Em matemática, na teoria dos números e na álgebra abstrata, a teoria de Kummer fornece a descrição de certos tipos de extensões de corpo envolvendo a adjunção de raízes n-ésimas de elementos do corpo base. A teoria foi desenvolvida originalmente por Ernst Eduard Kummer na década de 1840, no seu trabalho pioneiros sobre o último teorema de Fermat.

As afirmações principais não dependem da natureza do corpo, além de sua característica, que não deve dividir o inteiro n, e portanto pertencem à álgebra abstrata. A teoria das extensões cíclicas de um corpo K quando a característica de K não divide n é chamada teoria de Artin-Schreier.

Uma extensão de Kummer é uma extensão de corpos L/K, na qual para algum inteiro n > 1 temos

Por exemplo, tomando n = 2, a primeira condição é sempre verdadeira se K tem característica diferente de 2. As extensões de Kummer neste caso, incluem as extensões quadráticas L= K(a), onde a é uma raiz quadrada primitiva de um elemento em K.

Como a extensão de Kummer L/K é um corpo de decomposição para o polinômio Xn-a, para algum a em K, temos que ela é uma extensão normal.

Referências

editar
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy