Stochastic Ratio Matching of RBMs for Sparse High-Dimensional Inputs

Part of Advances in Neural Information Processing Systems 26 (NIPS 2013)

Bibtex Metadata Paper Reviews

Authors

Yann Dauphin, Yoshua Bengio

Abstract

Sparse high-dimensional data vectors are common in many application domains where a very large number of rarely non-zero features can be devised. Unfortunately, this creates a computational bottleneck for unsupervised feature learning algorithms such as those based on auto-encoders and RBMs, because they involve a reconstruction step where the whole input vector is predicted from the current feature values. An algorithm was recently developed to successfully handle the case of auto-encoders, based on an importance sampling scheme stochastically selecting which input elements to actually reconstruct during training for each particular example. To generalize this idea to RBMs, we propose a stochastic ratio-matching algorithm that inherits all the computational advantages and unbiasedness of the importance sampling scheme. We show that stochastic ratio matching is a good estimator, allowing the approach to beat the state-of-the-art on two bag-of-word text classification benchmarks (20 Newsgroups and RCV1), while keeping computational cost linear in the number of non-zeros.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy