Online Learning with a Hint

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews Supplemental

Authors

Ofer Dekel, arthur flajolet, Nika Haghtalab, Patrick Jaillet

Abstract

We study a variant of online linear optimization where the player receives a hint about the loss function at the beginning of each round. The hint is given in the form of a vector that is weakly correlated with the loss vector on that round. We show that the player can benefit from such a hint if the set of feasible actions is sufficiently round. Specifically, if the set is strongly convex, the hint can be used to guarantee a regret of O(log(T)), and if the set is q-uniformly convex for q\in(2,3), the hint can be used to guarantee a regret of o(sqrt{T}). In contrast, we establish Omega(sqrt{T}) lower bounds on regret when the set of feasible actions is a polyhedron.


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy