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Abstract

Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and inte-
gration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials,
proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order
models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview
of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic
concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by iden-
tifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models
are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and
computational efficiency of fractional-order models. These models offer 15-30% higher accuracy than their integer-order analogues,
but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced
battery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system
modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted.
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1. Introduction

Transportation electrification and grid integration of renew-
able energy sources constitute two renewed research efforts to
reduce dependence on fossil fuels and mitigate global warming
[1]. Market penetration of electrified vehicles (EVs) can help
meet these goals if it is coupled with decarbonized electricity,
for example, solar and wind power [2]. Electrochemical energy
storage systems (EESSs) play a critical role in both EVs and
renewable energy integration applications. They serve as en-
ergy sources to provide power supply and/or energy buffers to
improve efficiency and the overall economy.

Rechargeable batteries and supercapacitors are typical
EESSs that share a similar structure–both of them store and
convert energy through diffusion and migration of ions. Each
battery or supercapacitor cell is composed of positive and neg-
ative electrodes separated by an enabling separator that allows
ion transfer but prevents electron conduction. Electrodes and
their separators are often immersed in an electrolyte solution
that contains mobile ionic species [3]. Among a number of
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different energy storage technologies, lithium-ion (Li-ion) bat-
teries have currently been accepted as the leading candidate for
commercial EESSs because of their superiority, especially in
volumetric and gravimetric energy densities [4, 5]. However,
each EESS has unique features and characteristics, and may
be well suited for particular applications. For example, while
lead-acid batteries are primarily used in cases where cost, reli-
ability, and abuse tolerance are crucial [6], supercapacitors are
preferred in devices that require high power density and long
cycling lifetime [7].

EESSs must be safe and highly tolerant of high/low temper-
atures. They must also be cost-effective and provide large en-
ergy/power density and long cycle life. To pursue these objec-
tives, model-based state estimation/monitoring techniques and
energy management schemes have been extensively studied in
the literature, e.g., [8, 9]. A common requirement of these tasks
is to construct accurate yet simple mathematical models that are
adaptable to thermal and aging phenomena inherent in EESSs.

Considerable research efforts have been dedicated to math-
ematically modeling EESS dynamics and have resulted in
physics-based, equivalent circuit, and data-driven models [10,
11, 12]. Based on differentiation orders, these models can gen-
erally be assorted into integer- and fractional- order models.
Integer-order models dominate the research and engineering
application of electrochemical energy storage. Hu et al. [13]
compared commonly used equivalent circuit models of Li-ion
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batteries in terms of accuracy, complexity, and robustness un-
der vehicle driving cycles. Doyle et al. [14] and Zou et al. [15]
formulated electrochemical models governed by a set of par-
tial or ordinary differential equations for Li-ion cells. Zhang et
al. [16] and Drummond et al. [17] discussed electrochemical
models for supercapacitors. However, it has been incremen-
tally recognized, such as by Freeborn et al. [18], that EESSs
exhibit some mathematical characteristics in accordance with
fractional-order systems. This fact solicits increased interest
and endeavors to come up with novel EESS models in the do-
main of fractional calculus. As a result, the fractional-order
modeling methodology may not only improve prediction ac-
curacy but also preserve some physical meanings underlying
model parameters.

This paper provides a comprehensive review of fractional-
order techniques for typical EESSs, including Li-ion bat-
teries, lead-acid batteries, and supercapacitors. Section 2
presents the mathematical fundamentals of fractional-order cal-
culus. Section 3 introduces the common dynamic processes of
EESSs and electrochemical impedance spectroscopy to eluci-
date the principles of fractional-order modeling. Available bat-
tery/supercapacitor models are sequentially surveyed, grouped,
and characterized. After analyzing parameter identification
techniques in Section 4, the accuracy and computational re-
quirement of fractional-order models (FOMs) are quantitatively
investigated via case studies in Section 5. Section 6 highlights
the main technical challenges facing FOM-based management
for EESSs, including modeling of coupled system dynamics,
state estimation, and charge/discharge control, followed by con-
cluding summaries in Section 7.

2. Mathematical fundamentals

This section exhibits the mathematical fundamentals of
fractional-order calculus (FOC) to facilitate the understanding
of concepts and technical tools used for modeling electrochem-
ical energy systems. In particular, the definitions of impedance
and fractional-order derivatives and the FOM’s state-space rep-
resentation will be discussed. A thorough exposition of FOC
can be found in textbooks on fractional-order system model-
ing, analysis, and applications [19, 20, 21] and related survey
articles [22, 23].

Frequency-domain electric impedance. In the frequency do-
main, a general impedance, Z, in electrical circuits may be de-
fined by the following proportional relation

Z ∝ ( jω)α, for α ∈ [−1, 1], ω ∈ R, (1)

where j is the imaginary number and ω is the radian frequency.
The conventional equivalent circuit elements, including pure
capacitors, resistors, and inductors, are special cases of Z, cor-
responding to α = 1, 0, and −1, respectively.

As initially proposed by Cole and Cole [24], a fractional-
order capacitive element can be characterized by the impedance
in (1) as

ZCPE =
1

Cα( jω)α
, for α ∈ (0, 1), (2)

where the exponent α is a fractional-order and Cα is a constant
and is called a pseudo-capacitance with the dimension F·secα−1

[25]. ZCPE has a constant phase angle at απ/2 [26] and is of-
ten called a constant phase element (CPE). In comparison, the
phase shift for pure capacitors is π/2.

Fractional-order derivatives. The fractional-order opera-
tor for the CPE in (2) is mathematically defined by 0D

α
t (·) =

dα(·)/dtα. An equation with 0D
α
t describes dynamic processes

with infinite dimension. To facilitate analysis and numerical
implementation, three different definitions, namely, Riemann-
Liouville (RL), Caputo, and Grünwald-Letnikov (GL) frac-
tional derivatives are often utilized for such an operator [19].
For instance, the GL fractional derivative takes explicitly the
form

0D
α
t f (t) = lim

T→0

1
Tα

bt/T c∑
k=0

(−1)k〈α, k〉 f (t − kT ), (3)

where T is the sampling time interval, bt/T c is the maximum in-
teger lower than t/T , and 〈α, k〉 represents the Newton binomial
term defined as

〈α, k〉 =
Γ(α + 1)

Γ(k + 1) · Γ(α − k + 1)
, (4)

where Γ(·) is the gamma function with the definition of

Γ(α) =

∫ ∞
0

ξα−1e−ξdξ. (5)

For simplicity, 0D
α
t f (t) is written as Dα f (t) in the sequel. A

comprehensive description of these definitions as well as their
peculiarities has been presented in [19, 27].

Unlike their integer alternatives, fractional derivatives are
not local operators because they take into account the entire
past trajectory of f (·) over the interval [0, t], as seen in (3).
This is the so-called long memory property of fractional deriva-
tives. However, this property significantly increases the com-
putational burden for engineering applications of FOMs, par-
ticularly for real-time model-based optimization and control.
To improve implementation efficiency, a short memory princi-
ple was therefore proposed by Podlubny [28] to approximate
(3) with high-order difference equations, which consider only
recently past information in the state propagation. This ap-
proach has been shown to be effective in a number of examples
in fractional-order modeling of Li-ion batteries [29] and super-
capacitors [30]. Indeed, there is in general a trade-off between
modeling accuracy and computational complexity around the
memory length.

System representation and types. The state-space representa-
tion of a general fractional-order system can be written in the
following form

D
αx(t) = f (t, x(t), u(t)), (6a)

y(t) = h(t, x(t), u(t)), (6b)

where x := [x1, · · · , xn] is the state vector, Dαx :=
[Dα1 x1, · · · ,D

αn xn], and u, y are separately the system input and
output vectors. This representation is the same as integer-order
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system representations except for the fractional derivative on
the left-hand side of (6a). If α1, · · · , αn are all positive inte-
ger multiples of a real number γ, then (6) is a commensurate
fractional-order system of order γ; otherwise, it is said to be
incommensurate, with more degrees of freedom to fit system
dynamics [19, 31, 32].

3. EESS modeling

Before reviewing fractional models for different EESSs, the
modeling principles are first explained by analyzing system dy-
namic processes and electrochemical impedance spectroscopy.

3.1. Modeling principles
Dynamic processes. A common feature of EESSs is that

multiple dynamic processes occur simultaneously during op-
eration and inherently exhibit different time scales. The fastest
dynamic process is dedicated to the movement of charge car-
riers through the electrolyte and current collectors to the ex-
ternal circuit. Along with the decreasing direction of the fre-
quency spectra, there are electrochemical double-layer effects
and charge-transfer reactions. This is followed by the solid-
phase ion diffusion in batteries and the stray inductance of cur-
rent collectors and porous electrodes in supercapacitors. All
EESSs suffer from persistent, irreversible aging phenomena
during static storage or cycling operation, which is the slow-
est dynamic process. These dynamic processes in general are
coupled. For example, the stressed electrochemical reactions
expedite system degradation, and in turn, the aging reaction in-
fluences charge/discharge performances.

An explicit identification of multiple time scales from Li-ion
battery dynamics was conducted in [15, 33]. Therein, tech-
niques based on singular perturbations and the averaging theory
were proposed to systematically separate the dynamics. The
processes that occur in a typical supercapacitor have also been
explained via frequency-domain impedance analysis, e.g., in
[34, 35].

Electrochemical impedance spectroscopy. Electrochemical
impedance spectroscopy (EIS) is a powerful tool to investi-
gate the behavior and properties of EESSs in a non-destructive
manner [36, 37, 38]. The principle of EIS analysis is to dis-
tinguish the above different physical processes by characteriz-
ing the impedance over wide frequency ranges. Specifically,
the impedance Z of an electrochemical system around some
steady or quasi-steady state can be determined using the fol-
lowing two-step procedure:

(i) Apply a sequence of small AC currents, which can be ex-
pressed as I(t) = |I|e j(ωt+φI ) if they are sinusoidal signals,
to excite the system and then measure its voltage response,
V(t) = |V |e j(ωt+φV ).

(ii) Collect current and voltage data and evaluate the
impedance by dividing the voltages by its corresponding
currents, namely Z = |V |e j(φV−φI )/|I|.

The characteristics of the impedance spectra can provide in-
sights into electrochemical systems and then be used to develop
mathematical models for predicting system dynamics.

Equivalent circuit modeling principles. Equivalent circuit
modeling can be motivated by EIS, with the goal to fit ex-
perimentally measured impedance data using circuit elements.
Lumped resistors, capacitors, inductors, and voltage sources are
typical elements used in conventional equivalent circuit mod-
els (ECMs) [13, 39, 40]. To improve modeling fidelity, a CPE
was proposed in [24] with the mathematical definition given
by (2). With CPEs, the plate hypothesis underlying the real
electrodes can be relaxed, and non-uniform boundary and dis-
tributed intercalation/de-intercalation processes within porous
electrodes can be described. The obtained models incorporating
one or more CPEs are often referred to as FOMs, which have
been used to mimic dynamic behaviors of EESSs [41, 42, 29].

In the context of circuit approaches, the development of
FOMs for a battery or supercapacitor, in essence, consists of
selecting CPEs together with other circuit elements and then ap-
propriately organizing them in a circuit. Usually, there are some
modeling criteria, depending on specific applications, such as
accuracy and complexity. Different techniques available for Li-
ion batteries, lead-acid batteries, and supercapacitors are sur-
veyed in the following subsections.

3.2. Lithium-ion battery models

Li-ion batteries were first commercially developed by Sony
in the early 1990s and have experienced remarkable advances
over recent years [6, 43]. Their prosperity is largely driven by
demands for portable electronic devices, smart grids, and EVs.
With continuous performance improvements and cost reduc-
tions, the deployment of Li-ion batteries is predicted to increase
rapidly in the near future [44] and thus is primed to dominate
the energy storage market.

Li-ion batteries, with a cost of US$250 per kilowatt-hour [45]
and energy efficiency at 200-250 watt-hours per kilogram [46],
however, are expensive compared to fossil fuels like petrol and
diesel. In addition, battery state of health (SoH), reliability, and
safety are critical concerns that need to be addressed over a bat-
tery’s entire lifespan. A battery management system (BMS) can
deal with these economic and performance concerns because
it synthesizes from hardware and software to monitor, control,
and diagnose the battery pack and individual cells [10, 12]. Ex-
plicitly, its functionality may involve state estimation, thermal
management, charge/discharge control [47], and cell balancing
[48]. To realize these functions, an important first step is to
establish reliable and numerically efficient battery models.

For a typical Li-ion cell, the Nyquist plot of its impedance
spectrum is illustrated in Fig. 1. The impedance spectrum can
be divided into three sections according to frequency. The high-
frequency tail is typically interpreted as the ohmic resistance
of inductive components, such as current collectors and test ca-
bles. The low-frequency straight line is mainly invoked by elec-
trochemical double-layer and charge-transfer reactions. This
can be captured by a CPE, usually referred to as a Warburg
element. The mid-frequency semi-ellipse stems from lithium
diffusion within solid electrodes and can potentially be mod-
eled by some tandem fractional-order networks, each of which
is constituted by a CPE in parallel with a resistor [38].
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18,650 cell by A123 Systems, measured with a small signal ac cur-
rent of 100 mA, in a frequency range of 10 mHz to 5 kHz, at 50%
state of charge (SOC) and ambient temperature. The different
processes with typical frequency ranges are annotated in the figure.

For a simplified description of the complex physical and
chemical processes occurring within electrochemical systems such
as batteries or fuel cells, electrical equivalent circuit models (ECMs)
can be used to model the small signal dynamic behaviour [3,4,12].
One of the most widely used equivalent circuit representations of
Li-ion batteries is based on the Randles circuit [4], which consists of
an ohmic resistor to represent the conduction of charge carriers
through electrolyte and metallic conductors, and a resistor in par-
allel with a capacitor to represent the charge transfer resistance and
double layer capacitance, respectively. However, these idealised
circuit components are inadequate to model electrochemical
charge transfer and double layer capacitance in real systems due to
the spatial distribution of these processes. For a better represen-
tation of distributed electrode processes in real systems, Cole and
Cole [3] proposed an equivalent circuit element with constant
phase, independent of the frequency: the so-called constant phase
element (CPE), which has been adopted for Li-ion ECMs (e.g. Ref.
[13]). The impedance of the CPE, ZCPE, is expressed as:

ZCPEðuÞ ¼ 1
QðjuÞa (1)

where Q is a constant, j is the imaginary number, u is the radian
frequency and a (0 > a > 1) is the exponent value, which is 1 for an
ideal capacitor. In the fractional case, the dimension of Q is
F cm$2 sa$1 [14,15]. In order to model the impedance for all high- to
mid-frequency processes in a Li-ion cell, the CPE is combined in
parallel with a resistor representing charge transfer resistance (R),
and in series with another resistor representing ohmic contribu-
tions (R∞), which results in:

ZðuÞ ¼ R∞ þ
R

RQðjuÞa þ 1
(2)

where, Z denotes the cell impedance. If we replace ju with the
Laplace operator s in (2), then the ECM expressed as a transfer
function is:

ZðsÞ ¼ VðsÞ
IðsÞ

¼ R∞ þ R
RQsa þ 1

(3)

where V(s) and I(s) are the Laplace transforms of the cell voltage
and current signals. Fig. 2 shows the equivalent circuit of the EIS
model (3).

Although relatively simple, this model is sufficient to represent
the basic dynamic behaviour of a large number of electrochemical
systems [16]. The model could be extended to include further R-CPE
parallel pairs depending on the behaviour and requirements of the
electrochemical system. To model the Warburg element, a single
CPE in series with R∞ could be added. However, in order to
demonstrate the time-domain fitting technique without over-
fitting, we focus on using this model to solve the following
problem:

Problem statement: Consider an electrochemical system with
an EIS model given by (3). The problem is to estimate the values of
R∞, R, Q and a from suitably excited current and voltage, i(t) and
v(t), such that the frequency response of Z(s) fits the measured
impedance spectra within the frequency range of interest [uL, uH].
It is assumed that i(t) and v(t) are discrete time sampled data with
sample time Ts, from Ref. t ¼ 0 to t ¼ tf ¼ KTs and K2Zþ.

For many applications, the ECM parameters of (3) are typically
estimated in the frequency domain by complex non-linear least
squares (CNLS) regression [17,18]. This approach works well in
the lab, since low noise frequency domain measurements are
directly available by exciting the cell with a sinusoidal excitation
at various frequencies. However, this is impractical for condition
monitoring in real applications, since it is relatively slow. Instead,
a wide range of frequencies may be used to excite the cell at the
same time, for example a pseudo-random binary sequence,
broadband noise, or multisine excitation [19], allowing a much
faster measurement, and the possibility to use passively occur-
ring noise as the excitation source. In this scenario, before fitting,
time-domain data must be converted to the frequency domain
using Fourier transforms. Since the excitation and response data
are often non-periodic, a window function must be used to
smooth the spectral estimation, however this introduces a bias to
the estimation. It is therefore preferable outside the lab for
condition monitoring purposes to estimate the model parame-
ters of an EIS model such as (3) directly from time domain
measurements of voltage and current, making use of all available
data and without introducing bias.

Direct time domain fitting of (3) is challenging, because the
exponent a is typically a non-integer due to the CPE. This is termed
a ‘fractional order system’ and since the Laplace operator s repre-
sents differentiation, this is equivalent to a dynamic system with a
non-integer derivative operator.

In order to address this challenge, CPEs for Li-ion ECMs are
generally either approximated by ideal capacitors [20], or by a
series connection of numerous R-C pairs [21e23], or a distribu-
tion of relaxation times [24]. The former has found widespread
application in ECMs used for battery management systems (BMS)
of Li-ion batteries due to its simplicity and computational effi-
ciency [25]. This approach may be sufficient to simulate Li-ion
cells under load to moderate degrees of accuracy [26] at low
sampling frequencies. However, it does not allow for a precise
representation of Li-ion dynamics in both the time and frequency

Fig. 1. Nyquist plot of impedance spectrum of a Li-ion cell.

Fig. 2. Battery EIS equivalent circuit model (2).

S.M.M. Alavi et al. / Journal of Power Sources 288 (2015) 345e352346

−
I
m

(Z
)[

m
Ω

]

ω<1Hzω>1kHz

Ohmic
Resistance 

Diffusion in
Solid Electrodes 

Electrochemical Double Layer and 
Charge Transfer Reaction

1Hz<ω<1kHz

Re(Z)[mΩ]

Figure 1: Nyquist plot of impedance spectrum measured from a typical Li-ion
cell (modified from [49]).

The phase shift of a fractional-order capacitor, απ/2, is called
a phasance, a term introduced by Jean [26]. The phasance
is an important characteristic parameter of the Nyquist plot in
Fig. 1. In particular, the phasance of a Warburg element rep-
resents the slope of the low-frequency straight line, while for a
CPE-resistor network, it is related to the shape of the depressed
semicircle. In contrast, the phasance of pure capacitors is fixed
to be π/2, which cannot well capture the Nyquist plot’s charac-
teristics. A thorough explanation of the phasance concept and
mathematics behind it can be found in [26].

In integer-order models (IOMs) of Li-ion batteries, CPEs are
either approximated by ideal capacitors [50], or a number of
resistor-capacitor (RC) networks [13, 51], or relaxation times
[52]. The first option, as exemplified in Fig. 2(a), is exten-
sively applied to battery management due to the simplicity in
its parameterization and implementation. The resulting mod-
els may capture a battery’s behavior to a moderate degree of
accuracy within a limited range of operating conditions [53].
However, they are commonly not capable of predicting bat-
tery dynamics in both the time and frequency domains over
the entire operating range. For the latter approaches shown in
Fig. 2(b), in general, a greater number of RC networks are re-
quired for wider frequency bands. Specifically, the first-order
RC model tries to mimic ohmic resistance and charge-transfer
reactions, corresponding to the high-frequency tail and mid-
frequency range, but does not describe the diffusion behavior
in the low-frequency straight line. For the second-order RC
model, the ohmic resistance and diffusion behavior can be sim-
ulated, but the characteristic frequency of the charge-transfer
process corresponding to the maximum imaginary part of the
impedance cannot be considered [54]. With the third or higher
order RC models, all three processes can be produced. How-
ever, these models have a large set of parameters. This not only
complicates the model mathematical structure associated with
computational burden, but also increases the efforts for system
calibration and the risk of over-fitting. In addition, as Wester-
hoff et al. [54] demonstrated, even though five RC networks are
utilized, the IOMs cannot capture the phase at zero very accu-
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Figure 2: Integer-order equivalent circuit models with different orders.

rately.
Fractional-order electrical models. To address the above

problems, fractional calculus has recently been explored for
Li-ion battery applications. By simply replacing the ideal ca-
pacitor in the first-order RC model to a fractional element, an
infinite-dimensional model was developed for Li-ion cells in
[55]. The obtained FOM is presented in Fig. 3(a). To facilitate
numerical calculation, these authors adopted the Oustaloup re-
cursive approximation from [56] to transfer the fractional equa-
tions to ordinary difference equations. In this approximation,
the lower and upper frequency bounds will impact poles and ze-
ros of the model’s transfer function, and then affect the model’s
accuracy [57]. By using experimental data from time and fre-
quency domains, Alavi et al. [49] found that this model can re-
produce a Li-ion battery’s behavior better than its integer coun-
terpoint, thanks to an additional degree of freedom, namely the
fractionation order. Waag et al. [58] utilized this model to de-
scribe the current-voltage response at dynamic loads measured
from EVs. Therein, the FOM with one CPE was found to be
equivalent to an IOM with five RC networks. To achieve higher
accuracy, Wang et al. [59] presented an FOM by adding a War-
burg element (W) in series with the charge-transfer resistor (R1)
(see Fig. 3(b)). By using the GL fractional derivative, this FOM
has demonstrated a high fidelity to experimental data. Liao et
al. [60] exploited this model to study the electrochemical be-
havior of a lithium iron phosphate/hard carbon cell. With the
same circuit elements but a different structure, the model shown
in Fig. 3(c) was used by Xu et al. [29] to describe Li-ion battery
dynamics. The model presented in Fig. 3(d) with two CPEs has
also been employed, e.g., in [61], and is expected to be more
robust to uncertainties.

All the above works tend to confirm that the fractional mod-
eling approach is capable of accurately predicting Li-ion cell
electrical dynamics. Consequently, these models have attracted
increased interest in model-based battery management. Xu et
al. [29] synthesized an FOM and fractional Kalman filter to es-
timate the state of charge of a Li-ion battery. Zou et al. [62] pro-
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Figure 3: Typical fractional-order circuit models for a Li-ion cell.

posed a nonlinear fractional estimation algorithm with provable
stability and robustness and then applied it to monitor battery
states. Other algorithms for Li-ion battery applications based
on fractional electrical models can be found in [63, 64, 65] and
references therein.

Fractional-order physics-based models. Alternatively to
equivalent circuit models, Li-ion battery models can be estab-
lished from first principles that describe electrochemical reac-
tions and the Li-ion intercalation/de-intercalation process. The
initial electrochemical model for a Li-ion cell was proposed
by Doyle et al. [14] using concentrated solution theory. This
model was extended by Zou et al. [15, 66] to incorporate
electrical, thermal, and aging dynamics, and was constituted
by a number of coupled nonlinear partial differential equations
(PDEs). These authors then reformulated this complete battery
model in a Hilbert space to precisely characterize its mathemat-
ical structure. As a result, the singularly perturbed structure
underlying the battery model is uncovered. This enables the
use of available singular perturbation theory for timescale sep-
aration of battery dynamics, leading to a family of simplified
PDE models.

However, because the obtained PDE-based models are
still too computationally expensive for real-time implementa-
tion, here is an incentive to perform model-order reductions.
Sabatier et al. [67] proposed a fractional electrochemical model

by simplifying a PDE-based electrochemical model. Starting
from this model, Sabatier et al. [68] developed a fractional sin-
gle electrode model by gradually introducing assumptions on
battery physical and chemical properties. Alternatively, accord-
ing to Li et al. [69], a simplified physics-based model can be
established with fractional-order transfer functions to describe
solid-phase lithium diffusion. In addition, Li et al. [70] pre-
sented an electrochemistry-based impedance model to describe
lithium diffusion in the electrodes, charge-transfer reactions at
the solid-electrolyte interphase (SEI), double-layer effects, and
resistance/capacitance changes associated with the anode SEI
film growth. In such a model, electrical elements are used to
mimic these internal electrochemical processes, so that their in-
teractions with external current/voltage measurements can be
easily understood.

The above simplified models have several intriguing at-
tributes. They largely mitigate the computational burden com-
monly upon high-order physics-based models, but still capture
the key battery characteristics. Furthermore, equipped with
fractional-order differentiation, the models contain only a few
parameters that have the potential to maintain physical mean-
ings [70, 71]. Indeed, physically meaningful parameters are
helpful for various model-based applications, such as in SoH
estimation, lifetime prediction, and optimal fast charging con-
trol.

Fractional-order thermal models. Temperature plays an in-
fluential role in a battery’s dynamic performance and SoH
[72, 73], and effectively modeling the thermal behavior can
facilitate advanced temperature management. On the basis of
model-based control algorithms, the temperature can be manip-
ulated in a proper range to ensure safe and efficient utilization.
The available models are often built on a lumped-parameter en-
ergy balance, in which the cell temperature is assumed to be
spatially uniform [74, 75]. However, when the heat convection
at the cell surface is faster than the heat conduction inside, the
established model can appreciably deviate from its real battery
system. Aoki et al. [76] proposed a general fractional-order
model to approximate transient temperatures. Reyes-Marambio
et al. [77] then introduced this idea to model air-cooled cylin-
drical Li-ion batteries. This model has demonstrated a high pre-
dictive capability against experimental results and is intended to
be used in thermal control strategy design of battery cells and
modules.

3.3. Lead-acid battery models
Lead-acid batteries, invented in 1859, have matured to be the

most extensively used rechargeable battery technology. Their
low cost and high reliability [78] make them competent in
large-scale applications, such as uninterrupted power supply
and power quality regulation.

Similarly to Li-ion batteries, fractional-order modeling has
also seen considerable applications in lead-acid batteries and
demonstrated attractive modeling performance. Garcia et al.
[79] presented a diffusive model to delineate the dynamic be-
haviors of lead-acid batteries using a fractional-order opera-
tor. Following this, Lin et al. [80] proposed a framework
of fractional-order modeling for diffuse processes, which was
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then used to simulate the dynamics of lead-acid batteries. The
output-error technique was employed by them to derive the
model parameters based on classical input/output data of test
cells. To characterize the crankability of lead-acid batteries,
Sabatier et al. [81] and Cugnet et al. [82] introduced simpli-
fied fractional-order models on the basis of conventional ECMs.
These models are capable of capturing battery dynamics at a
frequency range of 8-30 Hz in which batteries typically operate
for engine cranking.

3.4. Supercapacitor models
Supercapacitors have emerged as a promising energy storage

source particularly suitable for storing and supplying high en-
ergy in short periods of time, for instance, in vehicle accelera-
tion and regenerative braking conditions [7]. This phenomenon
is functionally attributed to their advantageous performance,
such as large power density, high temperature tolerance, and
excellent cyclability [11]. Fundamentally, these merits stem
from the highly reversible ions adoption mechanism that is non-
faradaic and void of ions diffusion in the bulk of the high-
conductivity electrodes. Nevertheless, the poor energy density
constitutes the main bottleneck for applicability and has been
the focus of intensive research. In the past decade, substantial
progress has been made to improve the performance of super-
capacitors through continuous investigation of efficient storage
mechanisms and potentially enhanced electrode and electrolyte
materials. Nowadays, cost-effective and reliable supercapaci-
tors with an energy density up to 10 Wh/kg are commercially
available [83]. In practice, supercapacitors can complement and
even substitute for some high-energy EESSs (e.g., rechargeable
batteries) for power sinking and sourcing. In cell design, ongo-
ing research and development are mainly directed towards in-
creasing the energy density, which is now approximately 1/30-
1/20 the energy density of state-of-the-art Li-ion batteries [84],
and towards further lowering the cost.

An efficient management system is often required to mea-
sure, monitor, and control supercapacitor systems that are usu-
ally composed of a number of individual cells in series-parallel
connections. The management system’s functionality includes
but is not limited to cell balance, state estimation, safety su-
pervision, and fault detection and isolation. To realize these
functions, the fundamental step is to build reliable and accurate
models. Many mathematical models for supercapacitors have
been presented to simulate the system behaviors. These can be
roughly sorted into three categories: integer-order electrochem-
ical models, conventional ECMs, and fractional ECMs.

The initial electrochemical models describe a supercapaci-
tor’s internal electrochemical reactions based on first principles.
This modeling methodology and its application for supercapac-
itor management are still an active research topic. These models
retain a high model precision but suffer from a heavy computa-
tional burden caused by coupled PDEs [17, 85]. Furthermore,
parameterization of high-order electrochemical models is tech-
nically challenging due to potential identifiability issues and
persistent system aging phenomena. Conventional ECMs em-
ploy basic electrical circuit elements to represent the superca-
pacitor dynamics, with varied modeling performance, depend-
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Figure 4: Integer- and fractional-order electrical circuit models for a superca-
pacitor cell.

ing on circuit topologies. See Fig. 4(a) for a popular example
of conventional ECMs for a supercapacitor cell.

Fractional ECMs incorporate circuit elements, such as
Warburg elements and fractional-order capacitors shown in
Fig. 4(b), to delineate the electrical response of supercapacitors.
Using the same principle as Li-ion batteries, fractional superca-
pacitor models armed with electrical elements at the phasance
of απ/2 often are better able to fit experimental data using a few
parameters, in contrast to their integral-order counterparts. This
may efficiently ease the computation intensity and render on-
line implementation of model-based algorithms applicable. For
example, Riu et al. [86] introduced a half-order supercapaci-
tor model and demonstrated high accuracy in representing the
system dynamics . In addition, Martynyuk and Ortigueira [87]
utilized a least-squares fitting method to extract parameters of
a fractional-order model based on impedance data. Bertrand et
al. [88] and [89] synthesized a fractional-order nonlinear model
on the basis of frequency analysis. In a similar fashion, Martı́n
et al. [90] proposed a Havriliak-Negami function-based model
that is able to predict a supercapacitor’s static and dynamical
behaviors throughout the spectrum.

4. System identification

The usefulness of mathematical models for EESSs highly re-
lies on their parameters. Therefore, parameter identification
is a prerequisite to performing model-based simulation, esti-
mation, and control algorithms. The identification of a gen-
eral fractional-order system was initially conducted by Le Lay
in his Ph.D thesis [91]. However, for general nonlinear-in-
the-parameters FOMs, no formal identification algorithms can
provide provable convergence. To determine which parame-
ters are identifiable for given external excitations, Zhou et al.
[92] conducted a sensitivity analysis for equivalent circuit com-
ponent coefficients and fractional-order values. Most of the
subsequent approaches are dedicated to generalizing standard
methods, which are used in integer-order systems, to fractional-
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order systems. These can be classified into time-domain and
frequency-domain methods.

Least-squares (LSQ) estimation techniques have been widely
used to identify fractional-order systems in the frequency do-
main. For example, an output-error identification algorithm
based on LSQ was introduced for an inverse heat conduction
problem [93]. Sabatier et al. [94] adopted this approach to esti-
mate internal states of lead-acid batteries and then demonstrated
its effectiveness in a laboratory environment, where measure-
ments are usually less noisy than real-world applications. Al-
though it is possible to artificially generate broadband noises,
data measured in the time domain needs to be converted to the
frequency domain using Fourier transforms. However, this pro-
cess will inevitably result in biased measurements than can de-
grade estimation accuracy.

It is therefore preferred to identify FOMs directly from time-
domain measurements. Recently, this research topic has at-
tracted considerable interest. Before identification of a frac-
tional Li-ion cell model, Zhou et al. [92] adopted a statistical,
multi-parametric method to analyze each parameter’s sensitiv-
ity. Global optimizers, such as genetic algorithm and particle
swarm optimization, have been exploited to calibrate fractional
nonlinear battery models in [62, 59] and fractional nonlinear su-
percapacitor models in [30]. To estimate the orders and parame-
ters in an incommensurate fractional-order chaotic system, Zhu
et al. [95] proposed a switching differential evolution scheme,
where the switching population size is adjusted dynamically.
Motivated by this proposal, Lai et al. [96] employed a sequen-
tial parameter identification method for a fractional-order Duff-
ing system based on a differential evolution scheme. These au-
thors then demonstrated an improved convergence of the pro-
posed algorithm via numerical implementation. To provide
guaranteed error convergence for parameter estimates in finite
time, Liu et al. [97] extended a modulating function method for
online identification of general linear fractional-order systems.
What is interesting with this approach is that it does not require
initial conditions and fractional derivatives of the output.

To improve the robustness against measurement noise, Victor
et al. [98] developed the instrumental variable state variable fil-
ter (IVSVF) and its simplified version for unbiased estimation
of fractional-order systems. These methodologies have been
successfully applied to solve related problems in the field of
EESSs. Alavi et al. [49] combined Victor’s IVSVF method and
a gradient-based optimization to identify parameters of elec-
trochemical impedance models. Allafi et al. [99] applied a
simplified refined IVSVF to identify a fractional transfer func-
tion (FTF) model of a Li-ion battery. In contrast to the in-
strumental variable method, Jacob et al. [100] recently pro-
posed a Bayesian approach to identify the parameters of generic
fractional-order systems and then applied this approach to bat-
tery models.

In addition to the employed technical methods, the identifi-
cation results can be affected by various factors such as input
signal and measurement noise. Dzieliński et al. [101] proposed
a fractional-order model for supercapacitors and parameterized
it using time-domain data collected through a constant-current
charging test. Freeborn et al. [102] calculated the impedance

parameters of a fractional-order supercapacitor model by the
voltage step response. Nonetheless, the model precision may
be significantly curtailed when exposed to real-time loading
conditions, where the current direction, temperature, and SoC
can change rapidly, leading to parameter variations. To address
this, Gabano et al. [103] used a cubic spine interpolation tech-
nique to derive a fractional continuous linear-parameter-varying
model based on locally identified linear-time-invariant frac-
tional impedance models. According to Jacob et al. [100], the
memory capability could affect the performance of parameter
identification for FOMs, as demanding computation is required
by their non-Markovian model setting. These authors also in-
vestigated the effects of data length, magnitude of input signals,
parameter initialization, and measurement noise on identifying
a non-commensurate fractional-order battery model.

All the above approaches aim to address the identifiability
problem practically, accounting for information such as noise,
bias, and signal quality. As a different concept, structural iden-
tifiability is a tool to study the identifiability of model param-
eters without data. In other words, the input/output data is as-
sumed to be sufficiently rich. Based on this, Alavi et al. [104]
performed a structural identifiability analysis for both commen-
surate and non-commensurate models based on the concept of
coefficient maps. After applying the theoretical result to battery
systems, they then could prove that fractional circuit battery
models with finite numbers of CPEs are structurally identifi-
able. These results provide fundamental insights and can guide
the design and implementation of practical identifiability algo-
rithms.

5. Quantitative evaluation of model complexity and accu-
racy

As discussed in the previous sections, the high-order electro-
chemical models and conventional circuit models are more or
less restricted by their particular attributes and, consequently,
may not be the most suitable options for the next-generation
management systems of EESSs. In contrast, the fractional mod-
eling approach is very appealing because FOMs are structurally
simpler and computationally cheaper than the original electro-
chemical models and can be more accurate than conventional
circuit models. In addition to these general comments, a quan-
titative evaluation of FOM performance under different operat-
ing conditions is preferred. This section investigates FOMs via
two case studies, with a special focus placed on model accuracy
and computational efficiency.

5.1. Case study 1 – battery models

The effectiveness of fractional-order modeling techniques is
first examined on battery cells. The model in Fig. 3(a) is ex-
emplified for this purpose and its governing equations are pre-
sented in (A.1)-(A.3), where the CPE1 is subject to fractional
order of γ. The GL definition is implemented for fractional
derivatives with the memory length limited to 5. As bench-
marks, the first-, second-, and third-order RC models from Fig.
2 were also studied and denoted as IOM1, IOM2, and IOM3,
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Table 1: Parameters for Li-ion battery models.

Parameters R∞ R1 C1 γ R2 C2 R3 C3

IOM1 0.1062 0.0523 443.8 – – – – –
IOM2 0.1025 0.0273 613.2 – 0.0154 3796.6 – –
IOM3 0.1037 0.0120 907.9 – 0.0158 2935.4 0.0168 2188.8
FOM 0.0966 0.2047 377.3 0.8313 – – – –
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Figure 5: Current signals to test Li-ion battery models.

respectively. Experiments are conducted on a lithium nickel-
manganese-cobalt oxide (LiNMC) cell in the type of cylindrical
18650 with a rated capacity of 0.9264 ampere-hours (Ah). The
current signals were adopted from dynamic stress test (DST),
hybrid pulse (HP) test, and Federal Urban Driving Schedule
(FUDS) test, as plotted in Fig. 5. These battery models were
calibrated using the corresponding voltage measurements under
the FUDS test and then validated against the other two tests.

The parameters to be identified include resistance, capaci-
tance, differentiation order, and the open-circuit voltage (OCV)
curve for different models. In particular, the OCV curve is mod-

Table 2: RMS errors [mV] in identification and validation of Li-ion battery
models using experimental data.

Models FUDS HP DST
IOM1 7.66 14.81 13.79
IOM2 7.33 10.2 12.32
IOM3 6.15 9.04 12.10
FOM 5.82 9.86 11.71

eled as a fourth-order polynomial function, according to the
observation in [105]. Then, a constrained nonlinear optimiza-
tion problem can be formulated with the objective to minimize
the difference between measurements and model predicted volt-
ages. To approach the globally optimal solution, optimiza-
tion problems are implemented for multiple times with various
sets of initial conditions. The obtained solutions from particle
swarm optimization for different models of the considered bat-
tery cell are given in Table 1. For model fidelity assessment, the
root-mean-square (RMS) error and percentage relative error in
predicting the terminal voltages are adopted. In particular, the
percentage error is defined as

Percentage Error(k) :=
Vmod(k) − Vexprt(k)

max{Vexprt(k)}
× 100 (7)

where k ∈ {1, 2, · · · }, Vmod is the terminal voltage from battery
models, and Vexprt is the voltage measurement.

The FOM and its integer alternatives are first compared in
terms of their capability in predicting battery voltage behav-
iors. The evolution profiles of voltage and modeling error are
depicted in Fig. 6. The FOM follows its true voltage trajectories
better than IOM1 and IOM2 under both the HP and DST tests.
It can also be found that IOM1 cannot well match the mea-
sured data, particularly when large currents are applied. This
simulation result is consistent with the analysis in Section 3.2.
Namely, the first-order RC model is unable to accurately de-
scribe lithium diffusion dynamics. The identification and mod-
eling errors for different models are presented in Table 2. Com-
pared with IOM1, FOM can improve the modeling accuracy by
33.4% and 15.1% under the HP and DST tests, respectively. At
the same time, it outperforms IOM2 under both tests. Further-
more, under the DST condition, FOM has even better results
than IOM3 but with fewer parameters.

However, the high accuracy of the fractional-order modeling
approach is brought about at some sacrifice of computational
efficiency. Simulations of the three models with the same spec-
ifications, in terms of input signal and sampling time, were con-
ducted in a Matlab m-file environment. While the FOM takes
1.6 microseconds (µs) on average to implement one sampling
step, the two IOMs take less than 0.3 µs. Such a computa-
tional requirement from the FOM may or may not be an issue
for real-time model-based algorithms, depending on the battery
applications.

It is worth mentioning that the obtained characteristic data
on accuracy and computation can be influenced by factors such
as the definition of fractional-order derivative, memory length,
and operating conditions. Other related studies of either model
complexity or computational efficiency have been conducted in
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Figure 6: Comparison results of different models for a Li-ion battery against
experimental data. (a) and (b) are voltage profiles and percentage errors under
the HP test. (c) and (d) are results under the DST test.

[49, 55, 59, 106], where similar conclusions were obtained.

5.2. Case study 2 – Supercapacitor

The performance of fractional-order techniques is also eval-
uated on supercapacitor cells with a nominal capacity of 3000
F and a rated voltage of 2.7 V. The model in Fig. 4(b) with
dynamic equations (A.4)-(A.7) is used here to demonstrate the
idea. A widely used dynamic model, as in Fig. 4(a) (see [107]
for its explicit formulation), is considered as a modeling bench-
mark. As the same as Section 5.1, the FUDS profile from is
adapted here to excite supercapacitors for generating a dataset
for model parameterization and the DST test is used for model
validation. After scaling, the corresponding current signals ap-
plied to the supercapacitors are illustrated in Fig. 7. All the op-
erations are carried out within a thermal chamber with the tem-
perature fixed at 0, 20, and 40 oC, respectively. By deploying
the genetic algorithm to globally minimize the squared model-
plant error, the FOM and IOM can be parameterized. Param-
eter identification results corresponding to 20oC are given in
Table 3.

An EIS test was performed under a wide range of frequen-
cies, varying from 0.1Hz to 100Hz. Note that this covers most
working conditions of supercapacitor energy storage systems.
For a comprehensive description of the experimental setup,
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Figure 7: Current signals to test supercapacitor models.

readers are referred to our previous work [34]. Comparison
results of both models against the EIS dataset are presented in
Fig. 8.

In general, the FOM is able to describe the supercapacitor
impedance better than its integer-order comparative, across the
considered spectrum and over different temperatures. Such su-
periority becomes more apparent at reduced temperatures and
low frequencies. The reasons are mainly twofold: the IOM can-
not well capture the mass transfer effect at low temperatures;
the charge-transfer polarization voltage is extremely small at
high frequencies but significantly increases as the frequency de-
creases [108].

Quantitatively, the RMS errors are calculated to differentiate
the modeling performance of the FOM and IOM. The FOM has
an RMS error of 0.084 Ω for the above tests, in comparison with
an RMS error of 0.105 Ω for the IOM. That is, the FOM-based
technique offers a 20% rise in accuracy. Indeed, this advantage
may vary for different test protocols and with different numer-
ical specifications in implementing the fractional derivatives.
For example, the modeling accuracy of FOMs can in general be
improved at a large memory length. However, systematically
investigating their effects is beyond the scope of this review
work. The advantages of FOM over IOM for supercapacitors
have also been demonstrated and confirmed in other publica-
tions, such as [109, 110].

6. Challenges and future prospects

Despite the advances in fractional modeling techniques, the
deployment of intelligent management algorithms of EESSs
based on FOMs still faces a number of technical challenges.
Intensive studies on fractional modeling methodologies and
model-based applications are mainly required in the following
areas:

System modeling. Fractional-order electrical models and
thermal models have been individually established for batter-
ies and supercapacitors. However, electrical and thermal dy-
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Table 3: Parameters for supercapacitor models.

FOM R∞ R1 C1 W γ β
3.0×10−4 8.6×10−5 854 2880 0.971 0.975

IOM R∞ R1 C1 C R2 C2
2.68×10−4 8.69×10−5 1095 2959 3.7×10−5 60.68
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Figure 8: Comparison of different supercapacitor models using electrochemical
impedance spectroscopy.

namics intrinsically interact with each other in these electro-
chemical systems [111, 112]. Thus, the coupling relationships
between these dynamic processes are necessary to model. Fur-
thermore, common to different EESSs is that the capacity and
power supply ability, which are often used to quantify the SoH,
will inevitably experience an aging process. Such a process can
be accelerated dramatically if EESSs operate under inappropri-
ate conditions [113]. The importance of SoH management be-
comes crucial for safety-critical and cost-sensitive applications.
Fractional-order modeling for the aging phenomena can be an
important step to effectively protect an EESS’s health and pro-
long its lifetime. The last but not the least step is the model’s
adaptivity. The available FOMs of batteries/supercapacitors are
usually parameterized once and then are expected to play a role
over the whole lifespan. As observed from [62, 61], in this case,
the models will mismatch their true system incrementally and
fail at some stage. Therefore, adaptive FOMs need to be devel-
oped in which model parameters can accommodate the effects
of system aging, ambient temperature, and SoC levels.

State estimation. SoC, SoH, state of energy (SoE), and state
of power (SoP) are the most important indicators of EESS in-
ternal states. Accurate knowledge of these states is required
in the pursuit of various objectives, for example, to ensure
charge/discharge safety, to satisfy end-user demands, to im-
prove convenience, and to execute system-level energy man-
agement. However, these states cannot be measured directly
during on-board application using currently available sensing
techniques. This fact fundamentally motivates observer designs
based on measurements such as current, voltage, and cell sur-
face temperature. A considerable number of integer-order esti-
mation algorithms have been proposed to probe state/parameter
behavior inside EESSs, such as Luenberger observers and
Kalman filters. By extending these estimation approaches to
FOMs, some initial work has recently been attempted to esti-
mate the SoC of Li-ion cells [65, 114] and of supercapacitors
[30]. In 2017, Li et al. [115] applied an adaptive fractional-
order extended Kalman filter to the SoE estimation for Li-ion
batteries in EVs. In the context of lead-acid batteries, Cugnet
et al. [82] pioneered a fractional resistance-estimator to indi-
cate its crankability in starting a vehicle. Monitoring SoH and
SoP in real time based on FOMs is crucial for safe and opti-
mal utilization of EESSs but has not been comprehensively and
systematically studied yet. Meanwhile, given that several pro-
cesses occur simultaneously in EESSs with different time con-
stants, it would be desirable to have some dual fractional esti-
mation algorithms in which the states could be estimated in sep-
arate time scales. In addition, both the accuracy and resiliency
need to be addressed in the presence of a range of uncertainties
inherent in EESSs.

Charge/discharge control. The cycling operation of EESSs
should be meticulously managed. Electrical energy and power
need to be delivered effectively and efficiently, and at the same
time, users’ requirements in charging time, vehicle transient
acceleration, SoH, and/or the overall economy must be taken
into account. Usually, some or all of these factors are impor-
tant yet compete with each other. Multi-objective control prob-
lems may need to be considered to maintain an optimal trade-
off among the selected objectives during the charge/discharge
process, such as health-aware fast charging and aging-adaptive
optimal energy management. To do so, in-situ dynamic infor-
mation for EESSs and its prediction into some future time in-
terval from the FOMs can be critical.

Fractional automatic control can be explained as the rea-
son that gives rise to a renewed interest in FOMs. In com-
parison to integer-order proportional-integral-derivative (PID)
controllers, fractional-order PID controllers have more tuning
parameters within the embedded optimization algorithms and
thus are able to achieve superior convergence and robustness
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properties [116, 117]. The methodologies including CRONE
(Commande Robuste d’Ordre Non Entier), H∞, and flatness
control have been exhaustively reviewed in [27]. According to
[118, 119], fractional calculus can also be integrated into slid-
ing mode control (SMC) to obtain better performance. These
fractional control theories and applications in other areas may
form a powerful tool to enhance EESSs’ dynamic performance
and extend the working life.

7. Conclusions

This paper provided an overview of the current develop-
ment in mathematical models for lithium-ion batteries, lead-
acid batteries, and supercapacitors, with a particular focus on
fractional-order techniques. The review has illustrated the links
between fractional-order calculus, electrochemical impedance
spectroscopy, and EESS dynamic characteristics. By survey-
ing various available battery and supercapacitor applications,
fractional-order models (FOMs) are shown to have been widely
studied, with attempts to capture system electrical, electro-
chemical, and thermal dynamics. Such modeling mechanisms
are capable of predicting system behaviors and have the poten-
tial to maintain physically meaningful parameters. The advan-
tages of model precision associated with computational com-
plexity were further confirmed in this work via numerical case
studies on lithium-ion battery and supercapacitor cells. To
enable model usage, parameter identification techniques for
FOMs were discussed, and the benefits of using time-domain
measurements, instead of frequency-domain data, were pre-
sented.

To enable further advances in battery and supercapaci-
tor management, a research outlook for fractional modeling
methodology and model-based applications has been discussed.
The research directions mainly include (1) the development of
system models that describe coupled electrochemical-thermal
dynamics and are adaptive to factors such as system aging and
time-varying ambient conditions, (2) the design of estimation
algorithms to observe SoC, SoE, SoP, and SoH in real-time, and
(3) the adoption of FOM-based controllers to improve charge
and discharge performance.

Appendix A. Fractional-order battery/supercapacitor
models

Governing equations of the Li-ion battery model in Fig. 3(a)
can be formulated based on Kirchhoff’s current and voltage
laws:

D
1S oC(t) =

η · I(t)
3600Cn

(A.1)

D
γV1(t) = −

V1(t)
R1C1

+
I(t)
C1

(A.2)

V(t) = U(S oC(t)) + R∞I(t) + V1(t). (A.3)

Similarly, governing equations of the supercapacitor model in
Fig. 4(b) can be established:

D
1S oC(t) =

η · I(t)
3600Cn

(A.4)

D
γV1(t) = −

V1(t)
R1C1

+
I(t)
C1

(A.5)

D
βV2(t) =

I(t)
W

(A.6)

V(t) = R∞I(t) + V1(t) + V2(t) (A.7)

In the above two models, Cn is the nominal capacity in Ah and
η is the coulombic efficiency.
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[58] W. Waag, S. Käbitz, D. U. Sauer, Application-specific parameterization
of reduced order equivalent circuit battery models for improved accuracy
at dynamic load, Measurement 46 (10) (2013) 4085–4093.

[59] B. Wang, S. E. Li, H. Peng, Z. Liu, Fractional-order modeling and pa-
rameter identification for lithium-ion batteries, J Power Sources 293
(2015) 151–161.

[60] X. Liao, J. Yu, L. Gao, Electrochemical study on lithium iron phos-
phate/hard carbon lithium-ion batteries, J Solid State Electrochem 16 (2)
(2012) 423–428.

[61] B. Wang, Z. Liu, S. E. Li, S. J. Moura, State-of-charge estimation for
lithium-ion batteries based on a nonlinear fractional model, IEEE Trans
Control Syst Technol (2016) 1–9.

[62] C. Zou, X. Hu, S. Dey, L. Zhang, X. Tang, Nonlinear fractional-order
estimator with guaranteed robustness and stability for lithium-ion bat-
teries, IEEE Trans Ind Electron 65 (7) (2018) 5951–5961.

[63] F. Zhong, H. Li, S. Zhong, Q. Zhong, C. Yin, An SOC estimation ap-
proach based on adaptive sliding mode observer and fractional order
equivalent circuit model for lithium-ion batteries, Commu Nonlinear Sci
& Numer Simulat 24 (1) (2015) 127–144.

[64] F. Zhong, H. Li, S. Zhong, State estimation based on fractional order
sliding mode observer method for a class of uncertain fractional-order
nonlinear systems, Signal Process 127 (2016) 168–184.

[65] H. Mu, R. Xiong, H. Zheng, Y. Chang, Z. Chen, A novel fractional order
model based state-of-charge estimation method for lithium-ion battery,
Appl Energy 207 (2017) 384–393.
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