HPI-DHC at TREC 2018 Precision Medicine Track

Michel Oleynik*§, Erik Faessler'®, Ariane Morassi Sassot$,
Arpita Kappattanavar!, Benjamin Bergner?, Harry Freitas da Cruz!,
Jan-Philipp Sachs?, Suparno Datta?, and Erwin Béttinger®
*Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria
michel.oleynik @stud.medunigraz.at
tJena University Language and Information Engineering (JULIE) Lab, Jena, Germany
erik.faessler@uni-jena.de
iDigital Health Center, Hasso Plattner Institute, Potsdam, Germany
ariane.morassi-sasso@hpi.de
§The first three authors contributed equally to this work.

Abstract—The TREC-PM challenge aims for advances in the
field of information retrieval applied to precision medicine.
Here we describe our experimental setup and the achieved
results in its 2018 edition. We explored the use of unsupervised
topic models, supervised document classification, and rule-based
query-time search term boosting and expansion. We participated
in the biomedical articles and clinical trials subtasks and were
among the three highest-scoring teams. Our results showed that
query expansion associated with hand-crafted rules contribute
to better values of information retrieval metrics. However, the
use of a precision medicine classifier did not show the expected
improvement for the biomedical abstracts subtask. In the future,
we plan to add different terminologies to replace hand-crafted
rules and experiment with negation detection.

I. INTRODUCTION

According to the U.S. National Research Council, precision
medicine aims to provide the best possible care for a patient
by tailoring the treatment to its individual characteristics [1].
Efficient access to the existing scientific and medical literature
is therefore a critical instrument to obtain treatment informa-
tion related to the patient’s profile. To progress in this field,
the National Institute of Standards and Technology (NIST)
has organized the TREC Precision Medicine (TREC-PM) track
since 2017.

This paper describes the participation of the “hpi-dhc”
group. The team was formed by members of three different
institutions with different backgrounds, including computer
science and medicine. TREC-PM was held in 2018 with the
same goal as the previous edition: given structured data related
to an oncology patient case (henceforth denoted “topic”), re-
trieve relevant (1) Biomedical Abstracts (BA) from PUBMED,
and (2) Clinical Trials (CT) from ClinicalTrials.gov.

The rationale behind the usage of two datasets is a cascaded
search strategy. First, the existing literature is scanned for a
disease and its connection to a specific genetic profile. If this
search does not bring up the desired information, the patient
can then potentially be enrolled on a clinical trial. The ideal
precision medicine search engine would thus propose relevant
literature articles first and then match clinical trials in case the
former did not yield relevant results.

<topic number="38">
<disease>cholangiocarcinoma</disease>
<gene>IDH1</gene>
<demographic>50-year-old male</demographic>
</topic>

Fig. 1. Example of a 2018 TREC-PM topic.

Each topic to be queried had a disease, gene and demo-
graphic component (Figure 1), which gave information about
the type of cancer, biomarker, age and sex of the patient,
respectively. The total amount of topics increased from 30
in 2017 to 50 in 2018 and, in the latter, half of them were
related to melanoma. More information about the challenge,
the full content of the topics, and the guidelines are available
online at https://trec-cds.appspot.com/2018.html.

This paper proceeds as follows. Section II provides de-
tailed information on the methods we applied, including a
description of the experimental framework, query expansion
and boosting strategies, the usage of reference standards, and
rules hand-crafted for the tasks. Section III then describes
specific strategies used for processing biomedical abstracts,
including an Unstructured Information Management Architec-
ture (UIMA) pipeline, the usage of Topic Modelling (TM)
and Term Frequency - Inverse Document Frequency (TF-IDF)
analysis to discover relevant boosting keywords, and their
consolidation into a Precision Medicine (PM) classifier. Subse-
quently, Section IV outlines the results obtained when applying
the aforementioned strategies. Finally, in Section V we discuss
directions for further areas of development and conclude in
Section VI with a review of these results in the context of
information retrieval for precision medicine.

II. METHODS OVERVIEW

A. Experimental Framework

We built our work on top of an existing Java framework
proposed in 2017 by the Medical University of Graz [2].
With its aid, we indexed TREC-PM data on an Elasticsearch
(ES)' 5.4.0 instance and performed query-time experimenta-

Uhttps://www.elastic.co



"bool™: {

"must™: [
{{biomedical_articles/disease.json}},
{{biomedical_articles/gens.json}}

1,

"should": [

{{biomedical articles/extra.json}},

{{biomedical articles/chemotherapy.json}},

{{biomedical_articles/cancer.json}},

{{biomedical articles/dna.json}},

{{biomedical_ articles/positive boosters.json}},

{{biomedical_articles/negative_boosters.json}},

{{biomedical_ articles/pm.json}}

1,
"must_not": [
{{biomedical articles/non melancma.json}}

1

Fig. 2. Example of a template with sub-templates.

tion leveraging the ES query language. We also implemented
an UIMA? pipeline to preprocess biomedical abstracts, de-
scribed in Section III-A. We released the code for this year’s
experiments at https://github.com/hpi-dhc/trec-pm. Internally
produced data, submitted runs, and additional graphs are
available on figshare.

For the experiments, our first step was to add support for
dynamic query decorators in the framework, which allowed
on-the-fly construction of disjunction max queries (dis_max)
containing synonyms and hypernyms with different weights.
This enabled us to improve recall without causing a corre-
sponding loss in precision, which was reported as a major
limitation by the framework creators.

On the technical side, we also added support for sub-
templates, which improved modularity and code reuse. Tem-
plates and sub-templates were created as JSON files (see
Figure 2) and helped us to compose different experiments more
easily.

B. Query Expansion

We used the framework to properly expand the disease and
gene fields from the TREC-PM topics and thus improve recall.
We enriched the disease with its preferred term, synonyms,
and hypernyms provided by Lexigram*, a proprietary API
based on the Systematic Nomenclature of Medicine - Clinical
Terms (SNOMED CT), the Medical Subject Headings (MeSH)
and the International Classification of Diseases (ICD). This
allowed us to match e.g. documents mentioning “bile duct
carcinoma” to the topic “cholangiocarcinoma” (see Table I).
We further enriched the gene with its description and syn-
onyms provided by the National Center for Biotechnology
Information (NCBI) gene list’. For example, documents that
mentioned the gene “NS7” would be correctly matched to
Topic 1, whose gene is “BRAF” (see Table II).

For both the disease and gene dimensions, we gave the
highest weight to the original topic term and lower weights to
the preferred term, synonyms, and hypernyms (see Table III).

Zhttps://uima.apache.org

3https://figshare.com/projects/TREC_PM_2018_Data_hpi-dhc_/56882

“https://www.lexigram.io

Sftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_
sapiens.gene_info.gz

TABLE I
EXAMPLE OF DISEASE EXPANSION PROVIDED BY THE LEXIGRAM API

Original term cholangiocarcinoma

Preferred term carcinoma of cervix

Synonyms cholangiocellular carcinoma
bile duct carcinoma
bile duct adenocarcinoma
Hypernyms malignant neoplasm of digestive system

abdominal mass
epithelial neoplasm
disorder of biliary tract
neoplasm of digestive organ
finding of biliary tract

gastrointestinal tract finding

TABLE I
EXAMPLE OF GENE EXPANSION PROVIDED BY THE NCBI GENE LIST

BRAF
B-Raf proto-oncogene, serine/threonine kinase
B-RAFI
B-raf
BRAFI
NS7
RAFBI1

Original term

Description

Synonyms

TABLE III
WEIGHT VALUES FOR DISEASE AND GENE IN BOTH SUBTASKS

Expansion type Biomedical articles  Clinical trials
Disease  Original 1.0 1.0
Preferred 0.1 0.1
Synonyms 0.1 0.1
Hypernyms - 0.6
Gene Original 1.0 1.0
Description 0.1 0.1
Synonyms 0.7 0.1

As a last resource, we added remaining documents with a
match_all clause with negative boost. This allowed partial
matches only on disease or gene and ensured that every topic
had at least 1,000 results, the limit imposed by the challenge
organizers.

C. Query Boosting

We also leveraged the framework to boost documents related
to the task subdomain. Following previously tested strategies,
we prioritize documents mentioning e.g. the following positive
keywords:

9% LEINT3

¢ Oncology: “cancer”, “carcinoma”, “tumor”

o Precision medicine: “treatment”, “prevention”, “progno-
sis”, “survival”, “outcome”, “resistance”

o Genetics: “gene”, “genotype”, “DNA”, “base”

o Chemotherapy suffixes: “*mab”, “*nib”, “*cin”, “*one”,

“*ate”, “*musw’ “*lin”



For the BA subtask, we further boosted papers from the
ASCO and AACR conferences on oncology, as this was
deemed more relevant by the organizers due to their publi-
cations being more recent. Conversely, we downgraded doc-
uments related to in vitro research, viz. containing negative
keywords such as “tissue” and “cell”.

D. Reference Standard

For the 2018 TREC-PM challenge, the organizers provided
access to the official 2017 Gold Standard (GS)®, which has
relevance assessments for 22,642 and 13,441 query-document
pairs from the BA and CT tasks, respectively [3]. It also
contained the annotations that led to the final relevance assess-
ments, including whether a given document was considered
“Animal PM”, “Human PM”, or “Not PM”. We thus leveraged
it to (1) test hypotheses; (2) debug results; (3) find optimal
weight values; (4) model topics and analyze TF-IDF data from
PM biomedical articles (see Section III-B); and (5) build a PM
classifier for biomedical articles (see Section III-C).

As topics differed from the previous edition, we also created
an internal gold standard for 2018 containing 336 and 141
query-document pairs for the biomedical articles and clinical
trials tasks, respectively.

E. Hand-crafted Rules

Based on the manual assessment of results in the GS, we
enriched queries with additional hand-crafted rules for non-
melanomas, solid tumors, and gene families.

Firstly, we noticed that a high number of results for topics
about “melanoma” would match biomedical articles and clin-
ical trials about “non-melanoma”. We overcame this situation
by manually adding an exact query clause to exclude such
results. This was aimed at improving precision on the relevant
topics.

Secondly, we realized that a large part of relevant clinical
trials in the 2017 reference standard did not mention the exact
topic disease, but would rather prefer an umbrella term, such
as “solid tumor”. Since such concepts were not included in
the terminologies we used, we built a simple query decorator
that would add “solid” as a hypernym if the disease did not
mention “lymphoma” or “leukemia”. This was geared towards
improving recall.

Thirdly, we observed that clinical trials would com-
monly not mention the exact gene from the topic,
but its family (e.g. “BRCA” instead of “BRCA2”). In-
stead of integrating terminology resources with such in-
formation, we explored a straightforward and naive ap-
proach based on regular expressions to generate proper
term variations and thus improve recall. Using the pat-
tern ([0-91{1,2}[Aa-Z1{0,2}IR[0-91{0,1})$, were-
moved up to two trailing digits (followed or not by up to
two letters) or a trailing R (denoting “receptor”’) optionally
followed by a digit. This accounts e.g. for the following
substitutions:

Shttps://trec.nist.gov/data/precmed2017.html
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« BRCA2 — BRCA
e« TP53 — TP

« CDK6 — CDK

« FGFR1 — FGF

« EGFR — EGF

e PIK3CA — PIK

III. ADDITIONAL METHODS FOR BIOMEDICAL
ABSTRACTS

Given the large amount of documents in the biomedical
abstracts subtask and its unstructured nature, we adapted ex-
isting components to process such data in an efficient way and
explored new tools to better understand the idea of “precision
medicine” captured by annotators in the gold standard. We
therefore describe such efforts in this dedicated section.

A. UIMA Pipeline

The main building block of the experimental architecture
for BA was a linguistic UIMA preprocessing pipeline con-
nected to the ES instance and the experimental framework
as shown in Figure 3. The right-arrow elements stand for
UIMA components, sometimes aggregating multiple primitive
components. The rectangle with rounded edges represents the
experimental framework (described in Section II-A) which is
the heart of our research effort. The other rectangles connected
to the experimental framework depict the input and output
data that are always required or delivered. The parallelograms
represent the case where evaluation data is available to indicate
that the experimental framework can run searches on ES as
well as evaluate the results.

We used the UIMA-based JCORE repository [4] to read the
2017 PUBMED snapshot delivered by the challenge organizers,
to recognize gene and organism mentions, apply our precision
medicine document classifier (see Section III-C) and, finally,
to index the output of an Natural Language Processing (NLP)
pipeline results into ES. For the recognition of gene mentions
we employed BANNER’ which is available as a JCORE

"http://banner.sourceforge.net



component®. The BANNER gene model was trained on the
complete BioCreative Il GM? train and test data.

As depicted in Figure 3, the JCORE components form a
processing sequence called pipeline in UIMA: the output of
one component may serve as input for subsequent components.
Since the gene tagger requires linguistic information such as
sentence and token segmentation of the text and parts of speech
for the tokens, the basic linguistic processing components run
before the gene tagger. Those are actually multiple components
but they are shown aggregated in Figure 3 for simplicity
reasons. We indexed in ES the document ID, title, abstract,
keywords, MeSH headings, gene mentions found by BANNER
and the precision medicine label as predicted by the PM
classifier (see Section III-C).

The resulting UIMA text annotations were stored in a
POSTGRESQL database leveraging the JEDIS system [5].
With it, we could store all annotation levels (e.g. tokens,
sentences, or genes) separately from each other, which allowed
individual updates and eased experimentation. In our case, we
could run development versions of the PM classifier and store
the results in the JEDIS annotation database without the need
to recreate the other annotations.

B. Topic Modelling and TF-IDF

As manual keyword selection for boosting (see Section II-C)
is time-consuming and requires curation by experts, we ex-
plored automated approaches that could exploit the knowledge
already encoded in the GS to identify candidate words for
boosting.

We first leveraged the official annotations linked to the
2017 GS (as described in Section II-D) to identify topics.
Topic Modelling (TM) is an unsupervised technique to build
probability distributions between so-called fopics and the word
types observed in a set of input documents. Topics form an
intermediate layer between a document d and its contained
word types w € V where V is the vocabulary of words taken
into account. A document covers a set of topics where each
topic ¢ defines an a posteriori distribution p(w|t) of words
occurring in ¢ [6], [7]. We applied Latent Dirichlet Allocation
(LDA) [8] using the MALLET!? 2.0.9 toolkit. TM found topics
whose top-words strongly matched our intuition of PM.

In a similar effort, we experimented with TF-IDF analysis
in the 2017 GS to obtain discriminant keywords of relevant
PM biomedical articles. We thus looked for words that had
a high TF-IDF score for PM and a low score for Not-PM,
further selected as candidate “positive keywords”. Conversely,
we looked for terms with a high TF-IDF score for Not-PM and
a low TF-IDF score for PM and selected them as candidates
for “negative keywords”.

In order to craft the final keyword lists, we mixed the
distinct candidate terms obtained from both approaches (i.e.
LDA and TF-IDF) and created experiments with different

8https://github.com/JTULIELab/jcore-base
“http://biocreative.sourceforge.net/biocreative_2_gm.html
10http://mallet.cs.umass.edu/

TABLE IV
POSITIVE AND NEGATIVE BOOSTERS

gefitinib treatment survival prognostic

Positive clinical prognosis therapy outcome
resistance Gleason targets
pathogenesis tumor cell development
Negative model tissue mouse specific

staining dna case

combinations of them to analyze which ones improved eval-
uation metrics the most. We then replaced our positive and
negative boosters with the ones providing a real improvement
on metrics (see Table IV).

C. PM Classifier

We also explored a supervised approach to automatically
learn the intuition behind “precision medicine” and improve
ranking with a so-called PM classifier.

For this task, we computed word TF-IDF estimates of docu-
ment tokens from the TREC-PM 2017 gold standard using the
SecondString'! library. The documents’ token TF-IDF values
were used as features in a bag-of-words approach (A). As
precision medicine often revolves around specific genes, we
also added automatic gene mention tagging via BANNER to
our preprocessing as described in Section III-A. We added the
number of found genes in a document as well as the name
of the genes as they appeared in the text (B). Additionally,
we added the names of organism text mentions as detected
by the LINNEAUS tagger [9] (C) and, if available, the major
MeSH descriptor names of the document (D) as features. Some
documents were inconsistently tagged for PM in the gold
standard for different query topics; in such cases we assigned
the document the PM gold label.

We then built a Maximum Entropy (a.k.a logistic regression)
classifier on top of these four feature groups. Figure 4 illus-
trates how the features were extracted from a document and
placed into the classifier to obtain the PM or the Not-PM label
for the input document. A stratified ten-fold cross-validation
on the 2017 TREC-PM gold standard yielded a classification
accuracy of 75%. The classifier was eventually trained on the
complete GS and applied to the whole PUBMED snapshot. For
each document, its label was stored in the search index and
used at query time to boost documents that had been classified
to be relevant to precision medicine.

We additionally tested the impact of each feature group
on classification accuracy when compared to a baseline set
as TF-IDF only (A). We thus designed four experiments'?,
three with one feature group disabled and one with all feature
groups, all including the TF-IDF baseline.

We performed paired Student’s t-tests between each com-
bination of the experiments (resulting in six tests since the
direction of the test does not matter). For each comparison, the

http://secondstring.sourceforge.net
2(A)+(B)+(C), (A)+(B)+(D), (A)+(C)+(D), and (A)+(B)+C)+(D).



TF-IDF
bag-of-words

TABLE VI
DESCRIPTION OF CLINICAL TRIALS RUNS

gene hpict
mentions MALLET .
Maximum Entropy PMo/L:\::L :’M Strategies base common boost phrase all
organism Gtesliler Positive/negative boosters Y Y Y Y Y
mentions Disease/gene exact match Y Y Y Y Y
\ deshgfi?:ors Age/sex match Y Y Y Y Y
Disease preferred term N Y Y Y Y
Disease synonym N Y Y Y Y
Fig. 4. Features and method used for classifying a document as “precision Disease hypernym N Y Y Y Y
medicine”. Gene description N N N N Y
Gene synonym N Y Y Y Y
TABLE V
DESCRIPTION OF BIOMEDICAL ARTICLES RUNS Non-melanoma rule Y Y Y Y Y
Solid tumor rule N N Y Y Y
hpipub Gene family rule N N Y Y Y
Strategies base common none class boost Phrase matching N N N Y N
Positive/negative boosters Y Y Y Y Y
Disease/gene exact match Y Y Y Y Y TABLE VII
Non-melanoma rule Y Y Y Y Y BIOMEDICAL ABSTRACTS: OVERALL RESULTS
Disease preferred term N Y Y Y Y
Disease synonym N Y Y Y Y Run infNDCG P@10 R-Prec
Gene description N N Y Y Y hpipubboost 0.5574 0.7040  0.3656
Gene synonym N Y Y Y Y hpipubnone 0.5605 0.7060  0.3648
PM classifier N N N Y Y hpipubbase 0.5235 0.6920  0.3481
PM classifier boost N N N N Y hpipubclass 0.5554 0.6980  0.3547
hpipubcommon 0.5605 0.7060  0.3658
test input was the ten accuracy scores obtained during cross- . W= | .
validation for each experiment. After performing the Holm- 09 P L 09
Bonferroni correction with a significance level of o = 0.05, gj S — L z:j: gj
the following comparisons showed significant differences: @ os ] o o8] g 06
o no gene features vs. no MeSH features (p < 0.00001) %Ei ey - S 23 < Ei
« no gene features vs. no organism features (p < 0.0001) o2 i —— o e — —— = “jesl. inal
« no gene features vs. all features (p < 0.001) 01 01 01
In all comparisons, the experiment excluding the gene fea- ~ °*T1— 1117 *OE === 0Tt
tures showed a lower accuracy than the other experiment. The Q§°°‘;\Q§°°;§i§°\if° Qﬁl\y";ﬁ%@if‘o \an";y“"z\yi&ﬁ\i&e@
gene features group was the only one that brought an actual CE TN DR D

improvement from a statistical point of view. The omission
of the gene features had the largest impact and caused the
ten-fold cross-validation accuracy to drop to 73%. Other runs
varied only slightly from the score achieved with all features.
Since the other features did not hurt, we left them activated
in the hope of better generalization on unseen data.

IV. RESULTS

We submitted only automatic runs using differently
weighted combinations of the strategies presented before.
Tables V and VI show the approaches we have applied for
each of the five runs for the biomedical articles and clinical
trials tasks, respectively.

A. Biomedical Abstracts

Table VII shows our overall results for the biomedical
abstracts subtask and Figure 5 shows boxplots over all topics
comparing the five submitted runs to the average best and
median results (over all participants). The hpipubcommon

Fig. 5. Biomedical Abstracts: boxplots comparing our runs to the average
best and median results.

run had the best infNDCG (0.5605), P@10 (0.7060), and R-
Prec (0.3658), on a tie with the hpipubnone run for the
infNDCG and P@ 10 metrics.

Run hpipubbase had slightly lower average for all met-
rics, which might suggest a positive effect of query expansion,
as this was the only run not using it. Moreover, we could
not show a benefit of using a PM classifier, as there was
no large differences between the runs hpipubnone (not
using the classifier), hpipubclass (using the classifier), and
hpipuboost (boosting the classifier).

Figure 7 in the appendix shows the results for each topic.
Considering P@10 for the hpipubcommon run, topics 35
and 28 had the largest negative difference (—0.1000) to the
median of all participant runs for this topic (not shown in the



TABLE VIIL
CLINICAL TRIALS: OVERALL RESULTS
Run infNDCG P@10 R-Prec
hpictall 0.5545 0.5340  0.3964
hpictphrase 0.5484 0.5400  0.4081
hpictboost 0.5536 0.5340  0.3962
hpictcommon 0.5374 0.5340  0.3953
hpictbase 0.4891 0.4880  0.3715
1.0 1.0 1.0
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Fig. 6. Clinical Trials: boxplots comparing our runs to the average best and
median results.

graph). Conversely, topics 35 (—0.0386) and 11 (—0.0263)
had the largest negative differences to the median infNDCG.

B. Clinical Trials

Table VIII shows our overall results for the clinical trials
subtask. Figure 6 shows boxplots over all topics comparing
the five submitted runs to the average best and median results
(over all participants). The hpictphrase run had the best
P@10 (0.5400) and R-Prec (0.4081), while the hpictall
run had the best infNDCG (0.5545).

Run hpictbase had slightly lower average for all metrics
and consistently larger variance, probably due to the absence
of query expansion and in tandem with BA results. More-
over, run hpictcommon had also a slightly lower median
infNDCG. As it was the only run without gene family and
solid tumor expansion (as described in Section II-E), this
might suggest some benefit from these approaches. Our best
runs hpictphrase and hpictall used almost the same
strategies, except for “gene description” that was only used
by hpictall and “phrase matching” that was exclusive to
hpictphrase. This might suggest a benefit of using exact
matching for CT.

Figure 8 in the appendix shows the results for each topic.
Considering P@10 for the hpictphrase run, topics 40 and
33 had the largest negative difference (—0.3000) to the median
of all participant runs for this topic (not shown in the graph).
Conversely, topics 33 (—0.1133) and 11 (—0.0993) in the
hpictall run had the largest negative differences to the
median infNDCG.

V. DISCUSSION

Our work has some important limitations.

Firstly, despite the importance of query expansion and
weighting, relative weights were found with a local greedy
search only. A more comprehensive approach would be to
perform grid search on all possible combinations. However,
due to the high-dimensional problem, a naive approach is not
feasible and thus some guided search (e.g. employing genetic
algorithms) may be necessary.

Secondly, the terminological resources we employed were
not fully comprehensive and therefore would miss some
important parent concepts, as well as gene families. We
tried to overcome that with hand-crafted rules, but a
more robust approach would be to integrate other termi-
nologies containing the necessary mappings. For example,
we noticed that the NCI Thesaurus includes a predicate
Neoplasm_Has_Special_Category for solid tumors.

Thirdly, some clinical trials included negated assessments in
the inclusion criteria (e.g. “no prior history of breast cancer”)
instead of explicitly expressing them as exclusion criteria.
Moreover, topics 21 and 22 required discriminating between
“no” and “extensive” “tumor infiltrating lymphocytes”. In or-
der to proper tackle such cases, a proper mechanism for nega-
tion detection should be employed, which was not explored by
our team. We did, however, manually addressed the prevalent
case of “non-melanoma”, as described in Section II-E.

Lastly, we trained the PM classifier only on biomedical
abstracts and did not evaluate its overlap with the semi-
automated keyword selection approach. Also, we used only
the binary classifier output for filtering, while we could have
used the probability value itself for improved ranking. We
believe addressing such issues could lead to a fully-automated
boosting mechanism that only depends on training data, thus
turning TM and TF-IDF analysis unnecessary.

VI. CONCLUSION

Our work explored weighted query expansion with termi-
nological resources for synonyms and hypernyms, keyword-
based query boosting with terms obtained semi-automatically
from topic modelling and TF-IDF analysis, a ‘“precision
medicine” classifier, and hand-crafted rules for issues not
easily solved otherwise.

Weighted query expansion showed that it is possible to
improve recall without a loss in precision and thus provided
the most positive impact in our experiments. Associated with
rules to infer the gene family and detect solid tumors, it further
impoved clinical trials metrics. Furthermore, we showed that
exact matching improves P@10 and R-Prec in the clinical
trials subtask.

Results using a supervised PM classifier proved inconclu-
sive as there was an overlap with the manual keyword boosting
strategy. Nevertheless, we proved that a gene tagger does
improve the accuracy of such classifier.

Overall, we had the top-performing P@10 and second
best infNDCG and R-Prec in the biomedical articles subtask.
Considering clinical trials, our group had the top-performing
infNDCG. Therefore, next steps would involve building upon
the existent successful strategies.
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Fig. 7. Biomedical Abstracts: maximum, mean, and minimum infNDCG, P@10, and R-Prec per topic of the five submitted runs, compared to the average

median over all participants runs.
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Fig. 8. Clinical Trials: maximum, mean, and minimum infNDCG, P@10, and R-Prec per topic of the five submitted runs, compared to the average median

over all participants runs.



