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Abstract

This report gives a rather arbitrary choice of formulas for (q-)hypergeometric orthogo-
nal polynomials which the author missed while consulting Chapters 9 and 14 in the book
“Hypergeometric orthogonal polynomials and their q-analogues” by Koekoek, Lesky and
Swarttouw. The systematics of these chapters will be followed here, in particular for the
numbering of subsections and of references.

Introduction

This report contains some formulas about (q-)hypergeometric orthogonal polynomials which I
missed but wanted to use while consulting Chapters 9 and 14 in the book [KLS]:

R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their
q-analogues, Springer-Verlag, 2010.

These chapters form together the (slightly extended) successor of the report

R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials
and its q-analogue, Report 98-17, Faculty of Technical Mathematics and Informatics, Delft Uni-
versity of Technology, 1998; http://aw.twi.tudelft.nl/∼koekoek/askey/.

Certainly these chapters give complete lists of formulas of special type, for instance orthog-
onality relations and three-term recurrence relations. But outside these narrow categories there
are many other formulas for (q-)orthogonal polynomials which one wants to have available. Of-
ten one can find the desired formula in one of the standard references listed at the end of this
report. Sometimes it is only available in a journal or a less common monograph. Just for my
own comfort, I have brought together some of these formulas. This will possibly also be helpful
for some other users.

Usually, any type of formula I give for a special class of polynomials, will suggest a similar
formula for many other classes, but I have not aimed at completeness by filling in a formula of
such type at all places. The resulting choice of formulas is rather arbitrary, just depending on
the formulas which I happened to need or which raised my interest. For each formula I give a
suitable reference or I sketch a proof. It is my intention to gradually extend this collection of
formulas.
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Conventions

The (x.y) and (x.y.z) type subsection numbers, the (x.y.z) type formula numbers, and the [x]
type citation numbers refer to [KLS]. The (x) type formula numbers refer to this manuscript
and the [Kx] type citation numbers refer to citations which are not in [KLS]. Some standard
references like [DLMF] are given by special acronyms.

N is always a positive integer. Always assume n to be a nonnegative integer or, if N is
present, to be in {0, 1, . . . , N}. Throughout assume 0 < q < 1.

For each family the coefficient of the term of highest degree of the orthogonal polynomial of
degree n can be found in [KLS] as the coefficient of pn(x) in the formula after the main formula
under the heading “Normalized Recurrence Relation”. If that main formula is numbered as
(x.y.z) then I will refer to the second formula as (x.y.zb).

In the notation of q-hypergeometric orthogonal polynomials we will follow the convention
that the parameter list and q are separated by ‘ | ’ in the case of a q-quadratic lattice (for
instance Askey–Wilson) and by ‘;’ in the case of a q-linear lattice (for instance big q-Jacobi).
This convention is mostly followed in [KLS], but not everywhere, see for instance little q-Laguerre
/ Wall.
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Thanks also to Roberto Costas Santos for observing an error and to Gregory Natanson for
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Generalities

Criteria for uniqueness of orthogonality measure According to Shohat & Tamarkin
[K33, p.50] orthonormal polynomials pn have a unique orthogonality measure (up to positive
constant factor) if for some z ∈ C we have

∞∑
n=0

|pn(z)|2 = ∞. (1)

Also (see Shohat & Tamarkin [K33, p.59]), monic orthogonal polynomials pn with three-term
recurrence relation xpn(x) = pn+1(x) + Bnpn(x) + Cnpn−1(x) (Cn necessarily positive) have a
unique orthogonality measure if

∞∑
n=1

(Cn)
−1/2 = ∞. (2)

Furthermore, if orthogonal polynomials have an orthogonality measure with bounded sup-
port, then this is unique (see Chihara [146]).

Kernel polynomials and the three-term recurrence relation
For given monic orthogonal polynomials {pn} with respect to orthogonality measure µ and with

hn :=

∫
R
pn(x)

2 dµ(x),

there is the Christoffel–Darboux formula

Kn(x, y) :=
n∑

k=0

pk(x)pk(y)

hk
=

1

hn

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
(x ̸= y). (3)

Fix y ∈ R and suppose that supp(µ) ⊆ (−∞, y]. Then pn(y) ̸= 0 for all n and the monic
polynomials

qn(x) :=
hn
pn(y)

Kn(x, y) (4)

are orthogonal with respect to (y − x) dµ(x). They are called kernel polynomials (see Chihara
[146, Ch. 1, §7]). There is a pair of contiguous relations relating the polynomialsd pn and qn:

(x− y)qn(x) = pn+1(x)−Anpn(x), (5)

pn(x) = qn(x)− Cnqn−1(x), (6)

where

An =
pn+1(y)

pn(y)
, Cn =

hn
hn−1

pn−1(y)

pn(y)
. (7)

Then the three-term recurrence relations for the orthogonal polynomials pn and qn can be written
in the form (see [K35, §5, Lemma 1])

x pn(x) = pn+1(x) + (y −An − Cn)pn(x) +An−1Cnpn−1(x), (8)

x qn(x) = qn+1(x) + (y −An − Cn+1)qn(x) +AnCnqn−1(x). (9)
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In the above formulas put terms containing the factor C0 equal to 0.

In many cases in [KLS, Chapters 9, 14] the normalized three-term recurrence relation is given
in the form (8), already in the Askey–Wilson case (14.1.5), and where it is not written in this
way, it can be done so. See for instance (55) for Jacobi.

If we write the normalized recurrence relation for the pn as

x pn(x) = pn+1(x) + bn pn(x) + cn pn−1(x), (10)

and compare it with (8) then

b0 = y −A0, bn = y −An − Cn, cn = An−1Cn (n ≥ 1). (11)

This can be recursively solved for the An, Cn in terms of the bn, cn by

A0 = y − b0, Cn =
cn

An−1
, An = y − bn − Cn (n ≥ 1). (12)

Equations (5), (6), (8) correspond to an LU factorization of the Jacobi matrix associated
with the OPs pn, see [K7, Lemma 2.1], where also (12) is given.

Even orthogonality measure If {pn} is a system of orthogonal polynomials with respect to
an even orthogonality measure which satisfies the three-term recurrence relation

xpn(x) = anpn+1(x) + cn pn−1(x)

then
p2n(0)

p2n−2(0)
= − c2n−1

a2n−1
. (13)

Finite systems of OPs of degree up to N with weights on N + 1 points
Suppose we have OPs {pn}Nn=0 which are orthogonal on {x0, x1, . . . , xN} with respect to weights
wi (i = 0, 1, . . . , N). Then we have recurrence relations

xpn(x) = Anpn+1(x) +Bnpn(x) + Cnpn−1(x) (n = 0, 1 . . . , N), (14)

where p−1(x) = 0, pN+1(x) = (x− x0) . . . (x− xN ) and pN (x) = ANx
N + terms of lower degree.

For a proof of the case n = N note that, for x ∈ {x0, x1, . . . , xN}, we have xpn(x) = Bnpn(x) +
Cnpn−1(x) by orthogonality and by the fact that p0, p1, . . . , pN is a basis of the function space
on this set. Hence xpn(x)−Bnpn(x)−Cnpn−1(x) is a polynomial of degree N+1 which vanishes
on {x0, x1, . . . , xN} and for which the coefficient of xN+1 equals the coefficient of xN for pN (x).
Hence xpn(x)−Bnpn(x)− Cnpn−1(x) = AN (x− x0) . . . (x− xN ).

Appell’s bivariate hypergeometric function F4 This is defined by

F4(a, b; c, c
′;x, y) :=

∞∑
m,n=0

(a)m+n(b)m+n

(c)m(c′)nm!n!
xmyn (|x|

1
2 + |y|

1
2 < 1), (15)

6



see [HTF1, 5.7(9), 5.7(44)] or [DLMF, (16.13.4)]. There is the reduction formula

F4

(
a, b; b, b;

−x
(1− x)(1− y)

,
−y

(1− x)(1− y)

)
= (1− x)a(1− y)a 2F1

(
a, 1 + a− b

b
;xy

)
,

see [HTF1, 5.10(7)]. When combined with the quadratic transformation [HTF1, 2.11(34)] (here
a− b− 1 should be replaced by a− b+ 1), see also [DLMF, (15.8.15)], this yields

F4

(
a, b; b, b;

−x
(1− x)(1− y)

,
−y

(1− x)(1− y)

)
=

(
(1− x)(1− y)

1 + xy

)a

2F1

( 1
2a,

1
2(a+ 1)

b
;

4xy

(1 + xy)2

)
.

This can be rewritten as

F4(a, b; b, b;x, y) = (1− x− y)−a
2F1

( 1
2a,

1
2(a+ 1)

b
;

4xy

(1− x− y)2

)
. (16)

Note that, if x, y ≥ 0 and x
1
2 + y

1
2 < 1, then 1− x− y > 0 and 0 ≤ 4xy

(1−x−y)2
< 1.

q-Hypergeometric series of base q−1 By [GR, Exercise 1.4(i)]:

rϕs

(
a1, . . . , ar
b1, . . . bs

; q−1, z

)
= s+1ϕs

(
a−1
1 , . . . a−1

r , 0, . . . , 0

b−1
1 , . . . , b−1

s
; q,

qa1 . . . arz

b1 . . . bs

)
(17)

for r ≤ s + 1, a1, . . . , ar, b1, . . . , bs ̸= 0. In the non-terminating case, for 0 < q < 1, there is
convergence if |z| < b1 . . . bs/(qa1 . . . ar) .

A transformation of a terminating 2ϕ1 By [GR, Exercise 1.15(i)] we have

2ϕ1

(
q−n, b

c
; q, z

)
= (bz/(cq); q−1)n 3ϕ2

(
q−n, c/b, 0

c, cq/(bz)
; q, q

)
. (18)

Very-well-poised q-hypergeometric series The notation of [GR, (2.1.11)] will be followed:

r+1Wr(a1; a4, a5, . . . , ar+1; q, z) := r+1ϕr

 a1, qa
1
2
1 ,−qa

1
2
1 , a4, . . . , ar+1

a
1
2
1 ,−a

1
2
1 , qa1/a4, . . . , qa1/ar+1

; q, z

 . (19)

Theta function The notation of [GR, (11.2.1)] will be followed:

θ(x; q) := (x, q/x; q)∞, θ(x1, . . . , xm; q) := θ(x1; q) . . . θ(xm; q). (20)
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9.1 Wilson

Symmetry The Wilson polynomial Wn(y; a, b, c, d) is symmetric in a, b, c, d.
This follows from the orthogonality relation (9.1.2) together with the value of its coefficient of
yn given in (9.1.5b). Alternatively, combine (9.1.1) with [AAR, Theorem 3.1.1].
As a consequence, it is sufficient to give generating function (9.1.12). Then the generating
functions (9.1.13), (9.1.14) will follow by symmetry in the parameters.

Hypergeometric representation In addition to (9.1.1) we have (see [513, (2.2)]):

Wn(x
2; a, b, c, d) =

(a− ix)n(b− ix)n(c− ix)n(d− ix)n
(−2ix)n

× 7F6

(
2ix− n, ix− 1

2n+ 1, a+ ix, b+ ix, c+ ix, d+ ix,−n
ix− 1

2n, 1− n− a+ ix, 1− n− b+ ix, 1− n− c+ ix, 1− n− d+ ix, 1 + 2ix
; 1

)
.

(21)

The symmetry in a, b, c, d is clear from (21).

Special value

Wn(−a2; a, b, c, d) = (a+ b)n(a+ c)n(a+ d)n , (22)

and similarly for arguments −b2, −c2 and −d2 by symmetry of Wn in a, b, c, d.

Uniqueness of orthogonality measure Under the assumptions on a, b, c, d for (9.1.2) or
(9.1.3) the orthogonality measure is unique up to constant factor.

For the proof assume without loss of generality (by the symmetry in a, b, c, d) that Re a ≥ 0.
Write the right-hand side of (9.1.2) or (9.1.3) as hnδm,n. Observe from (9.1.2) and (22) that

|Wn(−a2; a, b, c, d)|2

hn
= O(n4Re a−1) as n→ ∞.

Therefore (1) holds, from which the uniqueness of the orthogonality measure follows.

By a similar, but necessarily more complicated argument Ismail et al. [281, Section 3] proved
the uniqueness of orthogonality measure for associated Wilson polynomials.

9.2 Racah

Racah in terms of Wilson In the Remark on p.196 Racah polynomials are expressed in
terms of Wilson polynomials. This can be equivalently written as

Rn

(
x(x−N + δ);α, β,−N − 1, δ

)
=
Wn

(
− (x+ 1

2(δ −N))2; 12(δ −N), α+ 1− 1
2(δ −N), β + 1

2(δ +N) + 1,−1
2(δ +N)

)
(α+ 1)n(β + δ + 1)n(−N)n

. (23)
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9.3 Continuous dual Hahn

Symmetry The continuous dual Hahn polynomial Sn(y; a, b, c) is symmetric in a, b, c.
This follows from the orthogonality relation (9.3.2) together with the value of its coefficient of
yn given in (9.3.5b). Alternatively, combine (9.3.1) with [AAR, Corollary 3.3.5].
As a consequence, it is sufficient to give generating function (9.3.12). Then the generating
functions (9.3.13), (9.3.14) will follow by symmetry in the parameters.

Special value

Sn(−a2; a, b, c) = (a+ b)n(a+ c)n , (24)

and similarly for arguments −b2 and −c2 by symmetry of Sn in a, b, c.

Uniqueness of orthogonality measure Under the assumptions on a, b, c for (9.3.2) or (9.3.3)
the orthogonality measure is unique up to constant factor.

For the proof assume without loss of generality (by the symmetry in a, b, c) that Re a ≥ 0.
Write the right-hand side of (9.3.2) or (9.3.3) as hnδm,n. Observe from (9.3.2) and (24) that

|Sn(−a2; a, b, c)|2

hn
= O(n2Re a−1) as n→ ∞.

Therefore (1) holds, from which the uniqueness of the orthogonality measure follows.

Special continuous dual Hahn in terms of Wilson

Sn
(
x; a, b, 12

)
=

22n

(a+ b+ n)n
Wn

(
1
4x;

1
2a,

1
2(a+ 1), 12b,

1
2(b+ 1)

)
. (25)

For the proof compare the weight functions and the values for x = −a2.

Generating functions By (9.3.17) the generating function (9.3.16) has the generating func-
tion (9.7.13) for Meixner–Pollaczek polynomials as a limit case.

9.4 Continuous Hahn

Orthogonality relation and parameter symmetry The orthogonality relation (9.4.2)
holds under the more general assumption that Re (a, b, c, d) > 0 and (c, d) = (a, b) or (b, a).
Thus, under these assumptions, the continuous Hahn polynomial pn(x; a, b, c, d) is symmetric in
a, b and in c, d. This follows from the orthogonality relation (9.4.2) together with the value of
its coefficient of xn given in (9.4.4b).
As a consequence, it is sufficient to give generating function (9.4.11). Then the generating
function (9.4.12) will follow by symmetry in the parameters.

Symmetry

pn(−x; a, b, a, b) = (−1)npn(x; a, b, a, b). (26)
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Special value

pn(ia; a, b, a, b) =
in(a+ a)n(a+ b)n

n!
. (27)

Similarly, pn(x; a, b, a, b) has special values for x = −ia, ib and −ib.

Quadratic transformation For a, b ∈ R or b = a we have [K23, (2.29), (2.30)]

p2n(x; a, b, a, b)

p2n(ia; a, b, a, b)
=

Wn(x
2; a, b, 12 , 0)

Wn(−a2; a, b, 12 , 0)
,

p2n+1(x; a, b, a, b)

p2n+1(ia; a, b, a, b)
=

xWn(x
2; a, b, 12 , 1)

iaWn(−a2; a, b, 12 , 1)
. (28)

Explicit expression For a, b ∈ R or b = a we have by (28), (9.1.1) and reversion of direction
of summation that

pn(x; a, b, a, b) =
(n+ a+ b+ a+ b− 1)n

n!
xn−2[ 1

2
n] (−1

2n+ ix+ 1)[ 1
2
n](−

1
2n− ix+ 1)[ 1

2
n]

× 4F3

(
−1

2n,−
1
2n+ 1

2 ,−
1
2n− a+ 1,−1

2n− b+ 1

−n− a− b+ 3
2 ,−

1
2n+ ix+ 1,−1

2n− ix+ 1
; 1

)
. (29)

Special cases In the following special case there is a reduction to Meixner–Pollaczek:

pn(x; a, a+
1
2 , a, a+

1
2) =

(2a)n(2a+
1
2)n

(4a)n
P (2a)
n (2x; 12π). (30)

See [342, (2.6)] (note that in [342, (2.3)] the Meixner–Pollaczek polyonmials are defined different
from (9.7.1), without a constant factor in front).

For 0 < a < 1 the continuous Hahn polynomials pn(x; a, 1 − a, a, 1 − a) are orthogonal on

(−∞,∞) with respect to the weight function
(
cosh(2πx) − cos(2πa)

)−1
(by straightforward

computation from (9.4.2)). For a = 1
4 the two special cases coincide: Meixner–Pollaczek with

weight function
(
cosh(2πx)

)−1
.

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.4.4) behaves as
O(n2) as n→ ∞. Hence (2) holds, by which the orthogonality measure is unique.

9.5 Hahn

Special values

Qn(0;α, β,N) = 1, Qn(N ;α, β,N) =
(−1)n(β + 1)n

(α+ 1)n
. (31)

Use (9.5.1) and compare with (9.8.1) and (54).
From (9.5.3) and (13) it follows that

Q2n(N ;α, α, 2N) =
(12)n(N + α+ 1)n

(−N + 1
2)n(α+ 1)n

. (32)
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From (9.5.1) and [DLMF, (15.4.24)] it follows that

QN (x;α, β,N) =
(−N − β)x
(α+ 1)x

(x = 0, 1, . . . , N). (33)

Symmetries By the orthogonality relation (9.5.2):

Qn(N − x;α, β,N)

Qn(N ;α, β,N)
= Qn(x;β, α,N), (34)

It follows from (41) and (36) that

QN−n(x;α, β,N)

QN (x;α, β,N)
= Qn(x;−N − β − 1,−N − α− 1, N) (x = 0, 1, . . . , N). (35)

Duality The Remark on p.208 gives the duality between Hahn and dual Hahn polynomials:

Qn(x;α, β,N) = Rx(n(n+ α+ β + 1);α, β,N) (n, x ∈ {0, 1, . . . N}). (36)

9.6 Dual Hahn

Special values By (33) and (36) we have

Rn(N(N + γ + δ + 1); γ, δ,N) =
(−N − δ)n
(γ + 1)n

. (37)

It follows from (31) and (36) that

RN (x(x+ γ + δ + 1); γ, δ,N) =
(−1)x(δ + 1)x

(γ + 1)x
(x = 0, 1, . . . , N). (38)

Symmetries Write the weight in (9.6.2) as

wx(α, β,N) := N !
2x+ γ + δ + 1

(x+ γ + δ + 1)N+1

(γ + 1)x
(δ + 1)x

(
N

x

)
. (39)

Then
(δ + 1)N wN−x(γ, δ,N) = (−γ −N)N wx(−δ −N − 1,−γ −N − 1, N). (40)

Hence, by (9.6.2),

Rn((N − x)(N − x+ γ + δ + 1); γ, δ,N)

Rn(N(N + γ + δ + 1); γ, δ,N)
= Rn(x(x−2N−γ−δ−1);−N−δ−1,−N−γ−1, N).

(41)
Alternatively, (41) follows from (9.6.1) and [DLMF, (16.4.11)].

It follows from (34) and (36) that

RN−n(x(x+ γ + δ + 1); γ, δ,N)

RN (x(x+ γ + δ + 1); γ, δ,N)
= Rn(x(x+ γ + δ + 1); δ, γ,N) (x = 0, 1, . . . , N). (42)
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Re: (9.6.11). The generating function (9.6.11) can be written in a more conceptual way as

(1− t)x 2F1

(
x−N, x+ γ + 1

−δ −N
; t

)
=

N !

(δ + 1)N

N∑
n=0

ωnRn(λ(x); γ, δ,N) tn, (43)

where

ωn :=

(
γ + n

n

)(
δ +N − n

N − n

)
, (44)

i.e., the denominator on the right-hand side of (9.6.2). By the duality between Hahn polynomials
and dual Hahn polynomials (see (36)) the above generating function can be rewritten in terms
of Hahn polynomials:

(1− t)n 2F1

(
n−N,n+ α+ 1

−β −N
; t

)
=

N !

(β + 1)N

N∑
x=0

wxQn(x;α, β,N) tx, (45)

where

wx :=

(
α+ x

x

)(
β +N − x

N − x

)
, (46)

i.e., the weight occurring in the orthogonality relation (9.5.2) for Hahn polynomials.

Re: (9.6.15). There should be a closing bracket before the equality sign.

9.7 Meixner–Pollaczek

Re: (9.7.1) In addition to the hypergeometric representation (9.7.1) we have, by the Pfaff
transformation [HTF1, 2.9(3)], that

P (λ)
n (x;ϕ) =

(2λ)n
n!

e−inϕ
2F1

(
−n, λ− ix

2λ
; 1− e2iϕ

)
. (47)

Special values By (9.7.1) and (47) we have:

P (λ)
n (iλ;ϕ) =

(2λ)n
n!

einϕ, P (λ)
n (−iλ;ϕ) =

(2λ)n
n!

e−inϕ. (48)

Symmetry

P (λ)
n (x;ϕ) = (−1)nP (λ)

n (−x;π − ϕ). (49)

Quadratic transformations [K23, (2.33), (2.34)]

P
(a)
2n (x; 12π)

P
(a)
2n (ia; 12π)

=
Sn(x

2; a, 12 , 0)

Sn(−a2; a, 12 , 0)
,

P
(a)
2n+1(x;

1
2π)

P
(a)
2n+1(ia;

1
2π)

=
xSn(x

2; a, 12 , 1)

iaSn(−a2; a, 12 , 1)
. (50)

These are limit cases of (28) by the limits (9.1.16), (9.4.14).
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Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.7.4) behaves as
O(n2) as n→ ∞. Hence (2) holds, by which the orthogonality measure is unique.

Generating functions By (9.3.17) the generating function (9.3.16) for continuous dual Hahn
polynomials has the generating function (9.7.13) as a limit case. By (9.7.14) formula (9.7.13)
has the generating function (9.12.12) for Laguerre polynomials as a limit case.

9.8 Jacobi

Orthogonality relation Write the right-hand side of (9.8.2) as hn δm,n. Then

hn
h0

=
n+ α+ β + 1

2n+ α+ β + 1

(α+ 1)n(β + 1)n
(α+ β + 2)n n!

, h0 =
2α+β+1Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
,

hn

h0 (P
(α,β)
n (1))2

=
n+ α+ β + 1

2n+ α+ β + 1

(β + 1)n n!

(α+ 1)n (α+ β + 2)n
.

(51)

In (9.8.3) the numerator factor Γ(n+ α+ β + 1) in the last line should be Γ(β + 1). When
thus corrected, (9.8.3) can be rewritten as:∫ ∞

1
P (α,β)
m (x)P (α,β)

n (x) (x− 1)α(x+ 1)β dx = hn δm,n ,

− 1− β > α > −1, m, n < −1
2(α+ β + 1),

hn
h0

=
n+ α+ β + 1

2n+ α+ β + 1

(α+ 1)n(β + 1)n
(α+ β + 2)n n!

, h0 =
2α+β+1Γ(α+ 1)Γ(−α− β − 1)

Γ(−β)
.

(52)

Following Lesky [382] the Jacobi polynomials in case of orthogonality relation (52) may be called
Romanovski–Jacobi polynomials.

Symmetry
P (α,β)
n (−x) = (−1)n P (β,α)

n (x). (53)

Use (9.8.2) and (9.8.5b) or see [DLMF, Table 18.6.1].

Special values

P (α,β)
n (1) =

(α+ 1)n
n!

, P (α,β)
n (−1) =

(−1)n(β + 1)n
n!

,
P

(α,β)
n (−1)

P
(α,β)
n (1)

=
(−1)n(β + 1)n

(α+ 1)n
. (54)

Use (9.8.1) and (53) or see [DLMF, Table 18.6.1].

Normalized recurrence relation Formula (9.8.5) can be rewritten as

x pn(x) = pn+1(x) + (1−An − Cn)pn(x) +An−1Cn pn−1(x), (55)

where pn(x) = 2nn!P
(α,β)
n (x)/(n+ α+ β + 1)n and

An =
2(n+ α+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
, Cn =

2n(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
.
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Contiguous relations

(n+ 1
2α+ 1

2β + 1)(1− x)P (α+1,β)
n (x) = −(n+ 1)P

(α,β)
n+1 (x) + (n+ α+ 1)P (α,β)

n (x), (56)

(2n+ α+ β + 1)P (α,β)
n (x) = (n+ α+ β + 1)P (α+1,β)

n (x)− (n+ β)P
(α+1,β)
n−1 (x). (57)

See [HTF2, 10.8(32) and (35)]. These can be rewritten as

(x− 1)qn(x) = pn+1(x)−Anpn(x), (58)

pn(x) = qn(x)− Cnqn−1(x), (59)

where qn(x) = 2nn!P
(α+1,β)
n (x)/(n+ α+ β + 2)n and pn(x), An and Cn are as above.

Formula (55) can be derived from (58), (59) by substituting these last two formulas in the
following rewritten form of (55) (compare with (5)–(8)):

(x− 1)pn(x) =
(
pn+1(x)−Anpn(x)

)
− Cn

(
pn(x)−An−1pn−1(x)

)
.

Generating functions Formula (9.8.15) was first obtained by Brafman [109, (12)]. Alterna-
tively (see [109, (9)] or use [DLMF, (16.16.6)]), the left-hand side of (9.8.15) can be written as
Appell’s hypergeometric function F4:

F4

(
γ, α+β+1−γ;α+1, β+1; 12 t(x−1), 12 t(x+1)

)
=

∞∑
k=0

(γ)k(α+ β + 1− γ)k
(α+ 1)k(β + 1)k

P
(α,β)
k (x)tk (60)

The generating function (9.12.12) for Laguerre polynomials is a limit case of (60) by (9.8.16).
Formula (9.8.15) with t, x replaced by 1

2(x+ y), 1+xy
x+y , respectively, takes the form

2F1

(
γ, α+ β + 1− γ

α+ 1
; 12(1− x)

)
2F1

(
γ, α+ β + 1− γ

β + 1
; 12(1 + y)

)
=

∞∑
k=0

(γ)k(α+ β + 1− γ)k
(α+ 1)k(β + 1)k

(x+ y)kP
(α,β)
k

(
1 + xy

x+ y

)
. (61)

In [109, (14)] the case γ nonpositive integer of (9.8.15) is given. When we do this for (61) with
γ = −n ∈ Z≤0 this yields the inverse of Bateman’s bilinear sum, as is given in [331, (2.19),
(2.20)], [DLMF, (18.18.25), (18.18.26)].

Bilinear generating functions For 0 ≤ r < 1 and x, y ∈ [−1, 1] we have in terms of F4

(see (15)):
∞∑
n=0

(α+ β + 1)n n!

(α+ 1)n(β + 1)n
rn P (α,β)

n (x)P (α,β)
n (y) =

1

(1 + r)α+β+1

× F4

(
1
2(α+ β + 1), 12(α+ β + 2);α+ 1, β + 1;

r(1− x)(1− y)

(1 + r)2
,
r(1 + x)(1 + y)

(1 + r)2

)
, (62)

∞∑
n=0

2n+ α+ β + 1

n+ α+ β + 1

(α+ β + 2)n n!

(α+ 1)n(β + 1)n
rn P (α,β)

n (x)P (α,β)
n (y) =

1− r

(1 + r)α+β+2

× F4

(
1
2(α+ β + 2), 12(α+ β + 3);α+ 1, β + 1;

r(1− x)(1− y)

(1 + r)2
,
r(1 + x)(1 + y)

(1 + r)2

)
. (63)
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Formulas (62) and (63) were first given by Bailey [91, (2.1), (2.3)]. See Stanton [485] for a shorter
proof. (However, in the second line of [485, (1)] z and Z should be interchanged.) As observed

in Bailey [91, p.10], (63) follows from (62) by applying the operator r−
1
2
(α+β−1) d

dr ◦ r
1
2
(α+β+1)

to both sides of (62). In view of (51), formula (63) is the Poisson kernel for Jacobi polynomials.
The right-hand side of (63) makes clear that this kernel is positive. See also the discussion in
Askey [46, following (2.32)].

Quadratic transformations

C
(α+ 1

2
)

2n (x)

C
(α+ 1

2
)

2n (1)
=
P

(α,α)
2n (x)

P
(α,α)
2n (1)

=
P

(α,− 1
2
)

n (2x2 − 1)

P
(α,− 1

2
)

n (1)
, (64)

C
(α+ 1

2
)

2n+1 (x)

C
(α+ 1

2
)

2n+1 (1)
=
P

(α,α)
2n+1 (x)

P
(α,α)
2n+1 (1)

=
xP

(α, 1
2
)

n (2x2 − 1)

P
(α, 1

2
)

n (1)
. (65)

See p.221, Remarks, last two formulas together with (54) and (76). Or see [DLMF, (18.7.13),
(18.7.14)].

Differentiation formulas Each differentiation formula is given in two equivalent forms.

d

dx

(
(1− x)αP (α,β)

n (x)
)
= −(n+ α) (1− x)α−1P (α−1,β+1)

n (x),(
(1− x)

d

dx
− α

)
P (α,β)
n (x) = −(n+ α)P (α−1,β+1)

n (x).
(66)

d

dx

(
(1 + x)βP (α,β)

n (x)
)
= (n+ β) (1 + x)β−1P (α+1,β−1)

n (x),(
(1 + x)

d

dx
+ β

)
P (α,β)
n (x) = (n+ β)P (α+1,β−1)

n (x).
(67)

Formulas (66) and (67) follow from [DLMF, (15.5.4), (15.5.6)] together with (9.8.1). They also
follow from each other by (53).

Generalized Gegenbauer polynomials These are defined by

S
(α,β)
2m (x) := const. P (α,β)

m (2x2 − 1), S
(α,β)
2m+1(x) := const. x P (α,β+1)

m (2x2 − 1) (68)

in the notation of [146, p.156] (see also [K5]), while [K12, Section 1.5.2] has C
(λ,µ)
n (x) = const.

× S
(λ− 1

2
,µ− 1

2
)

n (x). For α, β > −1 we have the orthogonality relation∫ 1

−1
S(α,β)
m (x)S(α,β)

n (x) |x|2β+1(1− x2)α dx = 0 (m ̸= n). (69)

For β = α−1 generalized Gegenbauer polynomials are limit cases of continuous q-ultraspherical
polynomials, see (197).
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If we define the Dunkl operator Tµ by

(Tµf)(x) := f ′(x) + µ
f(x)− f(−x)

x
(70)

and if we choose the constants in (68) as

S
(α,β)
2m (x) =

(α+ β + 1)m
(β + 1)m

P (α,β)
m (2x2 − 1), S

(α,β)
2m+1(x) =

(α+ β + 1)m+1

(β + 1)m+1
xP (α,β+1)

m (2x2 − 1)

(71)
then (see [K6, (1.6)])

Tβ+ 1
2
S(α,β)
n = 2(α+ β + 1)S

(α+1,β)
n−1 . (72)

Formula (72) with (71) substituted gives rise to two differentiation formulas involving Jacobi
polynomials which are equivalent to (9.8.7) and (67).

Composition of (72) with itself gives

T 2
β+ 1

2

S(α,β)
n = 4(α+ β + 1)(α+ β + 2)S

(α+2,β)
n−2 ,

which is equivalent to the composition of (9.8.7) and (67):(
d2

dx2
+

2β + 1

x

d

dx

)
P (α,β)
n (2x2 − 1) = 4(n+ α+ β + 1)(n+ β)P

(α+2,β)
n−1 (2x2 − 1). (73)

Formula (73) was also given in [332, (2.4)].

9.8.1 Gegenbauer / Ultraspherical

Notation Here the Gegenbauer polynomial is denoted by Cλ
n instead of C

(λ)
n .

Orthogonality relation Write the right-hand side of (9.8.20) as hn δm,n. Then

hn
h0

=
λ

λ+ n

(2λ)n
n!

, h0 =
π

1
2 Γ(λ+ 1

2)

Γ(λ+ 1)
,

hn
h0 (Cλ

n(1))
2
=

λ

λ+ n

n!

(2λ)n
. (74)

Hypergeometric representation Beside (9.8.19) we have also

Cλ
n(x) =

⌊n/2⌋∑
ℓ=0

(−1)ℓ(λ)n−ℓ

ℓ! (n− 2ℓ)!
(2x)n−2ℓ = (2x)n

(λ)n
n!

2F1

(
−1

2n,−
1
2n+ 1

2

1− λ− n
;
1

x2

)
. (75)

See [DLMF, (18.5.10)].

Special value

Cλ
n(1) =

(2λ)n
n!

. (76)

Use (9.8.19) or see [DLMF, Table 18.6.1].
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Expression in terms of Jacobi

Cλ
n(x)

Cλ
n(1)

=
P

(λ− 1
2
,λ− 1

2
)

n (x)

P
(λ− 1

2
,λ− 1

2
)

n (1)
, Cλ

n(x) =
(2λ)n

(λ+ 1
2)n

P
(λ− 1

2
,λ− 1

2
)

n (x). (77)

Re: (9.8.21) By iteration of recurrence relation (9.8.21):

x2Cλ
n(x) =

(n+ 1)(n+ 2)

4(n+ λ)(n+ λ+ 1)
Cλ
n+2(x) +

n2 + 2nλ+ λ− 1

2(n+ λ− 1)(n+ λ+ 1)
Cλ
n(x)

+
(n+ 2λ− 1)(n+ 2λ− 2)

4(n+ λ)(n+ λ− 1)
Cλ
n−2(x). (78)

Bilinear generating functions

∞∑
n=0

n!

(2λ)n
rnCλ

n(x)C
λ
n(y) =

1

(1− 2rxy + r2)λ
2F1

(
1
2λ,

1
2(λ+ 1)

λ+ 1
2

;
4r2(1− x2)(1− y2)

(1− 2rxy + r2)2

)
(r ∈ (−1, 1), x, y ∈ [−1, 1]). (79)

For the proof put β := α in (62), then use (16) and (77). The Poisson kernel for Gegenbauer
polynomials can be derived in a similar way from (63), or alternatively by applying the operator
r−λ+1 d

dr ◦ r
λ to both sides of (79):

∞∑
n=0

λ+ n

λ

n!

(2λ)n
rnCλ

n(x)C
λ
n(y) =

1− r2

(1− 2rxy + r2)λ+1

× 2F1

(
1
2(λ+ 1), 12(λ+ 2)

λ+ 1
2

;
4r2(1− x2)(1− y2)

(1− 2rxy + r2)2

)
(r ∈ (−1, 1), x, y ∈ [−1, 1]). (80)

Formula (80) was obtained by Gasper & Rahman [234, (4.4)] as a limit case of their formula for
the Poisson kernel for continuous q-ultraspherical polynomials.

Trigonometric expansions By [DLMF, (18.5.11), (15.8.1)]:

Cλ
n(cos θ) =

n∑
k=0

(λ)k(λ)n−k

k! (n− k)!
ei(n−2k)θ = einθ

(λ)n
n!

2F1

(
−n, λ

1− λ− n
; e−2iθ

)
(81)

=
(λ)n
2λn!

e−
1
2
iλπei(n+λ)θ (sin θ)−λ

2F1

(
λ, 1− λ

1− λ− n
;
ie−iθ

2 sin θ

)
(82)

=
(λ)n
n!

∞∑
k=0

(λ)k(1− λ)k
(1− λ− n)kk!

cos((n− k + λ)θ + 1
2(k − λ)π)

(2 sin θ)k+λ
. (83)

In (82) and (83) we require that 1
6π < θ < 5

6π. Then the convergence is absolute for λ > 1
2 and

conditional for 0 < λ ≤ 1
2 .
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By [DLMF, (14.13.1), (14.3.21), (15.8.1)]]:

Cλ
n(cos θ) =

2Γ(λ+ 1
2)

π
1
2Γ(λ+ 1)

(2λ)n
(λ+ 1)n

(sin θ)1−2λ
∞∑
k=0

(1− λ)k(n+ 1)k
(n+ λ+ 1)kk!

sin
(
(2k + n+ 1)θ

)
(84)

=
2Γ(λ+ 1

2)

π
1
2Γ(λ+ 1)

(2λ)n
(λ+ 1)n

(sin θ)1−2λ Im

(
ei(n+1)θ

2F1

(
1− λ, n+ 1

n+ λ+ 1
; e2iθ

))
=

2λΓ(λ+ 1
2)

π
1
2Γ(λ+ 1)

(2λ)n
(λ+ 1)n

(sin θ)−λRe

(
e−

1
2 iλπei(n+λ)θ

2F1

(
λ, 1− λ

1 + λ+ n
;

eiθ

2i sin θ

))
=

22λΓ(λ+ 1
2)

π
1
2Γ(λ+ 1)

(2λ)n
(λ+ 1)n

∞∑
k=0

(λ)k(1− λ)k
(1 + λ+ n)kk!

cos((n+ k + λ)θ − 1
2(k + λ)π)

(2 sin θ)k+λ
. (85)

We require that 0 < θ < π in (84) and 1
6π < θ < 5

6π in (85) The convergence is absolute for
λ > 1

2 and conditional for 0 < λ ≤ 1
2 . For λ ∈ Z>0 the above series terminate after the term

with k = λ− 1. Formulas (84) and (85) are also given in [Sz, (4.9.22), (4.9.25)].

Fourier transform

Γ(λ+ 1)

Γ(λ+ 1
2) Γ(

1
2)

∫ 1

−1

Cλ
n(y)

Cλ
n(1)

(1− y2)λ−
1
2 eixy dy = in 2λ Γ(λ+ 1)x−λ Jλ+n(x). (86)

See [DLMF, (18.17.17) and (18.17.18)].

Laplace transforms

2

n! Γ(λ)

∫ ∞

0
Hn(tx) t

n+2λ−1 e−t2 dt = Cλ
n(x). (87)

See Nielsen [K29, p.48, (4) with p.47, (1) and p.28, (10)] (1918) or Feldheim [K13, (28)] (1942).

2

Γ(λ+ 1
2)

∫ 1

0

Cλ
n(t)

Cλ
n(1)

(1− t2)λ−
1
2 t−1 (x/t)n+2λ+1 e−x2/t2 dt = 2−nHn(x) e

−x2
(λ > −1

2). (88)

Use Askey & Fitch [K2, (3.29)] for α = ±1
2 together with (53), (64), (65), (113) and (114).

Addition formula (see [AAR, (9.8.5′)]])

R(α,α)
n

(
xy + (1− x2)

1
2 (1− y2)

1
2 t
)
=

n∑
k=0

(−1)k(−n)k (n+ 2α+ 1)k
22k((α+ 1)k)2

× (1− x2)k/2R
(α+k,α+k)
n−k (x) (1− y2)k/2R

(α+k,α+k)
n−k (y)ω

(α− 1
2
,α− 1

2
)

k R
(α− 1

2
,α− 1

2
)

k (t), (89)

where

R(α,β)
n (x) := P (α,β)

n (x)/P (α,β)
n (1), ω(α,β)

n :=

∫ 1
−1(1− x)α(1 + x)β dx∫ 1

−1(R
(α,β)
n (x))2 (1− x)α(1 + x)β dx

.
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9.8.2 Chebyshev

In addition to the Chebyshev polynomials Tn of the first kind (9.8.35) and Un of the second kind
(9.8.36),

Tn(x) :=
P

(− 1
2
,− 1

2
)

n (x)

P
(− 1

2
,− 1

2
)

n (1)
= cos(nθ), x = cos θ, (90)

Un(x) := (n+ 1)
P

( 1
2
, 1
2
)

n (x)

P
( 1
2
, 1
2
)

n (1)
=

sin((n+ 1)θ)

sin θ
, x = cos θ, (91)

we have Chebyshev polynomials Vn of the third kind and Wn of the fourth kind,

Vn(x) :=
P

(− 1
2
, 1
2
)

n (x)

P
(− 1

2
, 1
2
)

n (1)
=

cos((n+ 1
2)θ)

cos(12θ)
, x = cos θ, (92)

Wn(x) := (2n+ 1)
P

( 1
2
,− 1

2
)

n (x)

P
( 1
2
,− 1

2
)

n (1)
=

sin((n+ 1
2)θ)

sin(12θ)
, x = cos θ, (93)

see [K26, Section 1.2.3]. Then there is the symmetry

Vn(−x) = (−1)nWn(x). (94)

The names of Chebyshev polynomials of the third and fourth kind and the notation Vn(x)
are due to Gautschi [K14]. The notation Wn(x) was first used by Mason [K25]. Names and
notations for Chebyshev polynomials of the third and fourth kind are interchanged in [AAR,
Remark 2.5.3] and [DLMF, Table 18.3.1].

9.9 Pseudo Jacobi (or Romanovski-Routh)

In this section in [KLS] the pseudo Jacobi polynomial Pn(x; ν,N) in (9.9.1) is considered for
N ∈ Z≥0 and n = 0, 1, . . . , n. However, we can more generally take −1

2 < N ∈ R (so here
I overrule my convention formulated in the beginning of this paper), N0 integer such that
N − 1

2 ≤ N0 < N + 1
2 , and n = 0, 1, . . . , N0 (see [382, §5, case A.4]). The orthogonality relation

(9.9.2) is valid for m,n = 0, 1, . . . , N0.

History These polynomials were first observed by Routh [K32] in 1885, but not as orthogonal
polynomials (see Natanson [K28] about the history). Romanovski [463] (see also Lesky [382])
independently obtained them in 1929 as orthogonal polynomials.

Limit relation: Pseudo big q-Jacobi −→ Pseudo Jacobi
See also (180).

References See also [Ism, §20.1], [51], [384], [K20], [K24], [K30].
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9.10 Meixner

History In 1934 Meixner [406] (see (1.1) and case IV on pp. 10, 11 and 12) gave the orthog-
onality measure for the polynomials Pn given by the generating function

exu(t) f(t) =

∞∑
n=0

Pn(x)
tn

n!
,

where

eu(t) =

(
1− βt

1− αt

) 1
α−β

, f(t) =
(1− βt)

k2
β(α−β)

(1− αt)
k2

α(α−β)

(k2 < 0; α > β > 0 or α < β < 0).

Then Pn can be expressed as a Meixner polynomial:

Pn(x) = (−k2(αβ)−1)n β
nMn

(
− x+ k2α

−1

α− β
,−k2(αβ)−1, βα−1

)
.

In 1938 Gottlieb [K18, §2] introduces polynomials ln “of Laguerre type” which turn out to
be special Meixner polynomials: ln(x) = e−nλMn(x; 1, e

−λ).

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.10.4) behaves as
O(n2) as n→ ∞. Hence (2) holds, by which the orthogonality measure is unique.

9.11 Krawtchouk

Special values By (9.11.1) and the binomial formula:

Kn(0; p,N) = 1, Kn(N ; p,N) = (1− p−1)n. (95)

The self-duality (p.240, Remarks, first formula)

Kn(x; p,N) = Kx(n; p,N) (n, x ∈ {0, 1, . . . , N}) (96)

combined with (95) yields:

KN (x; p,N) = (1− p−1)x (x ∈ {0, 1, . . . , N}). (97)

Symmetry By the orthogonality relation (9.11.2):

Kn(N − x; p,N)

Kn(N ; p,N)
= Kn(x; 1− p,N). (98)

By (98) and (96) we have also

KN−n(x; p,N)

KN (x; p,N)
= Kn(x; 1− p,N) (n, x ∈ {0, 1, . . . , N}), (99)
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and, by (99), (98) and (95),

KN−n(N − x; p,N) =

(
p

p− 1

)n+x−N

Kn(x; p,N) (n, x ∈ {0, 1, . . . , N}). (100)

A particular case of (98) is:

Kn(N − x; 12 , N) = (−1)nKn(x;
1
2 , N). (101)

Hence

K2m+1(N ; 12 , 2N) = 0. (102)

From (9.11.11):

K2m(N ; 12 , 2N) =
(12)m

(−N + 1
2)m

. (103)

Quadratic transformations

K2m(x+N ; 12 , 2N) =
(12)m

(−N + 1
2)m

Rm(x2;−1
2 ,−

1
2 , N), (104)

K2m+1(x+N ; 12 , 2N) = −
(32)m

N (−N + 1
2)m

xRm(x2 − 1; 12 ,
1
2 , N − 1), (105)

K2m(x+N + 1; 12 , 2N + 1) =
(12)m

(−N − 1
2)m

Rm(x(x+ 1);−1
2 ,

1
2 , N), (106)

K2m+1(x+N + 1; 12 , 2N + 1) =
(32)m

(−N − 1
2)m+1

(x+ 1
2)Rm(x(x+ 1); 12 ,−

1
2 , N), (107)

where Rm is a dual Hahn polynomial (9.6.1). For the proofs use (9.6.2), (9.11.2), (9.6.4) and
(9.11.4).

Recurrence relation Formula (9.11.3) holds for n = N if we replace there the term
p(N − n)Kn+1(x; p,N) by (−x)N+1/(p

NN !).

Generating functions

N∑
x=0

(
N

x

)
Km(x; p,N)Kn(x; q,N)zx

=

(
p− z + pz

p

)m(q − z + qz

q

)n

(1 + z)N−m−nKm

(
n;− (p− z + pz)(q − z + qz)

z
,N

)
.

(108)

This follows immediately from Rosengren [K31, (3.5)], which goes back to Meixner [K27].
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9.12 Laguerre

Notation Here the Laguerre polynomial is denoted by Lα
n instead of L

(α)
n .

Hypergeometric representation

Lα
n(x) =

(α+ 1)n
n!

1F1

(
−n
α+ 1

;x

)
(109)

=
(−x)n

n!
2F0

(
−n,−n− α

−
;− 1

x

)
(110)

=
(−x)n

n!
Cn(n+ α;x), (111)

where Cn in (111) is a Charlier polynomial. Formula (109) is (9.12.1). Then (110) follows by
reversal of summation. Finally (111) follows by (110) and (123). It is also the remark on top of
p.244 in [KLS], and it is essentially [416, (2.7.10)].

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.12.4) behaves as
O(n2) as n→ ∞. Hence (2) holds, by which the orthogonality measure is unique.

Special value

Lα
n(0) =

(α+ 1)n
n!

. (112)

Use (9.12.1) or see [DLMF, 18.6.1)].

Quadratic transformations

H2n(x) = (−1)n 22n n!L−1/2
n (x2), (113)

H2n+1(x) = (−1)n 22n+1 n!xL1/2
n (x2). (114)

See p.244, Remarks, last two formulas. Or see [DLMF, (18.7.19), (18.7.20)].

Fourier transform

1

Γ(α+ 1)

∫ ∞

0

Lα
n(y)

Lα
n(0)

e−y yα eixy dy = in
yn

(iy + 1)n+α+1
, (115)

see [DLMF, (18.17.34)].

Differentiation formulas Each differentiation formula is given in two equivalent forms.

d

dx
(xαLα

n(x)) = (n+ α)xα−1Lα−1
n (x),

(
x
d

dx
+ α

)
Lα
n(x) = (n+ α)Lα−1

n (x). (116)

d

dx

(
e−xLα

n(x)
)
= −e−xLα+1

n (x),

(
d

dx
− 1

)
Lα
n(x) = −Lα+1

n (x). (117)

Formulas (116) and (117) follow from [DLMF, (13.3.18), (13.3.20)] together with (9.12.1).
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Generating functions The generating function (9.12.12) is a limit case of the generating
function (60) for Jacobi polynomials by (9.8.16). By (9.7.14) the generating function (9.12.12)
is also a limit case of the generating function (9.7.13) for Meixner–Pollaczek polynomials.

Generalized Hermite polynomials See [146, p.156], [K12, Section 1.5.1]. These are defined
by

Hµ
2m(x) := const. L

µ− 1
2

m (x2), Hµ
2m+1(x) := const. x L

µ+ 1
2

m (x2). (118)

Then for µ > −1
2 we have orthogonality relation∫ ∞

−∞
Hµ

m(x)Hµ
n (x) |x|2µe−x2

dx = 0 (m ̸= n). (119)

Let the Dunkl operator Tµ be defined by (70). If we choose the constants in (118) as

Hµ
2m(x) =

(−1)m(2m)!

(µ+ 1
2)m

L
µ− 1

2
m (x2), Hµ

2m+1(x) =
(−1)m(2m+ 1)!

(µ+ 1
2)m+1

xL
µ+ 1

2
m (x2) (120)

then (see [K6, (1.6)])

TµH
µ
n = 2nHµ

n−1. (121)

Formula (121) with (120) substituted gives rise to two differentiation formulas involving Laguerre
polynomials which are equivalent to (9.12.6) and (116).

Composition of (121) with itself gives

T 2
µH

µ
n = 4n(n− 1)Hµ

n−2,

which is equivalent to the composition of (9.12.6) and (116):(
d2

dx2
+

2α+ 1

x

d

dx

)
Lα
n(x

2) = −4(n+ α)Lα
n−1(x

2). (122)

9.13 Bessel

Hypergeometric representation The constraint n = 0, 1, 2, . . . , N can be omitted. All
formulas in §9.13 except (9.13.2) remain valid for all integer n ≥ 0. These more general values
of n are even needed in the generating function (9.13.10).

Notation In the notation of Grosswald [255] the left-hand side of (9.13.1) has to be replaced
by yn(x; a+ 2).

Orthogonality relation
Replace the constraint a < −2N − 1 in (9.13.2) by m,n = 0, 1, . . . , N = ⌈−(3 + a)/2⌉.
Following Lesky [382] the Bessel polynomials in case of orthogonality relation (9.13.2) may be
called Romanovski–Bessel polynomials.
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9.14 Charlier

Hypergeometric representation

Cn(x; a) = 2F0

(
−n,−x

−
;− 1

a

)
(123)

=
(−x)n
an

1F1

(
−n

x− n+ 1
; a

)
(124)

=
n!

(−a)n
Lx−n
n (a), (125)

where Lα
n(x) is a Laguerre polynomial. Formula (123) is (9.14.1). Then (124) follows by reversal

of the summation. Finally (125) follows by (124) and (9.12.1). It is also the Remark on p.249
of [KLS], and it was earlier given in [416, (2.7.10)].

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.14.4) behaves as
O(n) as n→ ∞. Hence (2) holds, by which the orthogonality measure is unique.

9.15 Hermite

Uniqueness of orthogonality measure The coefficient of pn−1(x) in (9.15.4) behaves as
O(n) as n→ ∞. Hence (2) holds, by which the orthogonality measure is unique.

Fourier transforms

1√
2π

∫ ∞

−∞
Hn(y) e

− 1
2
y2eixy dy = inHn(x) e

− 1
2
x2
, (126)

see [AAR, (6.1.15) and Exercise 6.11].

1√
π

∫ ∞

−∞
Hn(y) e

−y2 eixydupy = in xn e−
1
4
x2
, (127)

see [DLMF, (18.17.35)].

in

2
√
π

∫ ∞

−∞
yn e−

1
4
y2 e−ixy dy = Hn(x) e

−x2
, (128)

see [AAR, (6.1.4)].

14.1 Askey–Wilson

Symmetry The Askey–Wilson polynomials pn(x; a, b, c, d | q) are symmetric in a, b, c, d.

This follows from the orthogonality relation (14.1.2) together with the value of its coefficient of
xn given in (14.1.5b). Alternatively, combine (14.1.1) with [GR, (III.15)].
As a consequence, it is sufficient to give generating function (14.1.13). Then the generating
functions (14.1.14), (14.1.15) will follow by symmetry in the parameters.
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Basic hypergeometric representation In addition to (14.1.1) we have (in notation (19)):

pn(cos θ; a, b, c, d | q) =
(ae−iθ, be−iθ, ce−iθ, de−iθ; q)n

(e−2iθ; q)n
einθ

× 8W7

(
q−ne2iθ; aeiθ, beiθ, ceiθ, deiθ, q−n; q, q2−n/(abcd)

)
. (129)

This follows from (14.1.1) by combining (III.15) and (III.19) in [GR]. It is also given in [513,
(4.2)], but be aware for some slight errors. The symmetry in a, b, c, d is evident from (129).

Special value and different notation

pn
(
1
2(a+ a−1); a, b, c, d | q

)
= a−n (ab, ac, ad; q)n , (130)

and similarly for arguments 1
2(b+ b

−1), 1
2(c+ c

−1) and 1
2(d+d

−1) by symmetry of pn in a, b, c, d.
Formula (130) is an immediate consequence of (14.1.1).

We will also write

Rn(z; a, b, c, d | q) :=
pn(

1
2(z + z−1); a, b, c, d | q)

pn(
1
2(a+ a−1); a, b, c, d | q)

= 4ϕ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad
; q, q

)
. (131)

Here there is no longer full symmetry in a, b, c, d, only in b, c, d.

Trivial symmetry From (14.1.1) we see [72, (1.34)]

pn(x; a, b, c, d | q) = (−1)npn(−x;−a,−b,−c,−d | q),
Rn(z; a, b, c, d | q) = Rn(−z;−a,−b,−c,−d | q).

(132)

Duality Define parameters ã, b̃, c̃, d̃ in terms of a, b, c, d by

ã = (q−1abcd)
1
2 , b̃ = ab/ã, c̃ = ac/ã, d̃ = ad/ã. (133)

Jumping from one branch to the other branch in the square root in the formula for ã implies
that ã, b̃, c̃, d̃ move to −ã,−b̃,−c̃,−d̃. Repetition of the parameter transformation recovers the
original parameters up to a possible common multiplication of a, b, c, d by −1, while the branch
choice for ã is irrelevant:

a =
(
q−1ãb̃c̃d̃

) 1
2 , b = ãb̃/a, c = ãc̃/a, d = ãd̃/a. (134)

From (131) we have the duality relation

Rn

(
aqm; a, b, c, d | q

)
= Rm

(
ãqn; ã, b̃, c̃, d̃ | q

)
(m,n ∈ Z≥0). (135)

By (132) both sides of (135) are invariant under common multiplication by −1 of a, b, c, d,
respectively ã, b̃, c̃, d̃.
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Orthogonality relation The conditions on the parameters in (14.1.2) can be slightly relaxed:
Let |a|, |b|, |c|, |d| ≤ 1 such that pairwise products of a, b, c, d are not equal to 1 and such that
non-real parameters occur in complex conjugate pairs.

In fact, the only possible cases which then offend the condition |a|, |b|, |c|, |d| < 1 are that
either precisely one parameter has absolute value 1 and equals 1 or−1, or precisely two parameter
values have absolute value 1, one equal to 1 and the other equal to −1. Then the weight fucntion
will not cause a singularity by its factors 1 ± eiθ and 1 ± e−iθ in the denominator, since these
are compensated by the factors 1− e2iθ and 1− e−2iθ in the numerator.

The orthogonality (14.1.3) involving discrete terms can be given for more general parameter
values as in [72, Theorem 2.5]. There a, b, c, d are real or occur in complex conjugate pairs if
non-real, and pairwise products have absolute value ≤ 1 but are not equal to 1.

Re: (14.1.5) Let

pn(x) :=
pn(x; a, b, c, d | q)
2n(abcdqn−1; q)n

= xn + k̃nx
n−1 + · · · . (136)

Then

k̃n = −(1− qn)(a+ b+ c+ d− (abc+ abd+ acd+ bcd)qn−1)

2(1− q)(1− abcdq2n−2)
. (137)

This follows because k̃n− k̃n+1 equals the coefficient 1
2

(
a+a−1− (An+Cn)

)
of pn(x) in (14.1.5).

q-Difference equation The q-difference operator acting on Pn(z) on the right-hand side of
(14.1.7), gives, when acting on Qn(z) := (az, az−1; q)∞, the result

q−n(1− qn)(1− abcdqn−1)Qn(z)− q−n(1− abqn−1)(1− acqn−1)(1− adqn−1)(1− qn)Qn−1(z)

= A(z)Qn(qz)−
(
A(z) +A(z−1)

)
Qn(z) +A(z−1)Qn(q

−1z). (138)

This formula is implicit in [K36]. Use there (3.1) with the Askey–Wilson parameters (7.15) and
(7.8), and combine it with (14.1.7).

Generating functions Rahman [449, (4.1), (4.9)] gives:

∞∑
n=0

(abcdq−1; q)na
n

(ab, ac, ad, q; q)n
tn pn(cos θ; a, b, c, d | q)

=
(abcdtq−1; q)∞

(t; q)∞
6ϕ5

(
(abcdq−1)

1
2 ,−(abcdq−1)

1
2 , (abcd)

1
2 ,−(abcd)

1
2 , aeiθ, ae−iθ

ab, ac, ad, abcdtq−1, qt−1
; q, q

)

+
(abcdq−1, abt, act, adt, aeiθ, ae−iθ; q)∞

(ab, ac, ad, t−1, ateiθ, ate−iθ; q)∞

× 6ϕ5

(
t(abcdq−1)

1
2 ,−t(abcdq−1)

1
2 , t(abcd)

1
2 ,−t(abcd)

1
2 , ateiθ, ate−iθ

abt, act, adt, abcdt2q−1, qt
; q, q

)
(|t| < 1). (139)

In the limit (140) the first term on the right-hand side of (139) tends to the left-hand side of
(9.1.15), while the second term tends formally to 0. The special case ad = bc of (139) was earlier
given in [236, (4.1), (4.6)].
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Limit relations

Askey–Wilson −→ Wilson
Instead of (14.1.21) we can keep a polynomial of degree n while the limit is approached:

lim
q→1

pn(1− 1
2x(1− q)2; qa, qb, qc, qd | q)

(1− q)3n
=Wn(x; a, b, c, d). (140)

For the proof first derive the corresponding limit for the monic polynomials by comparing (14.1.5)
with (9.4.4).

Askey–Wilson −→ Continuous Hahn
Instead of (14.4.15) we can keep a polynomial of degree n while the limit is approached:

lim
q↑1

pn
(
cosϕ− x(1− q) sinϕ; qaeiϕ, qbeiϕ, qae−iϕ, qbe−iϕ | q

)
(1− q)2n

= (−2 sinϕ)n n! pn(x; a, b, a, b) (0 < ϕ < π). (141)

Here the right-hand side has a continuous Hahn polynomial (9.4.1). For the proof first derive
the corresponding limit for the monic polynomials by comparing (14.1.5) with (9.1.5). In fact,
define the monic polynomial

p̃n(x) :=
pn
(
cosϕ− x(1− q) sinϕ; qaeiϕ, qbeiϕ, qae−iϕ, qbe−iϕ | q

)
(−2(1− q) sinϕ)n (abcdqn−1; q)n

.

Then it follows from (14.1.5) that

x p̃n(x) = p̃n+1(x) +
(1− qa)eiϕ + (1− q−a)e−iϕ + Ãn + C̃n

2(1− q) sinϕ
p̃n(x) +

Ãn−1C̃n

(1− q)2 sin2 ϕ
p̃n−1(x),

where Ãn and C̃n are as given after (14.1.3) with a, b, c, d replaced by qaeiϕ, qbeiϕ, qae−iϕ, qbe−iϕ.
Then the recurrence equation for p̃n(x) tends for q ↑ 1 to the recurrence equation (9.4.4) with
c = a, d = b.

Askey–Wilson −→ Meixner–Pollaczek
Instead of (14.9.15) we can keep a polynomial of degree n while the limit is approached:

lim
q↑1

pn
(
cosϕ− x(1− q) sinϕ; qλeiϕ, 0, qλe−iϕ, 0 | q

)
(1− q)n

= n!P (λ)
n (x;π − ϕ) (0 < ϕ < π). (142)

Here the right-hand side has a Meixner–Pollaczek polynomial (9.7.1). For the proof first derive
the corresponding limit for the monic polynomials by comparing (14.1.5) with (9.7.4). In fact,
define the monic polynomial

p̃n(x) :=
pn
(
cosϕ− x(1− q) sinϕ; qλeiϕ, 0, qλe−iϕ, 0 | q

)
(−2(1− q) sinϕ)n

.
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Then it follows from (14.1.5) that

x p̃n(x) = p̃n+1(x) +
(1− qλ)eiϕ + (1− q−λ)e−iϕ + Ãn + C̃n

2(1− q) sinϕ
p̃n(x) +

Ãn−1C̃n

(1− q)2 sin2 ϕ
p̃n−1(x),

where Ãn and C̃n are as given after (14.1.3) with a, b, c, d replaced by qλeiϕ, 0, qλe−iϕ, 0. Then
the recurrence equation for p̃n(x) tends for q ↑ 1 to the recurrence equation (9.7.4).

References See also Koornwinder [K21].

14.2 q-Racah

Symmetry

Rn(x;α, β, q
−N−1, δ | q) = (βq, αδ−1q; q)n

(αq, βδq; q)n
δnRn(δ

−1x;β, α, q−N−1, δ−1 | q). (143)

This follows from (14.2.1) combined with [GR, (III.15)].

In particular,

Rn(x;α, β, q
−N−1,−1 | q) = (βq,−αq; q)n

(αq,−βq; q)n
(−1)nRn(−x;β, α, q−N−1,−1 | q), (144)

and

Rn(x;α, α, q
−N−1,−1 | q) = (−1)nRn(−x;α, α, q−N−1,−1 | q), (145)

Trivial symmetry Clearly from (14.2.1):

Rn(x;α, β, γ, δ | q) = Rn(x;βδ, αδ
−1, γ, δ | q) = Rn(x; γ, αβγ

−1, α, γδα−1 | q). (146)

For α = q−N−1 this shows that the three cases αq = q−N or βδq = q−N or γq = q−N of (14.2.1)
are not essentially different.

Duality It follows from (14.2.1) that

Rn(q
−y + γδqy+1; q−N−1, β, γ, δ | q) = Ry(q

−n + βqn−N ; γ, δ, q−N−1, β | q) (n, y = 0, 1, . . . , N).
(147)

14.3 Continuous dual q-Hahn

The continuous dual q-Hahn polynomials are the special case d = 0 of the Askey–Wilson poly-
nomials:

pn(x; a, b, c | q) := pn(x; a, b, c, 0 | q).

Hence all formulas in §14.3 are specializations for d = 0 of formulas in §14.1.
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14.4 Continuous q-Hahn

The continuous q-Hahn polynomials are the special case of Askey–Wilson polynomials with
parameters aeiϕ, beiϕ, ae−iϕ, be−iϕ:

pn(x; a, b, ϕ | q) := pn(x; ae
iϕ, beiϕ, ae−iϕ, be−iϕ | q).

In [72, (4.29)] and [GR, (7.5.43)] (who write pn(x; a, b | q), x = cos(θ + ϕ)) and in [KLS, §14.4]
(who writes pn(x; a, b, c, d; q), x = cos(θ + ϕ)) the parameter dependence on ϕ is incorrectly
omitted.

Since all formulas in §14.4 are specializations of formulas in §14.1, there is no real need to
give these specializations explicitly. In particular, the limit (14.4.15) is in fact a limit from
Askey–Wilson to continuous Hahn. See also (141).

14.5 Big q-Jacobi

Different notation See p.442, Remarks:

Pn(x; a, b, c, d; q) := Pn(qac
−1x; a, b,−ac−1d; q) = 3ϕ2

(
q−n, qn+1ab, qac−1x

qa,−qac−1d
; q, q

)
. (148)

Furthermore,
Pn(x; a, b, c, d; q) = Pn(λx; a, b, λc, λd; q), (149)

Pn(x; a, b, c; q) = Pn(−q−1c−1x; a, b,−ac−1, 1; q) (150)

Orthogonality relation (equivalent to (14.5.2), see also [K22, (2.42), (2.41), (2.36), (2.35)]).
Let c, d > 0 and either a ∈ (−c/(qd), 1/q), b ∈ (−d/(cq), 1/q) or a/c = −b/d /∈ R. Then∫ c

−d
Pm(x; a, b, c, d; q)Pn(x; a, b, c, d; q)

(qx/c,−qx/d; q)∞
(qax/c,−qbx/d; q)∞

dqx = hn δm,n , (151)

where
hn
h0

= q
1
2
n(n−1)

(
q2a2d

c

)n
1− qab

1− q2n+1ab

(q, qb,−qbc/d; q)n
(qa, qab,−qad/c; q)n

(152)

and

h0 = (1− q)c
(q,−d/c,−qc/d, q2ab; q)∞

(qa, qb,−qbc/d,−qad/c; q)∞
. (153)

Other hypergeometric representation and asymptotics

Pn(x; a, b, c, d; q) =
(−qbd−1x; q)n

(−q−na−1cd−1; q)n
3ϕ2

(
q−n, q−nb−1, cx−1

qa,−q−nb−1dx−1
; q, q

)
(154)

= (qac−1x)n
(qb, cx−1; q)n

(qa,−qac−1d; q)n
3ϕ2

(
q−n, q−na−1,−qbd−1x

qb, q1−nc−1x
; q,−qn+1ac−1d

)
(155)

= (qac−1x)n
(qb, q; q)n

(−qac−1d; q)n

n∑
k=0

(cx−1; q)n−k

(q, qa; q)n−k

(−qbd−1x; q)k
(qb, q; q)k

(−1)kq
1
2
k(k−1)(−dx−1)k.

(156)
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Formula (154) follows from (148) by [GR, (III.11)] and next (155) follows by series inversion
[GR, Exercise 1.4(ii)]. Formulas (154) and (156) are also given in [Ism, (18.4.28), (18.4.29)]. It
follows from (155) or (156) that (see [298, (1.17)] or [Ism, (18.4.31)])

lim
n→∞

(qac−1x)−nPn(x; a, b, c, d; q) =
(cx−1,−dx−1; q)∞
(−qac−1d, qa; q)∞

, (157)

uniformly for x in compact subsets of C\{0}. (Exclusion of the spectral points x = cqm, dqm

(m = 0, 1, 2, . . .), as was done in [298] and [Ism], is not necessary. However, while (157) yields 0
at these points, a more refined asymptotics at these points is given in [298] and [Ism].) For the
proof of (157) use that

lim
n→∞

(qac−1x)−nPn(x; a, b, c, d; q) =
(qb, cx−1; q)n

(qa,−qac−1d; q)n
1ϕ1

(
−qbd−1x

qb
; q,−dx−1

)
, (158)

which can be evaluated by [GR, (II.5)]. Formula (158) follows formally from (155), and it follows
rigorously, by dominated convergence, from (156).

Symmetry (see [K22, §2.5] and combine with (148)).

Pn(x; a, b, c, d; q)

Pn(−d/(qb); a, b, c, d; q)
= Pn(−x; b, a, d, c; q) = Pn(x;−bcd−1,−ac−1d, c, d; q). (159)

In particular (symmetric big q-Jacobi polynomials),

Pn(−x; a, a, 1, 1; q) = (−1)nPn(x; a, a, 1, 1; q). (160)

Special values

Pn(c/(qa); a, b, c, d; q) = 1, (161)

Pn(−d/(qb); a, b, c, d; q) =
(
− ad

bc

)n (qb,−qbc/d; q)n
(qa,−qad/c; q)n

, (162)

Pn(c; a, b, c, d; q) = q
1
2
n(n+1)

(
ad

c

)n (−qbc/d; q)n
(−qad/c; q)n

, (163)

Pn(−d; a, b, c, d; q) = q
1
2
n(n+1)(−a)n (qb; q)n

(qa; q)n
. (164)

Recurrence relation See (14.5.3). For n = 1, 2, . . .:

qac−1xPn(x; a, b, c, d; q) = AnPn+1(x; a, b, c, d; q)

+ (1−An − Cn)Pn(x; a, b, c, d; q) + CnPn−1(x; a, b, c, d; q), (165)

where

An =
(1− qn+1a)(1− qn+1ab)(1 + qn+1ac−1d)

(1− q2n+1ab)(1− q2n+2ab)
,

Cn = qn+1a2c−1d
(1− qn)(1 + qnbcd−1)(1− qnb)

(1− q2nab)(1− q2n+1ab)
.
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For n = 0:

qac−1xP0(x; a, b, c, d; q) =
(1− qa)(1 + qac−1d)

1− q2ab
P1(x; a, b, c, d; q)

+
qa(c− d− q(bc− ad))

c(1− q2ab)
P0(x; a, b, c, d; q). (166)

In (165) we have 1−An −Cn = 0 for n = 1, 2, . . . if a = b, c = d or ab = 1, acd−1 = 1. In (166)
the last term on the right vanishes if a = b, c = d, but not if ab = 1, acd−1 = 1, a ̸= 1.

So for symmetric big q-Jacobi polynomials we have

qaxPn(x; a, a, 1, 1; q) =
1− qn+1a2

1− q2n+1a2
Pn+1(x; a, a, 1, 1; q)

+ qn+1a2
1− qn

1− q2n+1a2
Pn−1(x; a, a, 1, 1; q). (167)

Equivalently,

xpn(x) =
1− qn+1a2

1− q2n+1a2
pn+1(x) +

qn−1(1− qn)

1− q2n+1a2
pn−1(x), (168)

where pn(x) = (qa)−nPn(x; a, a, 1, 1; q).

Second order q-difference equation (see (14.5.5). Let Pn(x) = Pn(x; a, b, c, d; q).

(q−n − 1)(1− qn+1ab)Pn(x) = qabx−2(x− q−1a−1c)(x+ q−1b−1d)(Pn(qx)− Pn(x))

+ x−2(x− c)(x+ d)(Pn(q
−1x)− Pn(x)). (169)

Quadratic transformations (see [K22, (2.48), (2.49)] and (200)).
These express big q-Jacobi polynomials Pm(x; a, a, 1, 1; q) in terms of little q-Jacobi polynomials
(see §14.12).

P2n(x; a, a, 1, 1; q) =
pn(x

2; q−1, a2; q2)

pn((qa)−2; q−1, a2; q2)
, (170)

P2n+1(x; a, a, 1, 1; q) =
qax pn(x

2; q, a2; q2)

pn((qa)−2; q, a2; q2)
. (171)

Hence, by (14.12.1), [GR, Exercise 1.4(ii)] and (200),

Pn(x; a, a, 1, 1; q) =
(qa2; q2)n
(qa2; q)n

(qax)n 2ϕ1

(
q−n, q−n+1

q−2n+1a−2
; q2, (ax)−2

)
(172)

=
(q; q)n
(qa2; q)n

(qa)n
[ 1
2
n]∑

k=0

(−1)kqk(k−1) (qa2; q2)n−k

(q2; q2)k (q; q)n−2k
xn−2k. (173)
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q-Chebyshev polynomials In (148), with c = d = 1, the cases a = b = q−
1
2 and a = b = q

1
2

can be considered as q-analogues of the Chebyshev polynomials of the first and second kind,
respectively (§9.8.2) because of the limit (14.5.17). The quadratic relations (170), (171) can
also be specialized to these cases. The definition of the q-Chebyshev polynomials may vary by
normalization and by dilation of argument. They were considered in [K4]. By [24, p.279] and
(170), (171), the Al-Salam-Ismail polynomials Un(x; a, b) (q-dependence suppressed) in the case
a = q can be expressed as q-Chebyshev polynomials of the second kind:

Un(x, q, b) = (q−3b)
1
2
n 1− qn+1

1− q
Pn(b

− 1
2x; q

1
2 , q

1
2 , 1, 1; q).

Similarly, by [K8, (5.4), (5.1), (5.3)] and (170), (171), Cigler’s q-Chebyshev polynomials Tn(x, s, q)
and Un(x, s, q) can be expressed in terms of the q-Chebyshev cases of (148):

Tn(x, s, q) = (−s)
1
2
n Pn((−qs)−

1
2x; q−

1
2 , q−

1
2 , 1, 1; q),

Un(x, s, q) = (−q−2s)
1
2
n 1− qn+1

1− q
Pn((−qs)−

1
2x; q

1
2 , q

1
2 , 1, 1; q).

Limit to Discrete q-Hermite I

lim
a→0

a−n Pn(x; a, a, 1, 1; q) = qn hn(x; q). (174)

Here hn(x; q) is given by (14.28.1). For the proof of (174) use (154).

Pseudo big q-Jacobi polynomials Let a, b, c, d ∈ C, z+ > 0, z− < 0 such that (ax,bx;q)∞
(cx,dx;q)∞

> 0

for x ∈ z−q
Z ∪ z+qZ. Then (ab)/(qcd) > 0. Assume that (ab)/(qcd) < 1. Let N be the largest

nonnegative integer such that q2N > (ab)/(qcd). Then∫
z−qZ∪z+qZ

Pm(cx; c/b, d/a, c/a; q)Pn(cx; c/b, d/a, c/a; q)
(ax, bx; q)∞
(cx, dx; q)∞

dqx = hnδm,n

(m,n = 0, 1, . . . , N), (175)

where
hn
h0

= (−1)n
(
c2

ab

)n

q
1
2
n(n−1)q2n

(q, qd/a, qd/b; q)n
(qcd/(ab), qc/a, qc/b; q)n

1− qcd/(ab)

1− q2n+1cd/(ab)
(176)

and

h0 =

∫
z−qZ∪z+qZ

(ax, bx; q)∞
(cx, dx; q)∞

dqx = (1− q)z+
(q, a/c, a/d, b/c, b/d; q)∞

(ab/(qcd); q)∞

θ(z−/z+, cdz−z+; q)

θ(cz−, dz−, cz+, dz+; q)
.

(177)
See Groenevelt & Koelink [K19, Prop. 2.2]. Formula (177) was first given by Slater [K34, (5)] as
an evaluation of a sum of two 2ψ2 series. The same formula is given in Slater [471, (7.2.6)] and
in [GR, Exercise 5.10], but in both cases with the same slight error, see [K19, 2nd paragraph
after Lemma 2.1] for correction. The theta function is given by (20). Note that

Pn(cx; c/b, d/a, c/a; q) = Pn(−q−1ax; c/b, d/a,−a/b, 1; q). (178)

In [K17] the weights of the pseudo big q-Jacobi polynomials occur in certain measures on
the space of N -point configurations on the so-called extended Gelfand-Tsetlin graph.
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Limit relations

Pseudo big q-Jacobi −→ Discrete Hermite II

lim
a→∞

inq
1
2
n(n−1)Pn(q

−1a−1ix; a, a, 1, 1; q) = h̃n(x; q). (179)

For the proof use (173) and (235). Note that Pn(q
−1a−1ix; a, a, 1, 1; q) is obtained from the

right-hand side of (178) by replacing a, b, c, d by −ia−1, ia−1, i,−i.

Pseudo big q-Jacobi −→ Pseudo Jacobi

lim
q↑1

Pn(iq
1
2
(−N−1+iν)x;−q−N−1,−q−N−1, q−N+iν−1; q) =

Pn(x; ν,N)

Pn(−i; ν,N)
. (180)

Here the big q-Jacobi polynomial on the left-hand side equals Pn(cx; c/b, d/a, c/a; q) with

a = iq
1
2
(N+1−iν), b = −iq

1
2
(N+1+iν), c = iq

1
2
(−N−1+iν), d = −iq

1
2
(−N−1−iν).

14.7 Dual q-Hahn

Orthogonality relation More generally we have (14.7.2) with positive weights in any of the
following cases: (i) 0 < γq < 1, 0 < δq < 1; (ii) 0 < γq < 1, δ < 0; (iii) γ < 0, δ > q−N ; (iv)
γ > q−N , δ > q−N ; (v) 0 < qγ < 1, δ = 0. This also follows by inspection of the positivity of
the coefficient of pn−1(x) in (14.7.4). Case (v) yields Affine q-Krawtchouk in view of (14.7.13).

Symmetry

Rn(x; γ, δ,N | q) = (δ−1q−N ; q)n
(γq; q)n

(
γδqN+1

)n
Rn(γ

−1δ−1q−1−Nx; δ−1q−N−1, γ−1q−N−1, N | q).

(181)
This follows from (14.7.1) combined with [GR, (III.11)].

14.8 Al-Salam–Chihara

Standardization and notation The definition (14.8.1) by q-hypergeometric representation
follows the convention of [72, p.25] thatQn(x; a, b | q) = pn(x; a, b, 0, 0 | q), where pn(x; a, b, c, d | q)
is the Askey–Wilson polynomial (14.1.1). In [Ism, (15.1.6)] these polynomials are notated
pn(x; a, b | q), equal to an/(ab; q)n times Qn(x; a, b | q) as in (14.8.1).

Symmetry The Al-Salam–Chihara polynomials Qn(x; a, b | q) are symmetric in a, b.

This follows from the orthogonality relation (14.8.2) together with the value of its coefficient of
xn given in (14.8.5b).

Orthogonality relation Just as in Section 14.1 the condition |a|, |b| < 1 on the parameters
in (14.8.2) can be slightly relaxed into |a|, |b| ≤ 1, ab ̸= 1.
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q−1-Al-Salam–Chihara

Re: (14.8.1) For x ∈ Z≥0:

Qn(
1
2(aq

−x + a−1qx);a, b | q−1) = (−1)nbnq−
1
2
n(n−1)

(
(ab)−1; q

)
n

× 3ϕ1

(
q−n, q−x, a−2qx

(ab)−1
; q, qnab−1

)
(182)

= (−ab−1)x q−
1
2
x(x+1) (qba−1; q)x

(a−1b−1; q)x
2ϕ1

(
q−x, a−2qx

qba−1
; q, qn+1

)
(183)

= (−ab−1)x q−
1
2
x(x+1) (qba−1; q)x

(a−1b−1; q)x
px(q

n; ba−1, (qab)−1; q). (184)

Formula (182) follows from the first identity in (14.8.1). Next (183) follows from [GR, (III.8)].
Finally (184) gives the little q-Jacobi polynomials (14.12.1). See also [79, §3] and [K9, §3].

Orthogonality

∞∑
x=0

(1− q2xa−2)(a−2, (ab)−1; q)x
(1− a−2)(q, bqa−1; q)x

(ba−1)xqx
2
(QmQn)(

1
2(aq

−x + a−1qx); a, b | q−1)

=
(qa−2; q)∞
(ba−1q; q)∞

(q, (ab)−1; q)n (ab)
nq−n2

δm,n. (185)

The constraints for having positive weights in (185) are (ab)−1 < 1, 0 < qa−1b < 1. Equivalently,
we are in one of the following cases:

1. a, b > 0, ab > 1, qa−1b < 1.

2. a, b < 0, ab > 1, qa−1b < 1.

3. a = ia0, b = ib0, a0, b0 > 0, qa−1
0 b0 < 1.

4. a = −ia0, b = −ib0, a0, b0 > 0, qa−1
0 b0 < 1.

Formula (185) with constraints follows from (184) together with (14.12.2) and the complete-
ness of the orthogonal system of the little q-Jacobi polynomials, See also [79, §3]. An alternative
proof is given in [64]. There combine (3.82) with (3.81), (3.67), (3.40).

Normalized recurrence relation

xpn(x) = pn+1(x) +
1
2(a+ b)q−npn(x) +

1
4(q

−n − 1)(abq−n+1 − 1)pn−1(x), (186)

where
Qn(x; a, b | q−1) = 2npn(x).

Limit to Big q−1-Hermite In (184) and (185) replace (a, b) by (ib−
1
2 , iab−

1
2 ) with 0 < aq < 1

and b > 0. Then let b ↓ 0. By (14.8.17) and (14.12.14) we arrive at big q−1-Hermite polynomials
as duals of q-Bessel polynomials.
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14.9 q-Meixner–Pollaczek

The q-Meixner–Pollaczek polynomials are the special case of Askey–Wilson polynomials with
parameters aeiϕ, 0, ae−iϕ, 0:

Pn(x; a, ϕ | q) :=
1

(q; q)n
pn(x; ae

iϕ, 0, ae−iϕ, 0 | q) (x = cos(θ + ϕ)).

In [KLS, §14.9] the parameter dependence on ϕ is incorrectly omitted.

Since all formulas in §14.9 are specializations of formulas in §14.1, there is no real need to
give these specializations explicitly. See also (142).

There is an error in [KLS, (14.9.6), (14.9.8)]. Read x = cos(θ + ϕ) instead of x = cos θ.

14.10 Continuous q-Jacobi

Symmetry

P (α,β)
n (−x | q) = (−1)nq

1
2
(α−β)n P (β,α)

n (x | q). (187)

This follows from (132) and (14.1.19).

14.10.1 Continuous q-ultraspherical / Rogers

Re: (14.10.17)

Cn(cos θ;β | q) =
(β2; q)n
(q; q)n

β−
1
2
n

4ϕ3

(
q−

1
2
n, βq

1
2
n, β

1
2 eiθ, β

1
2 e−iθ

−β, β
1
2 q

1
4 ,−β

1
2 q

1
4

; q
1
2 , q

1
2

)
, (188)

see [GR, (7.4.13), (7.4.14)].

Special value (see [63, (3.23)])

Cn

(
1
2(β

1
2 + β−

1
2 );β | q

)
=

(β2; q)n
(q; q)n

β−
1
2
n. (189)

Re: (14.10.21) (another q-difference equation). Let Cn[e
iθ;β | q] := Cn(cos θ;β | q).

1− βz2

1− z2
Cn[q

1
2 z;β | q] + 1− βz−2

1− z−2
Cn[q

− 1
2 z;β | q] = (q−

1
2
n + q

1
2
nβ)Cn[z;β | q], (190)

see [351, (6.10)].

Re: (14.10.23) This can also be written as

Cn[q
1
2 z;β | q]− Cn[q

− 1
2 z;β | q] = q−

1
2
n(β − 1)(z − z−1)Cn−1[z; qβ | q]. (191)
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Two other shift relations follow from the previous two equations:

(β + 1)Cn[q
1
2 z;β | q] = (q−

1
2
n + q

1
2
nβ)Cn[z;β | q] + q−

1
2
n(β − 1)(z − βz−1)Cn−1[z; qβ | q],

(192)

(β + 1)Cn[q
− 1

2 z;β | q] = (q−
1
2
n + q

1
2
nβ)Cn[z;β | q] + q−

1
2
n(β − 1)(z−1 − βz)Cn−1[z; qβ | q].

(193)

Trigonometric representation (see p.473, Remarks, first formula)

Cn(cos θ;β | q) =
n∑

k=0

(β; q)k(β; q)n−k

(q; q)k(q; q)n−k
ei(n−2k)θ . (194)

Limit for q ↓ −1 (see [63, pp. 74–75]). By (194) and (81) we obtain

lim
q↑1

C2m(x;−qλ | − q) = C
1
2
(λ+1)

m (2x2 − 1) + C
1
2
(λ+1)

m−1 (2x2 − 1),

lim
q↑1

C2m+1(x;−qλ | − q) = 2xC
1
2
(λ+1)

m (2x2 − 1).

By (77) and [HTF2, 10.6(36)] this can be rewritten as

lim
q↑1

C2m(x;−qλ | − q) =
(λ)m

(12λ)m
P

( 1
2
λ, 1

2
λ−1)

m (2x2 − 1), (195)

lim
q↑1

C2m+1(x;−qλ | − q) = 2
(λ+ 1)m

(12λ+ 1)m
xP

( 1
2
λ, 1

2
λ)

m (2x2 − 1). (196)

By (68) the limits (195), (196) imply that

lim
q↑1

Cn(x;−qλ | − q) = const. S
( 1
2
λ, 1

2
λ−1)

n (x), (197)

where the right-hand side gives a one-parameter subclass of the generalized Gegenbauer polyno-
mial. Note that in [K16, Section 7.1] the generalized Gegenbauer polynomials are also observed
as fitting in the q = −1 Askey scheme, but the limit (197) is not observed there.

14.11 Big q-Laguerre

Symmetry The big q-Laguerre polynomials Pn(x; a, b; q) are symmetric in a, b.

This follows from (14.11.1). As a consequence, it is sufficient to give generating function
(14.11.11). Then the generating function (14.1.12) will follow by symmetry in the parameters.

14.12 Little q-Jacobi

Notation Here the little q-Jacobi polynomial is denoted by pn(x; a, b; q) instead of pn(x; a, b | q).
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Basic Hypergeometric Representation In addition to (14.12.1) we have (see [K22, (2.46)])

pn(x; a, b; q) = (−qb)−nq−
1
2
n(n−1) (qb; q)n

(qa; q)n
3ϕ2

(
q−n, qn+1ab, qbx

qb, 0
; q, q

)
. (198)

Special values (see [K22, §2.4]).

pn(0; a, b; q) = 1, (199)

pn(q
−1b−1; a, b; q) = (−qb)−n q−

1
2
n(n−1) (qb; q)n

(qa; q)n
, (200)

pn(1; a, b; q) = (−a)n q
1
2
n(n+1) (qb; q)n

(qa; q)n
. (201)

14.14 Quantum q-Krawtchouk

q-Hypergeometric representation For n = 0, 1, . . . , N (see (14.14.1) and use (18)):

Kqtm
n (y; p,N ; q) = 2ϕ1

(
q−n, y

q−N
; q, pqn+1

)
(202)

= (pyqN+1; q)n 3ϕ2

(
q−n, q−N/y, 0

q−N , q−N−n/(py)
; q, q

)
. (203)

Special values By (202) and [GR, (II.4)]:

Kqtm
n (1; p,N ; q) = 1, Kqtm

n (q−N ; p,N ; q) = (pq; q)n. (204)

By (203) and (204) we have the self-duality

Kqtm
n (qx−N ; p,N ; q)

Kqtm
n (q−N ; p,N ; q)

=
Kqtm

x (qn−N ; p,N ; q)

Kqtm
x (q−N ; p,N ; q)

(n, x ∈ {0, 1, . . . , N}). (205)

By (204) and (205) we have also

Kqtm
N (q−x; p,N ; q) = (pqN ; q−1)x (x ∈ {0, 1, . . . , N}). (206)

Limit for q → 1 to Krawtchouk (see (14.14.14) and Section 9.11):

lim
q→1

Kqtm
n (1 + (1− q)x; p,N ; q) = Kn(x; p

−1, N), (207)

lim
q→1

Kqtm
n (q−x; p,N ; q) = Kn(x; p

−1, N). (208)
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Quantum q−1-Krawtchouk By (202), (204), (17) and (211) (see also p.496, second formula):

Kqtm
n (y; p,N ; q−1)

Kqtm
n (qN ; p,N ; q−1)

=
1

(pq−1; q−1)n
2ϕ1

(
q−n, y−1

q−N
; q, pyq−N

)
(209)

= KAff
n (q−Ny; p−1, N ; q). (210)

Rewrite (210) as

Kqtm
m (1 + (1− q−1)qx; p−1, N ; q−1) = ((pq)−1; q−1)nK

Aff
n

(
1 + (1− q)q−N

(1−qN

1−q − x
)
; p,N ; q

)
.

In view of (207) and (216) this tends to (98) as q → 1.
The orthogonality relation (14.14.2) holds with positive weights for q > 1 if p > q−1.

History The origin of the name of the quantum q-Krawtchouk polynomials is by their inter-
pretation as matrix elements of irreducible corepresentations of (the quantized function algebra
of) the quantum group SUq(2) considered with respect to its quantum subgroup U(1). The
orthogonality relation and dual orthogonality relation of these polynomials are an expression of
the unitarity of these corepresentations. See for instance [343, Section 6].

14.16 Affine q-Krawtchouk

q-Hypergeometric representation For n = 0, 1, . . . , N (see (14.16.1)):

KAff
n (y; p,N ; q) =

1

(p−1q−1; q−1)n
2ϕ1

(
q−n, q−Ny−1

q−N
; q, p−1y

)
(211)

= 3ϕ2

(
q−n, y, 0

q−N , pq
; q, q

)
. (212)

Self-duality By (212):

KAff
n (q−x; p,N ; q) = KAff

x (q−n; p,N ; q) (n, x ∈ {0, 1, . . . , N}). (213)

Special values By (211) and [GR, (II.4)]:

KAff
n (1; p,N ; q) = 1, KAff

n (q−N ; p,N ; q) =
1

((pq)−1; q−1)n
. (214)

By (214) and (213) we have also

KAff
N (q−x; p,N ; q) =

1

((pq)−1; q−1)x
. (215)

Limit for q → 1 to Krawtchouk (see (14.16.14) and Section 9.11):

lim
q→1

KAff
n (1 + (1− q)x; p,N ; q) = Kn(x; 1− p,N), (216)

lim
q→1

KAff
n (q−x; p,N ; q) = Kn(x; 1− p,N). (217)
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A relation between quantum and affine q-Krawtchouk
By (202), (211), (214) and (213) we have for x ∈ {0, 1, . . . , N}:

Kqtm
N−n(q

−x; p−1q−N−1, N ; q) =
KAff

x (q−n; p,N ; q)

KAff
x (q−N ; p,N ; q)

(218)

=
KAff

n (q−x; p,N ; q)

KAff
N (q−x; p,N ; q)

. (219)

Formula (218) is given in [K3, formula after (12)] and [K15, (59)]. In view of (208) and (217)
formula (219) has (99) as a limit case for q → 1.

Affine q−1-Krawtchouk By (211), (214), (17) and (202) (see also p.505, first formula):

KAff
n (y; p,N ; q−1)

KAff
n (qN ; p,N ; q−1)

= 2ϕ1

(
q−n, q−Ny

q−N
; q, p−1qn+1

)
(220)

= Kqtm
n (q−Ny; p−1, N ; q). (221)

Formula (221) is equivalent to (210). Just as for (210), it tends after suitable substitutions to
(98) as q → 1.

The orthogonality relation (14.16.2) holds with positive weights for q > 1 if 0 < p < q−N .

History The affine q-Krawtchouk polynomials were considered by Delsarte [161, Theorem 11],
[K11, (16)] in connection with certain association schemes. He called these polynomials general-
ized Krawtchouk polynomials. (Note that the 2ϕ2 in [K11, (16)] is in fact a 3ϕ2 with one upper
parameter equal to 0.) Next Dunkl [186, Definition 2.6, Section 5.1] reformulated this as an
interpretation as spherical functions on certain Chevalley groups. He called these polynomials
q-Kratchouk polynomials. The current name affine q-Krawtchouk polynomials was introduced
by Stanton [488, (4.13)]. He chose this name because, in [488, pp. 115–116] the polynomials arise
in connection with an affine action of a group G on a space X. Here X is the set of (v− n)× n

matrices over GF(q). Let G be the group of block matrices

(
A 0
SA B

)
, where A ∈ GLn(q),

B ∈ GLv−n(q) and S ∈ X. Then G acts on X by

(
A 0
SA B

)
· T = BTA−1 + S.

14.17 Dual q-Krawtchouk

Symmetry
Kn(x; c,N | q) = cnKn(c

−1x; c−1, N | q). (222)

This follows from (14.17.1) combined with [GR, (III.11)].

In particular,
Kn(x;−1, N | q) = (−1)nKn(−x;−1, N | q). (223)

14.20 Little q-Laguerre / Wall

Notation Here the little q-Laguerre polynomial is denoted by pn(x; a; q) instead of pn(x; a | q).
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Re: (14.20.11) The right-hand side of this generating function converges for |xt| < 1. We
can rewrite the left-hand side by use of the transformation

2ϕ1

(
0, 0

c
; q, z

)
=

1

(z; q)∞
0ϕ1

(
−
c
; q, cz

)
.

Then we obtain:

(t; q)∞ 2ϕ1

(
0, 0

aq
; q, xt

)
=

∞∑
n=0

(−1)n q
1
2
n(n−1)

(q; q)n
pn(x; a; q) t

n (|xt| < 1). (224)

Expansion of xn

Divide both sides of (224) by (t; q)∞. Then coefficients of the same power of t on both sides
must be equal. We obtain:

xn = (a; q)n

n∑
k=0

(q−n; q)k
(q; q)k

qnk pk(x; a; q). (225)

Quadratic transformations

Little q-Laguerre polynomials pn(x; a; q) with a = q±
1
2 are related to discrete q-Hermite I poly-

nomials hn(x; q):

pn(x
2; q−1; q2) =

(−1)nq−n(n−1)

(q; q2)n
h2n(x; q), (226)

xpn(x
2; q; q2) =

(−1)nq−n(n−1)

(q3; q2)n
h2n+1(x; q). (227)

14.21 q-Laguerre

Notation Here the q-Laguerre polynomial is denoted by Lα
n(x; q) instead of L

(α)
n (x; q).

Orthogonality relation

(14.21.2) can be rewritten with simplified right-hand side:∫ ∞

0
Lα
m(x; q)Lα

n(x; q)
xα

(−x; q)∞
dx = hn δm,n (α > −1) (228)

with
hn
h0

=
(qα+1; q)n
(q; q)nqn

, h0 = − (q−α; q)∞
(q; q)∞

π

sin(πα)
. (229)

The expression for h0 (which is Askey’s q-gamma evaluation [K1, (4.2)]) should be interpreted
by continuity in α for α ∈ Z≥0. Explicitly we can write

hn = q−
1
2
α(α+1) (q; q)α log(q−1) (α ∈ Z≥0). (230)
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Expansion of xn

xn = q−
1
2
n(n+2α+1) (qα+1; q)n

n∑
k=0

(q−n; q)k
(qα+1; q)k

qk Lα
k (x; q). (231)

This follows from (225) by the equality given in the Remark at the end of §14.20. Alternatively,
it can be derived in the same way as (225) from the generating function (14.21.14).

Quadratic transformations

q-Laguerre polynomials Lα
n(x; q) with α = ±1

2 are related to discrete q-Hermite II polynomials

h̃n(x; q):

L−1/2
n (x2; q2) =

(−1)nq2n
2−n

(q2; q2)n
h̃2n(x; q), (232)

xL1/2
n (x2; q2) =

(−1)nq2n
2+n

(q2; q2)n
h̃2n+1(x; q). (233)

These follows from (226) and (227), respectively, by applying the equalities given in the Remarks
at the end of §14.20 and §14.28.

14.27 Stieltjes-Wigert

An alternative weight function

The formula on top of p.547 should be corrected as

w(x) =
γ√
π
x−

1
2 exp(−γ2 ln2 x), x > 0, with γ2 = − 1

2 ln q
. (234)

For w the weight function given in [Sz, §2.7] the right-hand side of (234) equals const. w(q−
1
2x).

See also [DLMF, §18.27(vi)].

14.28 Discrete q-Hermite I

History Discrete q Hermite I polynomials (not yet with this name) first occurred in Hahn
[261], see there p.29, case V and the q-weight π(x) given by the second expression on line 4 of
p.30. However note that on the line on p.29 dealing with case V, one should read k2 = q−n

instead of k2 = −qn. Then, with the indicated substitutions, [261, (4.11), (4.12)] yield constant
multiples of h2n(q

−1x; q) and h2n+1(q
−1x; q), respectively, due to the quadratic transformations

(226), (227) together with (4.20.1).

14.29 Discrete q-Hermite II

Basic hypergeometric representation (see (14.29.1))

h̃n(x; q) = xn 2ϕ1

(
q−n, q−n+1

0
; q2,−q2x−2

)
. (235)
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