Пређи на садржај

Multivarijantna normalna raspodela

С Википедије, слободне енциклопедије
(преусмерено са Multivarijantna normalna distribucija)
Multivarijantna normalna raspodela
Funkcija gustine verovatnoće

Mnogštvo uzoraka sa multivarijantnom normalnom distribucijom sa i , prikazani zajedno sa 3-sigma elipse, dve marginalne distribucije, i dva 1-d histograma.
Notacija
ParametriμRklokacija
ΣRk × kkovarijansa (pozitivna poludefinitivna matrica)
Nositeljxμ + span(Σ) ⊆ Rk
PDF
postoji samo kad je Σ positivna-definitivna
Prosekμ
Modusμ
VarijansaΣ
Entropija
MGF
CF
Kulbek-Lajblerova divergencijapogledajte ispod

U teoriji verovatnoće i statistici, multivarijantna normalna raspodela, multivarijantna Gausova raspodela, ili zajednička normalna raspodela je generalizacija jednodimenzionalne (univarijantne) normalne distribucije na više dimenzija. Jedna definicija je da se randomni vektor smatra k-varijantno normalno distribuiranim ako svaka linearna kombinacija njegovih k komponenata ima univarijantnu normalnu distribuciju. Njen značaj proističe uglavnom iz multivarijantne centralne granične teoreme. Multivarijantna normalna distribucija često se koristi za opisivanje, barem približno, bilo kojeg skupa (mogućih) korelisanih realno-vrednosnih radomnih promenljivih, od kojih se svaka grupiše oko srednje vrednosti.

Notacija i parametrizacija

[уреди | уреди извор]

Multivarijantna normalna distribucija k-dimenzionalnog randomnog vektora može se zapisati na sledeći način:

ili da se naglasi da je X k-dimenziono,

sa k-dimenzionim srednjim vektorom

i kovarijantnom matricom

takvom da Inverzna matrica kovarijantne matrice se zove matrica preciznosti i označava se sa .

Standardni normalni randomni vektor

[уреди | уреди извор]

Realni randomni vektor se zove standardni normalni randomni vektor ako su sve njegove komponente nezavisne i svaka je normalno distribuirana randomna promenljiva sa nultom srednjom vrednosti i jediničnom varijansom, i.e. ako za svako .[1]:p. 454

Centrirani normalni randomni vektor

[уреди | уреди извор]

Realni randomni vektor se zove centrirani normalni randomni vektor ako postoji deterministička matrica takva da ima istu distribuciju kao gde je standardni normalni randomni vektor sa komponenata.[1]:p. 454

Normalni randomni vektor

[уреди | уреди извор]

Realni randomni vektor se zove normalni randomni vektor ako postoji randomni -vektor , koji je standardni normalni randomni vektor, -vektor , i matrica , takva da je .[2]:p. 454[1]:p. 455

Formalno:

Kovarijantna matrica je .

U degenerativnom slučaju gde je kovarijantna matrica singularna, korespondirajuća distribucija nema gustinu. Ovaj slučaj se često pojavljuje u statistici; na primer, u raspodeli vektora reziduala u regresiji običnih najmanjih kvadrata. Takođe treba imati na umu da uglavnom nisu nezavisni; oni se mogu videti kao rezultat primene matrice na kolekciju nezavisnih Gausovih promenljivih .

Ekvivalentne definicije

[уреди | уреди извор]

Sledeće definicije su ekvivalentne sa gornjom definicijom. Randomni vektor ima multivarijatnu normalnu distribuciju ako zadovoljava jedan od sledećih uslova.

  • Svaka linearna kombinacija njegovih komponenti je normalno distribuirana. Drugim rečima, za svaki konstantni vektor , randomna promenljiva ima univarijatnu normalnu distribuciju, gde je univarijatna normalna distribucija sa nultom varijansom tačka mase na svojoj srednjoj vrednosti.
  • Postoji k-vektor i simetrična, pozitivna poludefinitivna matrica , takva da karakteristična funkcija od je

Sferina normalna distribucija može da bude karakterisana kao jedinstvena distribucija, pri čemu su komponente nezavisne u svakom ortogonalnom koordinatnom sistemu.[3][4]

  1. ^ а б в Lapidoth, Amos (2009). A Foundation in Digital Communication. Cambridge University Press. ISBN 978-0-521-19395-5. 
  2. ^ Gut, Allan (2009). An Intermediate Course in Probability. Springer. ISBN 978-1-441-90161-3. 
  3. ^ Kac, M. (1939). „On a characterization of the normal distribution”. American Journal of Mathematics. 61 (3): 726—728. JSTOR 2371328. doi:10.2307/2371328. 
  4. ^ Sinz, Fabian; Gerwinn, Sebastian; Bethge, Matthias (2009). „Characterization of the p-generalized normal distribution”. Journal of Multivariate Analysis. 100 (5): 817—820. doi:10.1016/j.jmva.2008.07.006. 

Spoljašnje veze

[уреди | уреди извор]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy