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Abstract

We consider a multi-agent episodic MDP setup where an agent (leader) takes action at each step
of the episode followed by another agent (follower). The state evolution and rewards depend on
the joint action pair of the leader and the follower. Such types of interactions can find applications
in many domains such as smart grids, mechanism design, security, and policymaking. We are
interested in how to learn policies for both the players with provable performance guarantee under
a bandit feedback setting. We focus on a setup where both the leader and followers are non-myopic,
i.e., they both seek to maximize their rewards over the entire episode and consider a linear MDP
which can model continuous state-space which is very common in many RL applications. We

propose a model-free RL algorithm and show that O(+v/d3 H3T) regret bounds can be achieved for
both the leader and the follower, where d is the dimension of the feature mapping, H is the length
of the episode, and T is the total number of steps under the bandit feedback information setup.
Thus, our result holds even when the number of states becomes infinite. The algorithm relies on
novel adaptation of the single agent LSVI-UCB algorithm. Specifically, we replace the standard
greedy policy (as the best response) with the soft-max policy for both the leader and the follower.
This turns out to be key in establishing uniform concentration bound for the value functions. To
the best of our knowledge, this is the first sub-linear regret bound guarantee for the Markov games
with non-myopic followers with function approximation.

1. Introduction

Multi-agent Reinforcement Learning (MARL) has become an important tool for decision-making
in a Markov game. In many sequential real-world decision-making problems, agents often have
asymmetric roles. For example, one agent (leader) can act first and observe the action of the leader,
and the other agent (follower) reacts at each step of the MDP. This type of interaction requires two
levels of thinking: the leader must reason what the follower would do in order to find its optimal
decision. For example, an electric utility company (the leader) seeks to maximize social welfare by
selecting prices at different times over a day while the users (the followers) seek to optimize their
own consumption based on the prices set by the utility company. The reward and the underlying
transition probability depend on both the leader’s and the follower’s actions. Such leader-follower
interactions appear in other applications as well such as in Al Economist (Zheng et al., 2020),
Mechanism Design (Conitzer and Sandholm, 2004), optimal auction (Cole and Roughgarden, 2014),
and security games (Tambe, 2011).

Such kind of leader-follower interaction is different from the simultaneous play in the Markov
setting as considered in Jin et al. (2021); Tian et al. (2021). In general, the Stackelberg equilibrium
is the relevant concept for this type of leader-follower interaction (Conitzer and Sandholm, 2006)
compared to the Nash equilibrium considered in the above paper. Letchford et al. (2009); Peng
et al. (2019) considered a learning framework in order to learn the Stackelberg equilibrium with a
best-response oracle for the follower. However, these works can not be generalized to the bandit
feedback setting where the leader and the follower can only observe those rewards corresponding
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to the state-actions pairs encountered. Efficient learning in this leader-follower MDP setting under
the bandit feedback (which is more natural) is fundamentally more challenging compared to the
single-agent setting due to the more challenging exploration-exploitation trade-off.

Few recent works have focused on such kind of leader-follower interaction in MDP with the
bandit feedback setting. Bai et al. (2021) considered a model where the leader selects the underly-
ing MDP on which the follower acts on, i.e., the leader only acts once at the start of the episode.
However, we consider the setup where both the leader and the follower interact at every step of the
episode. Kao et al. (2022) considers a setup where both the leader and the follower interact at every
step similar to ours. However, Kao et al. (2022) considered the setup where both the leader and
the follower receive the same reward whereas in our setting the rewards can be different. Further,
both the above papers consider the finite state-space (a.k.a. tabular setup) where the sample com-
plexity scales with the state space. Thus, the above approach would not be useful for large-scale RL
applications where the number of states could even be infinite. To address this curse of dimension-
ality, modern RL has adopted function approximation techniques to approximate the (action-) value
function or a policy, which greatly expands the potential reach of RL, especially via deep neural
networks. For large state-space the model-based approaches as considered in the above papers have
limited application (Wei et al., 2020), thus, we focus on developing a model-free algorithm. Only
Zhong et al. (2021) considers a leader-follower Markov setup with function approximation. How-
ever, they consider myopic followers who seek to maximize instantaneous reward and also consider
the followers’ rewards are known. Hence, it greatly alleviates the exploration challenge as it is only
limited to the leader’s side. Rather, we consider the setup where the followers are also non-myopic
with bandit feedback. Thus, we seek to answer the following question

Can we achieve provably optimal regret for model-free exploration for leader-follower
(non-myopic) interaction in MDP with function approximation under bandit feedback?

Our Contribution: To answer the above question, we consider the leader-follower Markov
game with linear function approximation (bandit feedback) where at each step of the sequential
decision process the leader takes an action and observes the action the follower reacts. The transition
probability and the reward functions can be represented as a linear function of some known feature
mapping adapted from the single agent set up in Jin et al. (2020). Our main contributions are:

* We show that with a proper parameter choice, our proposed model-free algorithm achieves @(\/ d3H3T)
regret for both leader and follower, where d is the dimension of the feature mapping, H is the
length of the episode, and 7' is the total number of steps. Note that for the single agent setup,
the regret is of the same order achieved in Jin et al. (2020). Hence, our result matches the regret
bound for the single-agent setup. Our regret bounds also enable us to obtain O(+/d3H%/K)-
Coarse Correlated Stackelberg equilibrium policy.

* Our bounds are attained without explicitly estimating the unknown transition model or requiring
any simulator or best-response oracle, and they depend on the state space only through the di-
mension of the feature mapping. To the best of our knowledge, these sub-linear regret bounds
are the first results for the leader-follower non-myopic MDP game with function approximations
under bandit feedback. Since linear MDP contains a tabular setup, as a by-product, we provide
the first result on the regret bound for the leader-follower (non-myopic) MDP game under bandit
feedback using the model-free RL algorithm.

* We adapt the classic model-free LSVI-UCB algorithm proposed in Jin et al. (2020) in a novel
manner. Due to the nature of the leader-follower interaction, a key challenge arises while estab-
lishing the value-aware uniform concentration, which lies at the heart of the performance analysis
of model-free exploration. In particular, for a single agent set-up, the greedy selection with re-
spect to the standard ()-function achieves a small covering number. However, in the game setting,
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for a given policy, the best response strategy of a player fails to achieve such a non-trivial covering
number for the value-function class of the players (i.e., V-function). To address this fundamen-
tal issue, we instead adopt a soft-max policy for the players by utilizing its nice property of
approximation-smoothness trade-off via its parameter, i.e., temperature coefficient.

Related Literature: Provably efficient RL algorithms for zero-sum Markov games have been
proposed (Wei et al., 2017; Bai et al., 2020; Liu et al., 2021; Xie et al., 2020; Chen et al., 2021;
Sayin et al., 2021). Provably efficient algorithms to obtain coarse correlated equilibrium have also
been proposed for the general sum-game as well (Bai and Jin, 2020; Jin et al., 2021; Mao and Basar,
2022). In contrast to the above papers, we consider a leader-follower setup. Hence, our work is not
directly comparable.

For learning Stackelberg equilibrium, most of the works focus on the normal form game which is
equivalent to step size H = 1 in our setting (Balcan et al., 2015; Blum et al., 2014; Peng et al., 2019;
Letchford et al., 2009). Further, in the above papers, it is assumed that the followers’ responses are
known, in contrast, in our setting the follower is also learning its optimal policy. Zhong et al. (2021)
considered a leader-follower setup with myopic follower and known reward for linear MDP which
alleviates the challenges of exploration for the follower. Zhong et al. (2021) also proposed a model-
based approach for tabular setup with myopic followers and unknown rewards. In contrast, we
consider linear MDP and non-myopic followers with bandit feedback and proposed a model-free
RL algorithm. Recently, Kao et al. (2022) proposed a decentralized cooperative RL algorithm with
a hierarchical information structure for a tabular set-up. In contrast, we consider a linear function
approximation setup. Bai et al. (2021) provides a sample complexity guarantee for Stackelberg
equilibrium for a bandit-RL game where the leader only takes action at the start of the episode
which is quite different from our setup. Zheng et al. (2022) modeled the actor-critic framework as a
Stackelberg game which is also quite different from our framework.

2. Leader-Follower MDP Game

The Model: We consider an episodic MDP with the tuple (S, A, B, P, H, R) where S is the state
space, A is the action space for leader, and B is the action space for followers. Each MDP starts
from the state x1. At every step h, observing the state x, the leader first takes an action a, € A,
then the follower takes an action by, € B observing the action of the leader and the state x. The
state transitions to x,+1 € S depending on zy, ay, and by,. The process continues for H steps. The
transition probability kernel is defined as the following, P = {P,}L P, : Sx Ax B = S.
The reward vector for leader and follower are defined as {r; 5}/, and {rf,}1L_ respectively. The
reward for agent m = [, and f, 7y, (2, an, by) denotes the reward received by agent m when the
leader selects the action a, and the follower selects the action by, at step h.

Several important points on the model should be noted here. This setup is also known as hierar-
chical MDP (Kao et al., 2022) and can model various real-world applications. For example, consider
a dynamic electricity market where a social planner sets a price at every hour of the day. Observing
the price at the current period, the users decide how much to consume at that period. Here, the state
can represent the demand of the user and the supply. The user’s objective is to maximize its total
utility over the day whereas the utility company’s objective is to maximize the social welfare. Note
that such kind of leader-follower decision hierarchy can also occur in MARL when one agent has
advantage (e.g., can compute decisions faster compared to the other agent) over the other agent.

Throughout this paper, we consider a deterministic (unknown) reward. Without loss of general-
ity, we also assume |r, ,|< 1 for all m and k. Our model can be easily extended to the setup where
the rewards are random yet bounded. Our model can also be extended to the setup where the initial
state of each episodic MDP is drawn from a distribution.
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Note that we consider the state x as a joint state of both the leader and the follower. Our work
can be extended to the setup where the leader and the follower’s states are decoupled with the
underlying assumption that the leader can observe the follower’s state.

Policy: The agents interact repeatedly over K episodes. The policy of the leader at step h € [H]
at episode k € [K] is ﬁ{fh(a|xﬁ) that denotes the probability with which action a € A is taken at

step h at episode k£ when the state is x'fl The policy for the follower at step h € [H| at episode
[K] is WI;’ . (b|z¥, af) that denotes the probability with action b € B is chosen by the follower at

state xﬁ and when the leader’s action is aﬁ. Note the difference with the simultaneous play, here,
the follower’s policy is a function of the leader’s action at step h whereas in the simultaneous game,
it is independent of the other players” actions. Let 1, = {m ;}/_,, and 7y = {ms,}IL, be the
collection of the policies of leader and follower respectively across the episode.

Q-function and Value function The joint state-action value function for any player m, for
m =1, f at step h is

H
T,
Q,,fﬁh‘f (,0,b) = E Tm,i(%i, ai, bi)|Th = x,ap = a,by, = b
i=h

Here, the expectation is taken over the transition probability kernel and the policies of both the
leader and the follower. We can also define a marginal QQ-function for the leader as

T f T f

a.n (a;,a):ZTrf,h(b\a:,a)Ql’h (z,a,b). (D)
b

The above denotes the expected cumulative reward starting from step h after playing action a, and
then following the policy 7; (from step h + 1) while the follower following the policy 7 from step
h. We later show that marginal q plays an important role in decision-making.

For the compactness of the operator, we introduce the following notations

D™ Q) (x) = IEH.NTF[(‘|I),b~7rf(‘|l,a)Q(x7 a,b), D™ [Q|(x,a) = Ebw"rf(“zva)Q(x’ a,b),
]th(l', a, b) = EI’N]Ph(»\z,a,b)V(xl)'

The value function or expected cumulative reward starting from step h for the leader is defined as

Vi ™ (@) = DT Q™ ] () 2)
here the expectation is first taken over the follower’s policy for a given leader’s action then the
expectation is taken over the leader’s action.

We now consider the follower’s value functions. The leader’s action-dependent value function
for the follower at step h when the leader takes action « at step h is given by

Vﬂ'l,ﬂ'f (1‘, a) — D7fh [Q;fth](z7 a) (3)

fih

The above denotes the expected cumulative reward the follower would get from step h after observ-
ing the leader’s action at h, and then following its own policy at step h. We also define the following
value function for the follower by taking the expectation over a on V

Vﬂ'l,ﬂ'f

i () = DR QLT () “4)

Bellman’s Equation: We now describe the Bellman’s equations for m = [, f a given state and
the joint action pair

T f

Qnint (2,0,b) = 1o (@, a,b) + PRV (2, a,b) )

Information Structure: We assume the following information structure—
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Assumption 1 The transition probability kernel, and rewards are unknown to both the leader and
the follower. The leader and follower observe the rewards of each other only for the encountered
state-action pairs (i.e,bandit feedback).

Note that the agent can only access the rewards for the encountered states and actions. This is
also known as the bandit-feedback setting (Bai et al., 2021). Thus, both the agents need to employ
an exploratory policy. Also, note that we consider an information structure where the leader and
follower can observe each other’s reward. Extending our analysis to the setup where the leader does
not observe the action and/or reward of the follower constitutes a future research direction.

Objective: After observing the action of the leader, the follower seeks to optimize its own
leader’s action-dependent value function: maxy, f/fir VI (21, a)

Given the policy of the follower, the leader seeks to optimize its own value function

max ‘/ljrllﬂrf (z1), = =arg max ljrllﬂff (1)

Now, we describe the relationship with ()-function and the value functions for the optimal poli-
cies of both the leader and the follower which will also specify how to select optimal policy at every
step. For the follower, we have Bellman’s optimality equation—

7rl,7r;‘,

Qpp, ' (,a,b) =rpp(x,a,b) + lPhV;;l’i’i(x,a, b) (6)

Hence, given the action a of the leader at step h, the follower’s policy is Tr;ﬁ p(blz,a) = 1 where
b = maxy Q}rf,’:rf (z,a,b). Thus, the optimal policy is greedy with respect to the joint state-action @
function. The follower’s policy at step h depends on the leader’s action at step h, the leader’s policy

and the follower’s own policy starting from h + 1.
The optimal policy 7}, for the leader if the follower selects the policy 7y is given by

Vi ™ (an) = max g}, ™ (xp, a) 7

Hence, the optimal policy for the leader is greedy with respect to its marginal ()-function ng’ﬁf (Th, ).
The optimal policy at step i depends on the follower’s policy starting at step h, and the leader’s pol-
icy starting from step h + 1.

If the @)-functions are known, the optimal policy for the leader and follower is obtained using
backward induction. At step, H, the follower’s best response for every leader’s action is computed
(as in (6)). Then, the leader’s best response is computed based on the marginal ¢ function (7). Once
the policy is computed for step H, the policy for step H — 1 is computed in a similar manner and
SO on.

Learning Metric: Since the leader and the follower are unaware of the rewards and the tran-
sition probability, selecting an optimal policy from the start is difficult. Rather, they seek to learn
policies with good performance guarantees. Thus, we consider the following learning metric:

Definition 1 Regret for the leader is defined as

K

Regret, (K) = z:(Vl7T A
k=1

=
El
-
—~
8
=
N—
|
~
Ny
—~
8
S~—
N—

®)

where Wf’* is the optimal policy for the leader when the follower plays the policy WIJ?.
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Note that the regret for the leader measures the optimality gap between the policies employed by
the leader and the best response policy (in hindsight) of the leader given the follower’s policy at an
episode. Note that the follower’s policy is unknown, rather, the leader needs to reason about the
follower’s policy. Also note that the leader’s regret measures the gap between the policy Trf and

the best policy 7le’* of the leader in response to the follower’s policy at episode k, rather than the
optimal policy of the follower. This is because the follower is also learning its optimal policy, hence,
the policy 77]’? may not be optimal. Thus, the regret considers how good the leader is doing compared
to the policy employed by the follower across the episodes. Obviously, at different episodes, the
optimal policy of the leader may be different.

Definition 2 Regret for the follower is defined as

K K
Regret ;(K) = Z(Vf,lly f(21,af) — Vf7l17 T (1, a))) )
k=1

where 71'33 denotes the optimal policy for the follower and alf is the action of the leader at the first
step of episode k.

The regret for the follower captures how good the follower’s policy is compared to the optimal
policy for a given initial action and the policy of the leader. Even though the follower knows the
initial action of the leader, it is unaware of the leader’s policy. Rather, the follower also needs to
reason about the leader’s policy. Both the leader and the follower seek to minimize their respective
regrets. Initial action-specific regret is unique to the leader-follower setup.

Note that Zhong et al. (2021) considers the setup where the leader takes action at every step of
the MDP whereas the followers are myopic. They also consider that the rewards are known, thus,
one can compute the best response of the follower at every step. Thus, the regret for the follower
does not arise there. Kao et al. (2022) considered the reward is the same, thus, they consider the
regret of the joint policy rather than the individual agent’s regret.

In general, achieving sub-linear regret in a multi-agent RL setup is more challenging compared
to the single-agent setup since the underlying environment of an agent may change depending on
the other agent’s policy (Tian et al., 2021; Bai et al., 2021). Nevertheless, we obtain sub-linear
regret for both the leader and follower.

Leader-follower Linear MDP: We consider a linear MDP set-up in order to handle large
state-space.

Assumption 2 We consider a linear MDP with the known (to both the players) feature map ¢ :
S x A x B — RY, iffor any h, there exists d unknown signed measures jip, = {u}, ..., ul} over S
such that for any (z,a,2') € S x A1 x B,

IPh(l'/|l’7 a, b) = <¢)($, a, b)v Hh($/)>
and there exists vectors Oy p,, O, € R? such that for any (z,a,b) € S x A1 x As,
rl,h@:v a, b) = <(Z5(.%', a, b), 91,h> Tf,h@:v a) = <(Z§<HZ, a, b)? ef,h>

Note that such a linear MDP setup is considered for single agent scenario Jin et al. (2020);
Yang and Wang (2019). Examples of linear MDP include tabular setup. Our analysis can be easily
extended to the setup where the followers and leaders have different feature spaces (i.e., 7y, =
(m, Om, 1), for transition probability, we can concatenate the feature-space ¢ = [¢, ¢ f]T).

For the leader-follower linear MDP setup, we have—

Lemmal Q"7 (z,a,b) = (¢(z,a,b),w ) Ym,z, a,b,h.

m,h m,h
Thus, the Q-functions of both the leader and follower are linear in the feature space. We can thus
search over w in order to find the optimal @-function.

6
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Algorithm 1 Leader’s Model Free RL Algorithm
1: Initialization: w;;, = 0, wy, = 0, ay = log(|B)VK/H, a = log(|A)VK/H.3 =
C1dH +/log(4(log(|BI|A]) + 21og(|B]) log(A]))dT/p)
2: for episodes k =1,..., K do
3 Receive the initial state x%.
4 forsteph=H,H—1,...,1do
5: Af S5 o(af, af, by)b(ah, af, bF)T + AT
6
7
8

wh = (M) 2721 0k af, ) [m (27,7, 0F) + Vil (a7 41))]
l’rcn,h(" ) ) — min{@”fn,h? ¢(a " )> + ﬁ(¢(7 K ')T(Aﬁ)_lgb('a " '))1/27 H}

for a € Ado

eXp(af(Q?,h('aavb)))

. E (bl ) —
T e (@ b))
10: qlk,.h(',') — <7T’;,h('|'7')’Qﬁh("'7')>
1 ka,h("') — <7T];,h('|'>')7Ql},h('7'7')>
R (110 1000))
L >, exp(ou(gf, (- am)))
13: Vlkh() = <7le,h’Qlk,h('7 ) Vf’fh(') = <7le,h’ ka,h(" )
14. for h=1,...,Hdo
15: for a € Ado
16: Compute Q% ,, (7, a,b), QF,(xF;, a, b) for all b.
17: Compute policy W?) 1 (b|2%, a) according to the Soft-max for Q’J?) ,»(xF a,-) with parameter .
18: ql,h(xllcaa) = Zb W?,h(b‘xﬁvG)Qﬁh(‘T’fi’a?b)
19: Leader takes action af according to Soft-max policy with respect to ql’f ,L(xZ, -) with parameter «;.
20 The follower takes an action b}’ (Algorithm 2) and observe x| ~ Pp,(z}, ay, bf)

Algorithm 2 Follower’s Model Free RL Algorithm

1: Execute steps 1-14 of Algorithm 1.

2: forsteph=1,...,H do

3:  Observe the action a;‘; of the leader.

4 Compute Q% ,, (xF, af;,b), 7 1, (blzy, a*) for all b based on w} ,,.
5

The follower takes action by ~ Tl'l;’h(' |z}, ay) and observe zy ;.

3. Proposed Algorithm

We now describe our proposed algorithms for the leader (Algorithm 1) and the follower (Algo-
rithm 2). The algorithm is based on the LSVI-UCB Jin et al. (2020) with some subtle differences
which we will point out in our description.

We first describe the leader’s algorithm. Note that in order to obtain its policy, the leader also
needs to reason the policy the follower would play. Hence, the leader’s algorithm also consists of
how the follower selects its policy. The first part (steps 5-6) consists of updating the parameters
A’fl, wl’f s wJ’? 5, Which are used to update the joint state-action value functions Qﬁ% 5, and value func-

tions Vfl p for m = [, f. Note that Steps 7-14 are not evaluated for each state, rather, they are
evaluated only for the encountered states till episode £ — 1. Hence, we do not need to iterate over a
potentially infinite number of states. Vfl 1 = 0 forall k.

We now discuss the rationale behind updating wa% 5. We seek to obtain w such that it approx-
imates the Q-function since the )-function is the inner product of w and ¢ (Lemma 1). Thus, we

. TR . k o . ... . . k

parameterize @, '’ (-, -, -) by a linear form (w;, ;,,¢(-,,-)). The intuition is to obtain w,, , from
Bellman’s equation using the regularized least-square regression. However, there are challenges.
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We do not know P, in Bellman’s equation (5) rather P hVTZl}LTZI

samples. We obtain wfn, ,, for m = [, f by solving the following regularized least-square problem
k—1

wh.n = arg min 3" (v n(oF, 0k, bF) + Vi (@) — w7 0ok, ah)) + Mo (10)

should be replaced by the empirical

T=1

where Vfl hal is the estimate of the value function V;, ;1. After we obtain wfj1 p» We add an
additional bonus term B((-, -, )T (AF)~1é(-, -, -))/? similar to Jin et al. (2020) to obtain an’h. 6]
is constant which we will characterize in the next section. Aﬁ is the Gram matrix for the regularized
least square problem. Such an additional term is used for the upper confidence bound in LSVI-UCB
Jin et al. (2020) as well. The same additional term is used for both fo ;, and Q’Ji’ ;- This bonus term
would ensure the exploration for both the leader and the follower.

Now, we describe how we estimate the value function Vn’i hal function which we use in (10).
In order to update the value function, we need to compute the policy for the follower and the leader
(cf.(2)). Unlike LSVI-UCB, we use the soft-max policy for both the leader and follower. Soft-max
policy SOFT-MAX,(X) = {SOFT—MAXZ[(X)}L[:”1 for any vector X € RI#! is a vector with the
same dimension as in X with parameter o where the ¢-th component

SOFT-MAX, (X) = __ow(aXs)

Zlnﬂl exp(aXn)
In order to estimate the value function, first, one needs to compute follower’s policy at a given
leader’s action, and subsequently, the leader’s policy needs to be computed (cf.(2) & (4)). At step
h, for every leader’s action a, m¢p (b|z],a) is computed based on the soft-max policy on the
estimated ()-function for the follower Q’J‘{h(:c,c, a,b) at step 9. Based on the follower’s policy,
the leader updates its marginal () function g; at step 10 (cf.(1)) and the follower’s leader’s action
dependent value function ka,h (cf.(3)) at step 11. Now, the leader computes its policy based on

amn

ql’f 5 (-, ). Finally, We update the leader’s and follower’s value function based on the leader’s policy
at steps 13 and 14.

Why Soft-max?: Note that when o; = ay = oo, the policy of the follower and leader become
equal to the greedy policy. The greedy policy is optimal for the leader with respect to its marginal
g-function (Eq.(7)) and for the follower with respect to its joint ()-function (cf.(6)). However, we
can not obtain sub-linear regret for the leader and follower with the greedy policy unlike the single
agent scenario. In particular, the greedy policy is not Lipschitz, hence, it does not provide uniform
concentration bound for each agent’s value function, an essential step in the regret bound (Section 4).

The last part consists of the execution of the policy. In order to find its optimal policy, the leader
computes Q’}, ;, for each action of the leader a (Line 17), based on the already computed w’;’ 5 Once

Q’;é,h is computed, the follower’s policy is also computed based on the soft-max function (Step
18). Once the follower’s policy is computed, the marginal ()-function for the leader q{fh(x’fb, )) is
computed. The leader then takes an action af‘; based on the soft-max policy with respect to ql’fl. The

follower takes an action b’fL by observing the action afb which we will describe next.

As mentioned before, the steps of the follower (Algorithm 2) are already contained in the
leader’s algorithm. The follower also obtains its w by solving (10). Hence, the leader and the
follower have the same updates on w. The only difference is the execution as the follower executes
its action based on the action taken by the leader at every step. At step 4 of Algorithm 2, the follower
computes J-function based on the current state :U’fL and action afL of the leader. The follower then
chooses its action based on the soft-max policy on the () function.

Space and Time Complexity: The space and time complexities of Algorithms 1 and 2 are of

the same order as the LSVI-UCB. To be precise, the space complexity is O(d? H+d|.A||B|T). When
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we compute (A’g)*1 using Sherman-Morrison formula, the computation of Vn’j’ n41 18 dominated by
computing Qﬁ% hs1 and the policy 7f, and W’j . Hence, it takes O(d?|.A||B|T) time.

4. Main Results

Theorem 3 Fix p > 0. If we set § = C1dH+/u in Algorithm 1 and Algorithm 2 where . =
log((log(|.A]|B]) + 21og(|.A]) log(|B]))4dT /p) for some absolute constant C1, then w.p. (1 — p),

Regret;(K) < CVd3H3T'?, Regret ;(K) < C'Vd3H3T1?
where T' = K H for some absolute constants C, and C'.

The result shows that regret for both the leader and the follower scale with O(vVd3H 3T). Note
that for the single-agent scenario (Jin et al., 2020), the order of the regret is the same. However,
compared to Jin et al. (2020), there is an additional multiplicative log(|.A|) and log(|B|) factor in
the value of ¢ which arises because we use soft-max policy for the leader and the follower instead
of the greedy policy. The regret bounds do not depend on the dimension of the state space, rather,
it depends on the dimension of the feature space d. If there is no follower, we set |B|= 1, and can
achieve a single agent’s regret for the soft-max policy as well. To the best of our knowledge this
is the first result which shows @(ﬁ ) regret for both the leader and the follower in the model-free
with function approximation.

We assume that the leader observes the follower’s action (this is known as informed game (Tian
et al., 2021)). Under an uninformed setting (where a player may not observe the action of other), it
is statistically hard to obtain sub-linear regret even in zero-sum game (Tian et al., 2021). Thus, Tian
et al. (2021) shows a sub-linear regret under a weaker notion of regret. It remains to be seen under
such information structure, whether such a result holds in the leader-follower setup.

Please see Section 4.2 of the technical report Ghosh (2022) for the outline of the proof and
the Appendix for the detailed proof. In the following, we provide the intuition on why we need a
soft-max policy.

Why Soft-max: A key step in proving the regret is to show the following

k—1

k k
> $lwhah07) [V i @) = PrVik i (a7 o, 07)]
=1 ky—
(AR)—1

is upper bounded by O(dlog K) for both m = [, f. In order to prove the above, one uses the
uniform concentration bound as done in Jin et al. (2020) for single-agent case.

In particular, we need to show that log e-covering number for value function class (ijL’ h +1)
for both the leader and the follower scales at most log(K ). In single agent, e-covering number for
Q-function was enough as max is a contraction operator. However, in our setting, the value function
for each agent inherently depends on the policy of the other agent in our setup. Thus, if the policy is
greedy, slight change in the (Q-function for one agent could lead to a substantial change in the value
function for the other agent and vice versa (please see the example in Appendix F in Ghosh (2022)).
Thus, one can not obtain log e-covering number for the value function which scales at most log(K)
for greedy policy even though the log e-covering number for () function scales at most log(K).
Using the Lipschitz property of the Soft-max we show that indeed the log e-covering number for
both the leader and the follower scale at most log(K) (Lemma 15 in our technical report Ghosh
(2022)). In particular, the soft-max policy of parameter « results into a Lipschitz constant of 2«
for the policy which would ensure that individual value functions are also also Lipschitz in the @)
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functions which enables us to obtain the desired bound on the covering number of value function
class. Please see Section 4.2 in Ghosh (2022) for detail.

Of course, one would ask the question why not make the temp. co-efficient («) smaller which

would result in a smaller Lipschitz constant. However, the performance would be poor with respect
to the greedy policy. Scaling the temp. coefficient with O(K) achieves the trade-off. Recently,
Ghosh et al. (2022) also uses soft-max to obtain sub-linear regret in different setup as well (con-
strained linear MDP, i.e., min-max setup).
Remark 4 We have assumed that the feature space ¢ is known. Note that feature space learning
is an active area of research (Agarwal et al., 2020; Modi et al., 2021) for linear approximation
setup. The most promising technique is to estimate the Q-function by jointly optimizing over w and
¢. Neural networks can be used to obtain such w and ¢. Using similar technique we can learn ¢,
however, such a characterization is left for the future.

5. Equilibrium Learning

The Algorithms 1 and 2 also enables us to obtain equilibrium policies (e-close).
Finding Coarse Correlated Stackelberg Equilibrium (CCSE , Definition 6 in Ghosh (2022)):

Corollary 1 Consider the joint policy: the leader and follower jointly choose a k € [K| with
prob. 1/ K, and then the leader and follower select the policy 771’C and ﬂ’]? respectively (returned by

Algorithms 1 and 2). Such a joint policy is O(\/d3 H* ] K)-CCSE with probability 1 — p.

The above result entails that in order to achieve e-CCSE one needs O(1/¢2) episodes. This is the first
such result for a non-myopic leader and follower Markov game setup with function approximation.
The agent only needs to coordinate on the random number to choose the episode index k. The proof
is in Appendix H of the technical report Ghosh (2022).

Finding Stackelberg Equilibrium: For a zero-sum game, CCSE coincides with the Stackelberg
equilibrium. Hence, by Corollary 1, we also obtain e- Stackelberg equilibrium for a zero-sum game.

For a more general setting, we can combine the reward-free exploration proposed in Wang et al.
(2020); Liu et al. (2021) and the soft-max policy to obtain SE with self-play. We divide the total
episodes into two phases: exploration, and exploitation. During the exploration phase, both the
leader and the follower explore to reduce the confidence bound. Instead of a true reward, the reward
will be the bonus term, ||¢(x, a, b)||( Ak)-1 which will incentivize the players to explore similar to

Wang et al. (2020) (using soft-max policy instead of greedy policy). In the exploitation phase, the
leader and follower adopt policies similar to Algorithms 1 and 2.

6. Conclusion and Future Work

We propose a model-free RL-based algorithm for both the leader and the follower. We have achieved
O(Vd3H3T) regret for both the leader and the follower. We have extended the LSVI-UCB algo-
rithm towards the leader-follower setup. We have underlined the technical challenges in doing so
and explained how the greedy policy for the players fails to achieve a uniform concentration bound
for the individual value function. We show that a soft-max policy for the players can achieve the
regret bound. We also obtain the convergence rate of CCSE equilibrium.

Whether we can tighten this dependence on d and H remain an important future research di-
rection. Finally, we consider one leader and one follower setup. Extending our setup to multiple
leaders and followers constitutes an important future research direction. Extending our setup to
non-linear function approximation also constitutes a future research direction. In this regard, we
leverage on the recent works on simultaneous games with general function approximation Jin et al.
(2022); Wang et al. (2023); Li et al. (2022).
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