Code for Gender Detection using OpenCV in Python Tutorial


View on Github

predict_gender.py

# Import Libraries
import cv2
import numpy as np


# The gender model architecture
# https://drive.google.com/open?id=1W_moLzMlGiELyPxWiYQJ9KFaXroQ_NFQ
GENDER_MODEL = 'weights/deploy_gender.prototxt'
# The gender model pre-trained weights
# https://drive.google.com/open?id=1AW3WduLk1haTVAxHOkVS_BEzel1WXQHP
GENDER_PROTO = 'weights/gender_net.caffemodel'
# Each Caffe Model impose the shape of the input image also image preprocessing is required like mean
# substraction to eliminate the effect of illunination changes
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
# Represent the gender classes
GENDER_LIST = ['Male', 'Female']
# https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt
FACE_PROTO = "weights/deploy.prototxt.txt"
# https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel
FACE_MODEL = "weights/res10_300x300_ssd_iter_140000_fp16.caffemodel"

# load face Caffe model
face_net = cv2.dnn.readNetFromCaffe(FACE_PROTO, FACE_MODEL)
# Load gender prediction model
gender_net = cv2.dnn.readNetFromCaffe(GENDER_MODEL, GENDER_PROTO)

# Initialize frame size
frame_width = 1280
frame_height = 720


def get_faces(frame, confidence_threshold=0.5):
    # convert the frame into a blob to be ready for NN input
    blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104, 177.0, 123.0))
    # set the image as input to the NN
    face_net.setInput(blob)
    # perform inference and get predictions
    output = np.squeeze(face_net.forward())
    # initialize the result list
    faces = []
    # Loop over the faces detected
    for i in range(output.shape[0]):
        confidence = output[i, 2]
        if confidence > confidence_threshold:
            box = output[i, 3:7] * \
                np.array([frame.shape[1], frame.shape[0],
                         frame.shape[1], frame.shape[0]])
            # convert to integers
            start_x, start_y, end_x, end_y = box.astype(np.int)
            # widen the box a little
            start_x, start_y, end_x, end_y = start_x - \
                10, start_y - 10, end_x + 10, end_y + 10
            start_x = 0 if start_x < 0 else start_x
            start_y = 0 if start_y < 0 else start_y
            end_x = 0 if end_x < 0 else end_x
            end_y = 0 if end_y < 0 else end_y
            # append to our list
            faces.append((start_x, start_y, end_x, end_y))
    return faces


def display_img(title, img):
    """Displays an image on screen and maintains the output until the user presses a key"""
    # Display Image on screen
    cv2.imshow(title, img)
    # Mantain output until user presses a key
    cv2.waitKey(0)
    # Destroy windows when user presses a key
    cv2.destroyAllWindows()


def get_optimal_font_scale(text, width):
    """Determine the optimal font scale based on the hosting frame width"""
    for scale in reversed(range(0, 60, 1)):
        textSize = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=scale/10, thickness=1)
        new_width = textSize[0][0]
        if (new_width <= width):
            return scale/10
    return 1

# from: https://stackoverflow.com/questions/44650888/resize-an-image-without-distortion-opencv
def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
    # initialize the dimensions of the image to be resized and
    # grab the image size
    dim = None
    (h, w) = image.shape[:2]
    # if both the width and height are None, then return the
    # original image
    if width is None and height is None:
        return image
    # check to see if the width is None
    if width is None:
        # calculate the ratio of the height and construct the
        # dimensions
        r = height / float(h)
        dim = (int(w * r), height)
    # otherwise, the height is None
    else:
        # calculate the ratio of the width and construct the
        # dimensions
        r = width / float(w)
        dim = (width, int(h * r))
    # resize the image
    return cv2.resize(image, dim, interpolation = inter)


def predict_gender(input_path: str):
    """Predict the gender of the faces showing in the image"""
    # Read Input Image
    img = cv2.imread(input_path)
    # resize the image, uncomment if you want to resize the image
    # img = cv2.resize(img, (frame_width, frame_height))
    # Take a copy of the initial image and resize it
    frame = img.copy()
    if frame.shape[1] > frame_width:
        frame = image_resize(frame, width=frame_width)
    # predict the faces
    faces = get_faces(frame)
    # Loop over the faces detected
    # for idx, face in enumerate(faces):
    for i, (start_x, start_y, end_x, end_y) in enumerate(faces):
        face_img = frame[start_y: end_y, start_x: end_x]
        # image --> Input image to preprocess before passing it through our dnn for classification.
        # scale factor = After performing mean substraction we can optionally scale the image by some factor. (if 1 -> no scaling)
        # size = The spatial size that the CNN expects. Options are = (224*224, 227*227 or 299*299)
        # mean = mean substraction values to be substracted from every channel of the image.
        # swapRB=OpenCV assumes images in BGR whereas the mean is supplied in RGB. To resolve this we set swapRB to True.
        blob = cv2.dnn.blobFromImage(image=face_img, scalefactor=1.0, size=(
            227, 227), mean=MODEL_MEAN_VALUES, swapRB=False, crop=False)
        # Predict Gender
        gender_net.setInput(blob)
        gender_preds = gender_net.forward()
        i = gender_preds[0].argmax()
        gender = GENDER_LIST[i]
        gender_confidence_score = gender_preds[0][i]
        # Draw the box
        label = "{}-{:.2f}%".format(gender, gender_confidence_score*100)
        print(label)
        yPos = start_y - 15
        while yPos < 15:
            yPos += 15
        # get the font scale for this image size
        optimal_font_scale = get_optimal_font_scale(label,((end_x-start_x)+25))
        box_color = (255, 0, 0) if gender == "Male" else (147, 20, 255)
        cv2.rectangle(frame, (start_x, start_y), (end_x, end_y), box_color, 2)
        # Label processed image
        cv2.putText(frame, label, (start_x, yPos),
                    cv2.FONT_HERSHEY_SIMPLEX, optimal_font_scale, box_color, 2)

        # Display processed image
    display_img("Gender Estimator", frame)
    # uncomment if you want to save the image
    cv2.imwrite("output.jpg", frame)
    # Cleanup
    cv2.destroyAllWindows()



if __name__ == '__main__':
    # Parsing command line arguments entered by user
    import sys
    predict_gender(sys.argv[1])

predict_gender_live.py

# Import Libraries
import cv2
import numpy as np


# The gender model architecture
# https://drive.google.com/open?id=1W_moLzMlGiELyPxWiYQJ9KFaXroQ_NFQ
GENDER_MODEL = 'weights/deploy_gender.prototxt'
# The gender model pre-trained weights
# https://drive.google.com/open?id=1AW3WduLk1haTVAxHOkVS_BEzel1WXQHP
GENDER_PROTO = 'weights/gender_net.caffemodel'
# Each Caffe Model impose the shape of the input image also image preprocessing is required like mean
# substraction to eliminate the effect of illunination changes
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
# Represent the gender classes
GENDER_LIST = ['Male', 'Female']
# https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt
FACE_PROTO = "weights/deploy.prototxt.txt"
# https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel
FACE_MODEL = "weights/res10_300x300_ssd_iter_140000_fp16.caffemodel"

# load face Caffe model
face_net = cv2.dnn.readNetFromCaffe(FACE_PROTO, FACE_MODEL)
# Load gender prediction model
gender_net = cv2.dnn.readNetFromCaffe(GENDER_MODEL, GENDER_PROTO)

# Initialize frame size
frame_width = 1280
frame_height = 720


def get_faces(frame, confidence_threshold=0.5):
    # convert the frame into a blob to be ready for NN input
    blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104, 177.0, 123.0))
    # set the image as input to the NN
    face_net.setInput(blob)
    # perform inference and get predictions
    output = np.squeeze(face_net.forward())
    # initialize the result list
    faces = []
    # Loop over the faces detected
    for i in range(output.shape[0]):
        confidence = output[i, 2]
        if confidence > confidence_threshold:
            box = output[i, 3:7] * \
                np.array([frame.shape[1], frame.shape[0],
                         frame.shape[1], frame.shape[0]])
            # convert to integers
            start_x, start_y, end_x, end_y = box.astype(np.int)
            # widen the box a little
            start_x, start_y, end_x, end_y = start_x - \
                10, start_y - 10, end_x + 10, end_y + 10
            start_x = 0 if start_x < 0 else start_x
            start_y = 0 if start_y < 0 else start_y
            end_x = 0 if end_x < 0 else end_x
            end_y = 0 if end_y < 0 else end_y
            # append to our list
            faces.append((start_x, start_y, end_x, end_y))
    return faces


def get_optimal_font_scale(text, width):
    """Determine the optimal font scale based on the hosting frame width"""
    for scale in reversed(range(0, 60, 1)):
        textSize = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=scale/10, thickness=1)
        new_width = textSize[0][0]
        if (new_width <= width):
            return scale/10
    return 1

# from: https://stackoverflow.com/questions/44650888/resize-an-image-without-distortion-opencv
def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
    # initialize the dimensions of the image to be resized and
    # grab the image size
    dim = None
    (h, w) = image.shape[:2]
    # if both the width and height are None, then return the
    # original image
    if width is None and height is None:
        return image
    # check to see if the width is None
    if width is None:
        # calculate the ratio of the height and construct the
        # dimensions
        r = height / float(h)
        dim = (int(w * r), height)
    # otherwise, the height is None
    else:
        # calculate the ratio of the width and construct the
        # dimensions
        r = width / float(w)
        dim = (width, int(h * r))
    # resize the image
    return cv2.resize(image, dim, interpolation = inter)


def predict_gender():
    """Predict the gender of the faces showing in the image"""
    # create a new cam object
    cap = cv2.VideoCapture(0)

    while True:
        _, img = cap.read()
        # resize the image, uncomment if you want to resize the image
        # img = cv2.resize(img, (frame_width, frame_height))
        # Take a copy of the initial image and resize it
        frame = img.copy()
        if frame.shape[1] > frame_width:
            frame = image_resize(frame, width=frame_width)
        # predict the faces
        faces = get_faces(frame)
        # Loop over the faces detected
        # for idx, face in enumerate(faces):
        for i, (start_x, start_y, end_x, end_y) in enumerate(faces):
            face_img = frame[start_y: end_y, start_x: end_x]
            # image --> Input image to preprocess before passing it through our dnn for classification.
            # scale factor = After performing mean substraction we can optionally scale the image by some factor. (if 1 -> no scaling)
            # size = The spatial size that the CNN expects. Options are = (224*224, 227*227 or 299*299)
            # mean = mean substraction values to be substracted from every channel of the image.
            # swapRB=OpenCV assumes images in BGR whereas the mean is supplied in RGB. To resolve this we set swapRB to True.
            blob = cv2.dnn.blobFromImage(image=face_img, scalefactor=1.0, size=(
                227, 227), mean=MODEL_MEAN_VALUES, swapRB=False, crop=False)
            # Predict Gender
            gender_net.setInput(blob)
            gender_preds = gender_net.forward()
            i = gender_preds[0].argmax()
            gender = GENDER_LIST[i]
            gender_confidence_score = gender_preds[0][i]
            # Draw the box
            label = "{}-{:.2f}%".format(gender, gender_confidence_score*100)
            print(label)
            yPos = start_y - 15
            while yPos < 15:
                yPos += 15
            # get the font scale for this image size
            optimal_font_scale = get_optimal_font_scale(label,((end_x-start_x)+25))
            box_color = (255, 0, 0) if gender == "Male" else (147, 20, 255)
            cv2.rectangle(frame, (start_x, start_y), (end_x, end_y), box_color, 2)
            # Label processed image
            cv2.putText(frame, label, (start_x, yPos),
                        cv2.FONT_HERSHEY_SIMPLEX, optimal_font_scale, box_color, 2)

            # Display processed image
        
        # frame = cv2.resize(frame, (frame_height, frame_width))
        cv2.imshow("Gender Estimator", frame)
        if cv2.waitKey(1) == ord("q"):
            break
        # uncomment if you want to save the image
        # cv2.imwrite("output.jpg", frame)
        # Cleanup
    cv2.destroyAllWindows()



if __name__ == '__main__':
    predict_gender()


pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy