
Modeling Application-Specific Processors for Embedded

Systems

Florian Brandner•, Viktor Pavlu◦, and Andreas Krall◦

•COMPSYS, LIP, ENS de Lyon

UMR 5668 CNRS – INRIA – UCB Lyon

florian.brandner@ens-lyon.fr

◦ Institute of Computer Languages

Vienna University of Technology

vpavlu,andi@complang.tuwien.ac.at

Abstract: Embedded systems often have to operate under rigid power and perfor-
mance constraints. Off-the-shelf processors often cannot meet those requirements,
instead Application-Specific Instruction Processors (ASIP) are used that are tuned for
the particular system at hand.

A popular and powerful way of modeling ASIPs is the use of a Processor Descrip-
tion Language (PDL). These languages capture the internal hardware organization as
well as the processor’s instruction set using a formal specification. Given a proces-
sor description, generator tools can (semi-)automatically derive software development
tools, instruction set simulators, and even hardware reference models.

An integral part of the software, running on the ASIP, is the interaction with de-
vices outside of the computing platform. However, these external devices are ne-
glected by many PDLs. This is, in part, due to their diverse nature and complex behav-
ior. Explicitly including such devices in processor models, is thus unlikely to give a
practical solution.

We propose a basic set of communication patterns for the xADL processor explo-
ration system that allow to interact with external devices, while otherwise treating them
as black boxes. The xADL system allows to model three kinds of communication: (1)
data exchange using dedicated instructions or memory mapped I/O, (2) asynchronous
delivery of data directly into processor registers or memory, and (3) asynchronous sig-
naling using interrupts. A major advantage of our approach is that all side-effects of
these interactions are visible to the xADL tool suite. For example, our compiler gener-
ator accounts for side-effects during code generation, while the generated simulators
reduce simulation time by refactoring the expensive emulation of interrupts.

1 Introduction

Modern embedded and cyber-physical systems have to perform complex and demanding

computations, while, at the same time, consuming a minimal amount of power, restricting

heat dissipation, and minimizing the physical dimension of the device. Traditional off-

the-shelf processors often cannot meet these strict requirements. A very powerful, but

inflexible, alternative is the use of specialized hardware components that are tuned for the

particular application. These devices often consume a minimal amount of power, while

327


