Code for How to Create Plots with Plotly In Python Tutorial


View on Github

plotly_viz.py

# coding: utf-8

# In[ ]:


import plotly.offline as py
import plotly.graph_objs as go
import plotly.figure_factory as ff
import pandas as pd
import numpy as np
import yfinance as yf
import pandas_datareader as pdr

py.init_notebook_mode()


# In[ ]:


x = [ i for i in range(-10,10) ]

y = [ i*2 for i in range(-10,10) ]

xaxis = go.layout.XAxis(title="X Axis")
yaxis = go.layout.YAxis(title="Y Axis")

fig = go.Figure(layout=go.Layout(title="Simple Line Plot", xaxis=xaxis, yaxis=yaxis))
fig.add_trace(go.Scatter(x=x, y=y))


# In[ ]:


def sigmoid(x):
    return 1 / (1 + np.exp((-1) * x))

x = sorted(np.random.random(100) * 10 - 5)
y = [ sigmoid(i) for i in x ]

xaxis = go.layout.XAxis(title="X Axis")
yaxis = go.layout.YAxis(title="Y Axis")

fig=go.Figure(layout=go.Layout(title="Sigmoid Plot",xaxis=xaxis, yaxis=yaxis))
fig.add_trace(go.Scatter(x=x, y=y, marker=dict(color="red")))


# In[ ]:


l = []

for _ in range(5):
    l.append([ sorted(np.random.randint(low=0, high=10000, size=50)), sorted(np.random.randint(low=0, high=10000, size=50)) ])

l = np.array(l)

figure = go.Figure(layout=go.Layout(title="Simple Scatter Example", xaxis=go.layout.XAxis(title="X"), yaxis=go.layout.YAxis(title="Y")))
for i in range(len(l)):
    figure.add_trace(go.Scatter(x=l[i][0],y=l[i][1], mode="markers", name=f" Distribution {i+1} "))
figure.show()


# In[ ]:


dist = np.random.normal(loc=0, scale=1, size=50000)


# In[ ]:


figure = go.Figure()
figure.add_trace(go.Histogram(x=dist,))


# In[ ]:




d=[{"values":np.random.normal(0,0.5,10000), "information": " Normal Distribution with mean 0 and std= 0.5"},
  {"values":np.random.normal(0,1,10000), "information": " Normal Distribution with mean 0 and std= 1"},
  {"values":np.random.normal(0,1.5,10000), "information": " Normal Distribution with mean 0 and std= 1.5"},
  {"values":np.random.normal(0,2,10000), "information": " Normal Distribution with mean 0 and std= 2"},
  {"values":np.random.normal(0,5,10000), "information": " Normal Distribution with mean 0 and std= 5"}]

ff.create_distplot([ele["values"] for ele in d], group_labels=[ele["information"] for ele in d], show_hist=False)


# In[ ]:


x = np.random.randint(low=5, high=100, size=15)
y = np.random.randint(low=5, high=100 ,size=15)
z = np.random.randint(low=5, high=100, size=15)

fig = go.Figure()
fig.add_trace(go.Scatter3d(x=x, y=y, z=z, mode="markers"))


# In[ ]:


df_iris = pd.read_csv("iris.csv")


# In[ ]:


fig = go.Figure()
species_types = df_iris.species.unique().tolist()

for specie in species_types:
    b = df_iris.species == specie
    fig.add_trace(go.Scatter3d(x=df_iris["sepal_length"][b], y=df_iris["sepal_width"][b], z=df_iris["petal_width"][b], name=specie, mode="markers"))


fig.show()


# In[ ]:


yf.pdr_override()

symbols = ["AAPL","MSFT"]
stocks = []
for symbol in symbols:
    stocks.append(pdr.get_data_yahoo(symbol, start="2020-01-01", end="2020-05-31"))


# In[ ]:


fig = go.Figure()

for stock,symbol in zip(stocks,symbols):
    fig.add_trace(go.Scatter(x=stock.index, y=stock.Close, name=symbol))

fig.show()


# In[ ]:


df_aapl = pdr.get_data_yahoo(symbol, start="2020-01-01", end="2020-05-31")


# In[ ]:


ff.create_candlestick(dates=df_aapl.index, open=df_aapl.Open, high=df_aapl.High, low=df_aapl.Low, close=df_aapl.Close)


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy