Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard Typing

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

This version

2.3.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.3.0.tar.gz (20.4 MB view details)

Uploaded Source

Built Distributions

numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl (12.9 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl (16.8 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ x86-64

numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl (14.4 MB view details)

Uploaded PyPy manylinux: glibc 2.28+ ARM64

numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl (21.1 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy-2.3.0-cp313-cp313t-win_arm64.whl (9.9 MB view details)

Uploaded CPython 3.13t Windows ARM64

numpy-2.3.0-cp313-cp313t-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.13t Windows x86-64

numpy-2.3.0-cp313-cp313t-win32.whl (6.4 MB view details)

Uploaded CPython 3.13t Windows x86

numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ ARM64

numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl (16.7 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.28+ x86-64

numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.28+ ARM64

numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.13t macOS 14.0+ x86-64

numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13t macOS 14.0+ ARM64

numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl (14.3 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.13t macOS 10.13+ x86-64

numpy-2.3.0-cp313-cp313-win_arm64.whl (9.9 MB view details)

Uploaded CPython 3.13 Windows ARM64

numpy-2.3.0-cp313-cp313-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.13 Windows x86-64

numpy-2.3.0-cp313-cp313-win32.whl (6.3 MB view details)

Uploaded CPython 3.13 Windows x86

numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl (14.2 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

numpy-2.3.0-cp312-cp312-win_arm64.whl (9.9 MB view details)

Uploaded CPython 3.12 Windows ARM64

numpy-2.3.0-cp312-cp312-win_amd64.whl (12.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.3.0-cp312-cp312-win32.whl (6.3 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl (16.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl (14.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

numpy-2.3.0-cp311-cp311-win_arm64.whl (10.2 MB view details)

Uploaded CPython 3.11 Windows ARM64

numpy-2.3.0-cp311-cp311-win_amd64.whl (13.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.3.0-cp311-cp311-win32.whl (6.6 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl (15.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl (14.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl (14.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

File details

Details for the file numpy-2.3.0.tar.gz.

File metadata

  • Download URL: numpy-2.3.0.tar.gz
  • Upload date:
  • Size: 20.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0.tar.gz
Algorithm Hash digest
SHA256 581f87f9e9e9db2cba2141400e160e9dd644ee248788d6f90636eeb8fd9260a6
MD5 19a5470a37d066bd3e9385918d7760e7
BLAKE2b-256 f3db8e12381333aea300890829a0a36bfa738cac95475d88982d538725143fd9

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e017a8a251ff4d18d71f139e28bdc7c31edba7a507f72b1414ed902cbe48c74d
MD5 e3688182f8551c3c99b559c1696d41dc
BLAKE2b-256 39debcad52ce972dc26232629ca3a99721fd4b22c1d2bda84d5db6541913ef9c

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 54dfc8681c1906d239e95ab1508d0a533c4a9505e52ee2d71a5472b04437ef97
MD5 14e43315dea5eddffe888986e47d8584
BLAKE2b-256 7c619d574b10d9368ecb1a0c923952aa593510a20df4940aa615b3a71337c8db

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 33a5a12a45bb82d9997e2c0b12adae97507ad7c347546190a18ff14c28bbca12
MD5 c0cb89f0dca94446e6aa472ec6874c22
BLAKE2b-256 9da31e536797fd10eb3c5dbd2e376671667c9af19e241843548575267242ea02

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ef6c1e88fd6b81ac6d215ed71dc8cd027e54d4bf1d2682d362449097156267a2
MD5 7d8f0554035717dc396de7d77c696377
BLAKE2b-256 8a3b6c06cdebe922bbc2a466fe2105f50f661238ea223972a69c7deb823821e7

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5814a0f43e70c061f47abd5857d120179609ddc32a613138cbb6c4e9e2dbdda5
MD5 4589038edf55f085252f194e880d7454
BLAKE2b-256 6ce04c05fc44ba28463096eee5ae2a12832c8d2759cc5bcec34ae33386d3ff83

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 80b46117c7359de8167cc00a2c7d823bdd505e8c7727ae0871025a86d668283b
MD5 05b86d4a21a832e20e4ebdc6febf298d
BLAKE2b-256 6aa2f8c1133f90eaa1c11bbbec1dc28a42054d0ce74bc2c9838c5437ba5d4980

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.0-cp313-cp313t-win_arm64.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.13t, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-win_arm64.whl
Algorithm Hash digest
SHA256 f14e016d9409680959691c109be98c436c6249eaf7f118b424679793607b5944
MD5 334f5c275a6aad46e5f46436572d3dc1
BLAKE2b-256 eee82c8a1c9e34d6f6d600c83d5ce5b71646c32a13f34ca5c518cc060639841c

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.0-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 ba17f93a94e503551f154de210e4d50c5e3ee20f7e7a1b5f6ce3f22d419b93bb
MD5 de883c4313f4dc984045a51b8edb4084
BLAKE2b-256 feab66fc909931d5eb230107d016861824f335ae2c0533f422e654e5ff556784

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numpy-2.3.0-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 6.4 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 48a2e8eaf76364c32a1feaa60d6925eaf32ed7a040183b807e02674305beef61
MD5 4510373c08383787c263a4b5a21a24ef
BLAKE2b-256 0e1e7a9d98c886d4c39a2b4d3a7c026bffcf8fbcaf518782132d12a301cfc47a

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d344ca32ab482bcf8735d8f95091ad081f97120546f3d250240868430ce52555
MD5 28870039fde4fec369185e185bf0077e
BLAKE2b-256 4ed5463279fda028d3c1efa74e7e8d507605ae87f33dbd0543cf4c4527c8b882

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f420033a20b4f6a2a11f585f93c843ac40686a7c3fa514060a97d9de93e5e72b
MD5 830eecf7c372aa0d7d746ad031ff0ba1
BLAKE2b-256 08170e3b4182e691a10e9483bcc62b4bb8693dbf9ea5dc9ba0b77a60435074bb

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 aaf81c7b82c73bd9b45e79cfb9476cb9c29e937494bfe9092c26aece812818ad
MD5 af55bc7a8f46ec8d413eb1fbe2c200e9
BLAKE2b-256 aaf54858c3e9ff7a7d64561b20580cf7cc5d085794bd465a19604945d6501f6c

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8b51ead2b258284458e570942137155978583e407babc22e3d0ed7af33ce06f8
MD5 ab624ddc1425d44412541aad1f012fd9
BLAKE2b-256 8489f76f93b06a03177c0faa7ca94d0856c4e5c4bcaf3c5f77640c9ed0303e1c

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 690d0a5b60a47e1f9dcec7b77750a4854c0d690e9058b7bef3106e3ae9117808
MD5 6f8261bc789eed1d3f6f7ea9ff3c2a2c
BLAKE2b-256 a643e1fd1aca7c97e234dd05e66de4ab7a5be54548257efcdd1bc33637e72102

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 b0f1f11d0a1da54927436505a5a7670b154eac27f5672afc389661013dfe3d4f
MD5 ea021092cbb7b1e7d0984dc774bb288d
BLAKE2b-256 5944f6caf50713d6ff4480640bccb2a534ce1d8e6e0960c8f864947439f0ee95

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0eba4a1ea88f9a6f30f56fdafdeb8da3774349eacddab9581a21234b8535d3d3
MD5 9726de30cce2b36940225a7ea086c824
BLAKE2b-256 dd4679ecf47da34c4c50eedec7511e53d57ffdfd31c742c00be7dc1d5ffdb917

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 39b27d8b38942a647f048b675f134dd5a567f95bfff481f9109ec308515c51d8
MD5 6c586985db2e888876aa96ceaf99ee66
BLAKE2b-256 f189c7828f23cc50f607ceb912774bb4cff225ccae7131c431398ad8400e2c98

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.0-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 c8738baa52505fa6e82778580b23f945e3578412554d937093eac9205e845e6e
MD5 f4559038276d0e2bfb19601484d4cdff
BLAKE2b-256 66312f2f2d2b3e3c32d5753d01437240feaa32220b73258c9eef2e42a0832866

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 81ae0bf2564cf475f94be4a27ef7bcf8af0c3e28da46770fc904da9abd5279b5
MD5 7386a22b0ef219ba043f6e085933dbd6
BLAKE2b-256 086061d60cf0dfc0bf15381eaef46366ebc0c1a787856d1db0c80b006092af84

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: numpy-2.3.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 e43c3cce3b6ae5f94696669ff2a6eafd9a6b9332008bafa4117af70f4b88be6f
MD5 7d0deec2ad395fda48b80be59612db22
BLAKE2b-256 2f8a5756935752ad278c17e8a061eb2127c9a3edf4ba2c31779548b336f23c8d

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e651756066a0eaf900916497e20e02fe1ae544187cb0fe88de981671ee7f6270
MD5 fcaacdedcd8cfec7a6cb430fba7a5553
BLAKE2b-256 0758869398a11863310aee0ff85a3e13b4c12f20d032b90c4b3ee93c3b728393

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d8fa264d56882b59dcb5ea4d6ab6f31d0c58a57b41aec605848b6eb2ef4a43e8
MD5 d3a1b81da2f2cba4743d1ee5385cb4d6
BLAKE2b-256 4803ffa41ade0e825cbcd5606a5669962419528212a16082763fc051a7247d76

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 87717eb24d4a8a64683b7a4e91ace04e2f5c7c77872f823f02a94feee186168f
MD5 4b55cf791be482e8d8e5aaba0c10b6f2
BLAKE2b-256 1c12734dce1087eed1875f2297f687e671cfe53a091b6f2f55f0c7241aad041b

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 df470d376f54e052c76517393fa443758fefcdd634645bc9c1f84eafc67087f0
MD5 a89b304bbb52268b233ab9652fee8142
BLAKE2b-256 62aafca4bf8de3396ddb59544df9b75ffe5b73096174de97a9492d426f5cd4aa

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 4dc58865623023b63b10d52f18abaac3729346a7a46a778381e0e3af4b7f3beb
MD5 0ed70aa071f35060ee68d6ab407159e5
BLAKE2b-256 128b6c2cef44f8ccdc231f6b56013dff1d71138c48124334aded36b1a1b30c5a

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 aba48d17e87688a765ab1cd557882052f238e2f36545dfa8e29e6a91aef77afe
MD5 cd4e31304e51cc5dacd355730be25e4e
BLAKE2b-256 64d506d4bb31bb65a1d9c419eb5676173a2f90fd8da3c59f816cc54c640ce265

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d11fa02f77752d8099573d64e5fe33de3229b6632036ec08f7080f46b6649959
MD5 004b4c3650562bd851e31fb925863acb
BLAKE2b-256 e89573ffdb69e5c3f19ec4530f8924c4386e7ba097efc94b9c0aff607178ad94

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5754ab5595bfa2c2387d241296e0381c21f44a4b90a776c3c1d39eede13a746a
MD5 54eb5fa0444ff5dd078bb1aa30d9533f
BLAKE2b-256 73fc1d67f751fd4dbafc5780244fe699bc4084268bad44b7c5deb0492473127b

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.0-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 9.9 MB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 bd8df082b6c4695753ad6193018c05aac465d634834dca47a3ae06d4bb22d9ea
MD5 097bd498f8333d383db61105044906dc
BLAKE2b-256 c21c6d343e030815c7c97a1f9fbad00211b47717c7fe446834c224bd5311e6f1

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0898c67a58cdaaf29994bc0e2c65230fd4de0ac40afaf1584ed0b02cd74c6fdd
MD5 0707b427c1102bb904994289e1555c3d
BLAKE2b-256 bc49d5781eaa1a15acb3b3a3f49dc9e2ff18d92d0ce5c2976f4ab5c0a7360250

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.3.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e6648078bdd974ef5d15cecc31b0c410e2e24178a6e10bf511e0557eed0f2570
MD5 bf1bf83eca701ff70351c2d7b308e181
BLAKE2b-256 d4755baed8cd867eabee8aad1e74d7197d73971d6a3d40c821f1848b8fab8b84

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6295f81f093b7f5769d1728a6bd8bf7466de2adfa771ede944ce6711382b89dc
MD5 6263705622ca89ccadc6f458effde281
BLAKE2b-256 f1625367855a2018578e9334ed08252ef67cc302e53edc869666f71641cad40b

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4d8d294287fdf685281e671886c6dcdf0291a7c19db3e5cb4178d07ccf6ecc67
MD5 666cad26086ee212047e5ea0e8906480
BLAKE2b-256 f5b465f48009ca0c9b76df5f404fccdea5a985a1bb2e34e97f21a17d9ad1a4ba

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c24bb4113c66936eeaa0dc1e47c74770453d34f46ee07ae4efd853a2ed1ad10a
MD5 b5fa92d1093dab4c3ca0622c29c4a241
BLAKE2b-256 b7f6bc47f5fa666d5ff4145254f9e618d56e6a4ef9b874654ca74c19113bb538

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 50080245365d75137a2bf46151e975de63146ae6d79f7e6bd5c0e85c9931d06a
MD5 15a5f57cb51d3d957c1b387c4bc54830
BLAKE2b-256 1ac0c871d4a83f93b00373d3eebe4b01525eee8ef10b623a335ec262b58f4dc1

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 b9446d9d8505aadadb686d51d838f2b6688c9e85636a0c3abaeb55ed54756459
MD5 ea83ef5cd00d5e42bb745eee1ee0ad3f
BLAKE2b-256 865d45850982efc7b2c839c5626fb67fbbc520d5b0d7c1ba1ae3651f2f74c296

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 622a65d40d8eb427d8e722fd410ac3ad4958002f109230bc714fa551044ebae2
MD5 5b86d6d0cab79d0cd381bb2e912e7e23
BLAKE2b-256 718da942cd4f959de7f08a79ab0c7e6cecb7431d5403dce78959a726f0f57aa1

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9498f60cd6bb8238d8eaf468a3d5bb031d34cd12556af53510f05fcf581c1b7e
MD5 5b656fbed339bcac1af6de73b15e5dba
BLAKE2b-256 2f864ff04335901d6cf3a6bb9c748b0097546ae5af35e455ae9b962ebff4ecd7

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 389b85335838155a9076e9ad7f8fdba0827496ec2d2dc32ce69ce7898bde03ba
MD5 9c1ad46e637b876a0535de60f5b604bc
BLAKE2b-256 89599df493df81ac6f76e9f05cdbe013cdb0c9a37b434f6e594f5bd25e278908

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: numpy-2.3.0-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 10.2 MB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 2e6a1409eee0cb0316cb64640a49a49ca44deb1a537e6b1121dc7c458a1299a8
MD5 347260edfd35535b15b8133280793080
BLAKE2b-256 edeebf54278aef30335ffa9a189f869ea09e1a195b3f4b93062164a3b02678a7

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 43c55b6a860b0eb44d42341438b03513cf3879cb3617afb749ad49307e164edd
MD5 819e4ac62a3449c79818ff5aa0e6b276
BLAKE2b-256 8c4a556406d2bb2b9874c8cbc840c962683ac28f21efbc9b01177d78f0199ca1

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.3.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for numpy-2.3.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ee9d3ee70d62827bc91f3ea5eee33153212c41f639918550ac0475e3588da59f
MD5 a1e9e40a20187e1f5ae2f8ba165e291b
BLAKE2b-256 3bae3f448517dedefc8dd64d803f9d51a8904a48df730e00a3c5fb1e75a60620

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c39ec392b5db5088259c68250e342612db82dc80ce044cf16496cf14cf6bc6f8
MD5 9ff8ea227afce090dea3b4dac4653fa6
BLAKE2b-256 e2c3dada3f005953847fe35f42ac0fe746f6e1ea90b4c6775e4be605dcd7b578

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 06d4fb37a8d383b769281714897420c5cc3545c79dc427df57fc9b852ee0bf58
MD5 2dc1c1d1b9deb8c0626af68c0c00660a
BLAKE2b-256 e42fe7a8c8d4a2212c527568d84f31587012cf5497a7271ea1f23332142f634e

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7729c8008d55e80784bd113787ce876ca117185c579c0d626f59b87d433ea779
MD5 6a45424beb8f4f23e7b2b853bc18aefa
BLAKE2b-256 0a920528a563dfc2cdccdcb208c0e241a4bb500d7cde218651ffb834e8febc50

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2393a914db64b0ead0ab80c962e42d09d5f385802006a6c87835acb1f58adb96
MD5 cd5cf04cb8b40e65aac8264c7bf3d7c9
BLAKE2b-256 d55a8df16f258d28d033e4f359e29d3aeb54663243ac7b71504e89deeb813202

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 99224862d1412d2562248d4710126355d3a8db7672170a39d6909ac47687a8a4
MD5 a33af1d4e1f0ee5ed82d7933c5df9f84
BLAKE2b-256 7d2a6c59a062397553ec7045c53d5fcdad44e4536e54972faa2ba44153bca984

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a0be278be9307c4ab06b788f2a077f05e180aea817b3e41cebbd5aaf7bd85ed3
MD5 4e12cd2aea876c09fdc3aaac2d0f4bac
BLAKE2b-256 296b2d31da8e6d2ec99bed54c185337a87f8fbeccc1cd9804e38217e92f3f5e2

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46d16f72c2192da7b83984aa5455baee640e33a9f1e61e656f29adf55e406c2b
MD5 d3c377f49f84b36297cfc2fc30c6a288
BLAKE2b-256 e5ceaad219575055d6c9ef29c8c540c81e1c38815d3be1fe09cdbe53d48ee838

See more details on using hashes here.

File details

Details for the file numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3c9fdde0fa18afa1099d6257eb82890ea4f3102847e692193b54e00312a9ae9
MD5 cf552b6b6390343c24bf60365950c91c
BLAKE2b-256 fd5fdf67435257d827eb3b8af66f585223dc2c3f2eb7ad0b50cb1dae2f35f494

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy