FDPa (θ̂UNa )− FDPb (θ̂UNb )

∣∣ = (αa − αb)∆(θ̂UNb ) + αa(FX|Y S(θ̂UNb |1, b)− FX|Y S(θ̂UNa |1, a))

+(1− αa)(FX|Y S(θ̂UNb |0, b)− FX|Y S(θ̂UNa |0, a))

> (αa − αb)∆(θ̂UNb )

Since θUNb > θ̂UNb > x∗b (by Thm. 5.3), ∆(θ̂UNb ) > ∆(θUNb ).

Therefore,
∣∣FDPa (θUNa )− FDPb (θUNb )

∣∣ <
∣∣FDPa (θ̂UNa )− FDPb (θ̂UNb )

∣∣.
Next, we show that the disadvantaged group can be flipped under some cost random variable Ca.

Given any αa ∈ (αb, δu), let
(
ηC(θUNb ), θUNb

)
be a pair of thresholds satisfying fairness C, then if Ψ′a(∆(ηC(θUNb ))) ≥

u−(1− αa) = Ψ′a(∆(za)), we have ∆(ηC(θUNb )) ≥ ∆(za) implying ηC(θUNb ) ≤ za. Since θUNa > za, ηC(θUNb ) < θUNa must
hold.

Therefore, FCb (θUNb ) = FCa(ηC(θUNb )) < FCa(θUNa ).

Lastly, we show that cost Ca mentioned above always exists.

Since Ψ′a(z) = u−(1 − αa)
(
FCa(z) + zfa(z)

)
, condition Ψ′a(∆(ηC(θUNb ))) ≥ u−(1 − αa) is equivalent to FCa(z) +

zfa(z) ≥ 1 with z = ∆(ηC(θUNb )), which is attainable. Similarly, the condition in Eqn. (4) is equivalent to FCa(z) +
zfa(z) = c for some c < 1 with z = ∆(θUNb ), which is also attainable.

Proof of Proposition D.2.

Proof. Consider the case when αa, αb > δu. WLOG, let i := a, −i := b.

1. C = EqOpt: PEqOpt
s (x) = PX|Y S(x|1, s)

Because X|Y = y, S = s, y = {0, 1}, s = {a, b} have the same variance σ2, and µ1
a − µ0

a < µ1
b − µ0

b , we have

x∗s =
µ1
s+µ

0
s

2 and FEqOpta (x∗a) > FEqOptb (x∗b).

When αb > δu, we have θUNb < x∗b and xUNb > x∗b . As αb increases, xUNb and FEqOptb (xUNb ) increase; as αb → δu,
xUNb → x∗b . Therefore, ∃ω > δu s.t. when αb = ω, the consequent xUNb satisfies FEqOpta (x∗a) = FEqOptb (xUNb ). For any
αb < ω, FEqOpta (x∗a) > FEqOptb (xUNb ) holds.

2. C = DP: PDP
s (x) = PX|S(x|s) = αsPX|Y S(x|1, s) + (1− αs)PX|Y S(x|0, s).

Since FX|Y S(x|1, s) < FX|Y S(x|0, s),∀x, as αa increases, FDPa (x∗a) decreases.

Because X|Y = y, S = s, y = {0, 1}, s = {a, b} have the same variance σ2, we have FX|Y S(x∗a|1,a)−FX|Y S(x∗b |1,b)
FX|Y S(x∗b |0,b)−FX|Y S(x∗a|0,a) = 1.

If u+

u−
< 1, u+

u−
<

FX|Y S(x∗a|1,a)−FX|Y S(x∗b |1,b)
FX|Y S(x∗b |0,b)−FX|Y S(x∗a|0,a) , which implies that δuFX|Y S(x∗a|1, a) + (1 − δu)FX|Y S(x∗a|0, a) >

δuFX|Y S(x∗b |1, b) + (1− δu)FX|Y S(x∗b |0, b), i.e., FDPa (x∗a) > FDPb (x∗b) when αa = αb = δu.

As αb → δu, xUNb → x∗b . As such, there exist ω1, ω2 > δu such that ∀αb < ω1 and ∀αa < ω2, we have FDPa (x∗a) >
FDPb (xUNb ).

The case when αa, αb < δu can be proved similarly and is omitted.

Proof of Proposition D.3.

Proof. WLOG, let i := a and −i := b. Let xUNs be defined s.t. ∆s(x
UN
s ) = ∆s(θ

UN
s ) and xUNs 6= θUNs when θUNs 6= x∗s ,
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Since PX|Y S(x|y, a) = PX|Y S(x|y, b), x∗a = x∗b holds. If Us(θ) has multiple extreme points, then according to Thm. 5.3,
all extreme points fall between xUNs and θUNs .

Since αa > δu > αb, Ua(θ) is increasing over (−∞, θUNa ) and decreasing over (xUNa ,+∞), while Ub(θ) is increasing over
(−∞, xUNb ) and decreasing over (θUNb ,+∞).

• C = EqOpt

Since PX|Y S(x|y, a) = PX|Y S(x|y, b), θEqOpta = θEqOptb . To disincentivize under EqOpt fairness, one of the following
four possibilities must hold: (1) θEqOpta > xUNa , θEqOptb < xUNb (2) θEqOpta < θUNa , θEqOptb > θUNb (3) θEqOpta < θUNa ,
θEqOptb < xUNb (4) θEqOpta > xUNa , θEqOptb > θUNb .

Note that (3) and (4) never hold.

Suppose (3) (resp. (4)) holds, then always ∃(θ′a, θ′b) satisfying EqOpt with θ′a > θEqOpta , θ′b > θEqOptb (resp. θ′a <
θEqOpta , θ′b < θEqOptb ) s.t. (θ′a, θ

′
b) attains a higher utility. In other words, (θEqOpta , θEqOptb ) cannot be optimal fair policies.

It concludes that (3) and (4) cannot hold.

Note that (1) and (2) cannot be satisfied, because xUNb < x∗b = x∗a < xUNa , θUNb > x∗b = x∗a > θUNa , and θEqOpta = θEqOptb

must hold.

Therefore, none of four cases can be satisfied. EqOpt cannot disincentivize both groups.

• C = DP

To disincentivize under DP fairness, one of the following four possibilities must hold: (1) θDPa > xUNa , θDPb < xUNb (2)
θDPa < θUNa , θDPb > θUNb (3) θDPa < θUNa , θDPb < xUNb (4) θDPa > xUNa , θDPb > θUNb .

Similar as the case when C = EqOpt, (3) and (4) never hold.

Note that in order to satisfy DP, it is impossible for (2) to hold. Because αa > αb and PX|Y S(x|y, a) = PX|Y S(x|y, b),
θDPb < θDPa must hold under DP. Moreover, θUNa < x∗a = x∗b < θUNb . Therefore, (2) never hold.

However, (1) is likely to be satisfied.

When Ua(θ), Ub(θ) have unique extreme point.

Re-write xUNs as a function of αs: xUNs (αs), take derivative of FDPb (xUNs (αs)) w.r.t. αs, we have

dFDPs (xUNs (αs))

dαs
= FX|Y S(xUNs (αs)|1, s)− FX|Y S(xUNs (αs)|0, s)︸ ︷︷ ︸

term 1=−∆s(xUNs (αs))

+PX|S(xUNs (αs)|s) ·
dxUNs (αs)

dαs︸ ︷︷ ︸
term 2

Note that limαa→1 FUNa (xUNa (αa)) = FUNa (+∞) = 1, limαb→0 FUNb (xUNb (αb)) = FUNb (−∞) = 0,

limαa→δu FUNa (xUNa (αa)) = δuFX|Y S(x∗a|1, a) + (1− δu)FX|Y S(x∗a|0, a),

limαb→δu FUNb (xUNb (αb)) = δuFX|Y S(x∗b |1, b) + (1− δu)FX|Y S(x∗b |0, b).

Since x∗a = x∗b , limαb→δu FUNb (xUNb (αb)) = limαa→δu FUNa (xUNa (αa)).

If ∆b(x
∗
b) > PX|S(x∗b |b) ·

dxUNb (αb)
dαb

∣∣∣
αb=δu

(for a special case where X|Y = y, S = s is Gaussian distributed, it can be

satisfied if X|Y = 1, S = s and X|Y = 0, S = s are sufficiently separable),

then dFDPb (xUNb (αb))
dαb

∣∣∣
αb=δu

< 0, and ∃I ⊂ (0, δu) such that ∀αb ∈ I, we have FDPb (xUNb (αb)) > limαa→δu FUNa (xUNa (αa))

Therefore, ∃(αa, αb) with αa → δu and αb ∈ I s.t. FDPb (xUNb (αb)) > FUNa (xUNa (αa)).

In this case, if na is sufficiently large, we have θDPa > xUNa and θDPb < xUNb .


