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ULTRAFILTER EXTENSIONS DO NOT PRESERVE

ELEMENTARY EQUIVALENCE

DENIS I. SAVELIEV, SAHARON SHELAH

Abstract. We show that there exist models M1 andM2 such thatM1

elementarily embeds into M2 but their ultrafilter extensions ββ(M1) and
ββ(M2) are not elementarily equivalent.

1. Introduction

The ultrafilter extension of a first-order model is a model in the same
vocabulary, the universe of which consists of all ultrafilters on the universe
of the original model, and which extends the latter in a canonical way. This
construction was introduced in [1]. The article [2] is an expanded version
of [1]; it contains a list of problems, one of which is solved here.

The main precursor of the general construction was the ultrafilter exten-
sion of semigroups, called often the Čech–Stone compactification of semi-
groups. This particular case was discovered in 1970s and became since then
an important tool for getting various Ramsey-theoretic results in combina-
torics, algebra, and dynamics; the textbook [3] is a comprehensive treatise
of this area. For theory of ultrafilters and for model theory we refer the
reader to the standard textbooks [4] and [5], respectively.

Recall the construction of ultrafilter extensions and related basic facts.

Definition 1. For a set M , an ultrafilter D on M , and a formula ϕ(x, . . .)
with parameters x, . . . , we let

(∀Dx)ϕ(x, . . .) if and only if {a ∈M : ϕ(a, . . .)} ∈ D.

It is easy to see that the ultrafilter quantifier is self-dual: it coincides with
(∃Dx), defined as ¬ (∀Dx)¬ , since D is ultra. Note also that if D is the
principal ultrafilter given by some a ∈ M , then (∀Dx)ϕ(x, . . .) is reduced
to ϕ(a, . . .), and that, e.g., (∀D1x1)(∀

D2x2)ϕ(x1, x2, . . .) means {a1 ∈ M :
{a2 ∈M : ϕ(a1, a2, . . .)} ∈ D2} ∈ D1.
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model, elementary equivalence, elementary embedding, ultrafilter quantifier.
Acknowledgment : This research was partially supported by European Research Council

grant 338821. The first author was also partially supported by Russian Foundation for
Basic Research grant 17-01-00705.

Paper 1132 on Shelah’s list.

1

http://arxiv.org/abs/1712.06198v2


2 DENIS I. SAVELIEV, SAHARON SHELAH

Definition 2. Let M be a model in a vocabulary τ with the universe M .
Define the model ββ(M) and the function jM as follows:

(a) the universe of ββ(M) is ββ(M), the set of ultrafilters on M ,
(b) jM : M → ββ(M) is such that for all a ∈ M , jM (a) is the principal

ultrafilter on M given by a, i.e., jM (a) = {A ⊆M : a ∈ A},
(c) if P ∈ τ is an n-ary predicate symbol (other than the equality

symbol), let

P ββ(M) =
{
(D1, . . . ,Dn) : (∀

D1x1) . . . (∀
Dnxn)P

M(x1, . . . , xn)
}
,

(d) if F ∈ τ is an n-ary function symbol, let

F ββ(M)(D1, . . . ,Dn) = D if and only if
(
∀A ⊆M)

(
A ∈ D ⇔ (∀D1x1) . . . (∀

Dnxn)F
M(x1, . . . , xn) ∈ A

)
.

The model ββ(M) is the ultrafilter extension of the model M, and jM is the
natural embedding of M into ββ(M).

The using of words “extension” and “embedding” is easily justified:

Proposition 1. If M is a model in a vocabulary τ , then

(a) ββ(M) is also a model in τ , and
(b) jM isomorphically embeds M into ββ(M).

Proof. See [1], [2]. �

The following result, called the First Extension Theorem in [2], shows
that the ultrafilter extension lifts certain relationships between models.

Theorem 1. Let M1 and M2 be two models in the same vocabulary with the
universes M1 and M2, respectively, and let h be a mapping of M1 into M2

and h̃ its (unique) continuous extension of ββ(M1) into ββ(M2):

ββ(M1)
h̃

//❴❴❴ ββ(M2)

M1
h

//

jM1

OO

M2

jM2

OO

If h is a homomorphism (epimorphism, isomorphic embedding) of M1 into

M2, then h̃ is a homomorphism (epimorphism, isomorphic embedding) of
ββ(M1) into ββ(M2).

Proof. See [1], [2]. �

Actually Theorem 1 is a special case of a stronger result, called the
Second Extension Theorem in [2]. Here we omit its precise formulation,
which involves topological concepts, and note only that it generalizes the
standard topological fact stating that the Čech–Stone compactification is
the largest one, to the case when the underlying discrete space M carries
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an arbitrary first-order structure. This confirms that the construction of
ultrafilter extensions given in Definition 2 is canonical in a certain sense.

Theorem 1 holds also for certain other relationships between models
(e.g., for so-called homotopies and isotopies, see [1], [2]). A natural task is
a characterization of such relationships. In particular, one can ask whether
elementary embeddings or elementary equivalence lift under ultrafilter ex-
tensions. This task was posed in [2] (see Problem 5.1 there and comments
before it).

In this note, we answer this particular question in the negative. In fact,
we establish a slightly stronger result:

Theorem 2 (the Main Theorem). There exist models M1 and M2 in
the same vocabulary such that M1 elementarily embeds into M2 but their
ultrafilter extensions ββ(M1) and ββ(M2) are not elementarily equivalent:

ββ(M1)
6≡

//❴❴❴ ββ(M2)

M1
≺

//

jM1

OO

M2

jM2

OO

Of course, it follows that neither elementary embeddings nor elementary
equivalence are preserved under ultrafilter extensions. The construction of
such models M1 and M2 will be provided in the next section.

We conclude this section with the following natural questions on possible
general results in this direction.

Problem 1. Characterize (or at least, provide interesting necessary or
sufficient conditions on) theories T such that the implication

M1 ≡ M2 ⇒ ββ(M1) ≡ ββ(M2)

holds for all M1,M2 � T .

Problem 2. The same question for elementary embeddings.

2. Proof of the Main Theorem

First we define a vocabulary τ and construct two specific models M1 and
M2 in τ . Then we shall show that these models are as required.

Definition 3. Let τ be the vocabulary consisting of two unary predicate
symbols P1 and P2, two binary predicate symbols R1 and R2, and one binary
function symbol F .

Definition 4. Let M1 be a model in τ having the universe M1 and defined
as follows:

(a) M1 = N ⊔ P(N), the disjoint sum of N and P(N) (which we shall
identify with their disjoint copies),

(b) PM1

1 = N,

(c) PM1

2 = P(N),
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(d) RM1

1 = {(n, a) : n ∈ N ∧ a ∈ P(N) ∧ n ∈ a}, i.e., the intersection of
the membership relation with N× P(N),

(e) RM1

2 is a relation such that

(α) RM1

2 ∩ (N× N) is the usual order on N,

(β) RM1

2 ∩ (P(N) × P(N)) is a linear order on P(N) with no end-
points,

(γ) if a ∈ N ⇔ b /∈ N then RM1

2 (a, b) is defined arbitrarily (really
this case will not be used),

(f) FM1 is an unordered pairing function mapping N into N and P(N)
into P(N), i.e., satisfying the following conditions:
(α) if either a1, b1, a2, b2 ∈ N or a1, b1, a2, b2 ∈ P(N), then

FM1(a1, b1) = FM1(a2, b2) ⇔ {a1, b1} = {a2, b2},

(β) if a, b ∈ N then FM1(a, b) ∈ N,
(γ) if a, b ∈ P(N) then FM1(a, b) ∈ P(N),
(δ) if a ∈ N ⇔ b /∈ N then FM1(a, b) is defined arbitrarily (really

this case will not be used).

Proposition 2. Assume λ ≥ 2ℵ0 . Then there exists a model M2 in τ such
that M1 ≺ M2 and |PM2

1 | = |PM2

2 | = λ.

Proof. Let M3 be λ-saturated and M1 ≺ M3. By the λ-saturatedness, for
each i ∈ {1, 2} we have |PM3

i | ≥ λ, so we can pick Ai ⊆ PM3

i with |Ai| = λ.
By the downward Löwenheim–Skolem Theorem, there exists a model M2

with the universe M2 such that:

(a) M2 ≺ M3,
(b) M1 ∪A1 ∪A2 ⊆M2,
(c) |M2| = λ,

whence it follows that M2 is a required model.
Alternatively, we can use a version of the upward Löwenheim–Skolem

Theorem by picking two sets of constants, C1 and C2, with |C1| = |C2| = λ
and adding to the elementary diagram of M1 the formulas Pi(ci) for all
ci ∈ Ci, i ∈ {1, 2}. The obtained theory is consistent (by compactness),
so extract its submodel of cardinality λ (by the downward Löwenheim–
Skolem Theorem) and reduce it to the required model M2 in the original
vocabulary τ . �

Clearly, this observation is of a general character; a similar argument
allows to get, for any model, its elementary extension in which all predicate
symbols are interpreted by relations of the same cardinality.

To simplify reading, we slightly shorthand the notation for the ultrafilter
extensions of the models M1 and M2 as follows:

Definition 5. For ℓ ∈ {1, 2}, let

(a) Nℓ = ββ(Mℓ),
(b) Nℓ = ββ(Mℓ),
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(c) jℓ = jMℓ
.

It is easy to observe the following:

(a) PNℓ

1 consists of all ultrafilters D on Mℓ such that PMℓ

1 ∈ D (so for

ℓ = 1 this means N ∈ D), and PNℓ

1 \ {jℓ(n) : n ∈ PMℓ

1 } consists of
all such non-principal ultrafilters,

(b) PNℓ

2 consists of all ultrafilters D on Mℓ such that PMℓ

2 ∈ D (so for

ℓ = 1 this means P(N) ∈ D), and PNℓ

2 \ {jℓ(A) : A ∈ PMℓ

2 } consists
of all such non-principal ultrafilters.

Now we are going to construct a specific sentence ψ which will be satisfied
in N1 but not in N2. First we define two auxiliary formulas ϕ1 and ϕ2.

Definition 6. For i ∈ {1, 2}, let ϕi(x) be the following formula in τ :

Pi(x) ∧ ∀y (Pi(y) → F (x, y) = F (y, x)).

Thus ϕi(x) means that x is in the center in a sense. Actually, only ϕ2

will be used to construct ψ.

Proposition 3. Assume i, ℓ ∈ {1, 2}. For every D ∈ Nℓ,

Nℓ � ϕi(D) if and only if D ∈
{
jℓ(a) : a ∈ PMℓ

i

}
.

Proof. This follows from the four lemmas below.

Lemma 1. If D /∈ PNℓ

i then Nℓ � ¬ϕi(D).

Proof. By the first conjunct in ϕi. �

Lemma 2. If D1 ∈ P
Nℓ

i and D2 = jℓ(a) for some a ∈ PMℓ

i , then

Nℓ � F (D1,D2) = F (D2,D1).

Proof. We must check that FNℓ(D1,D2) = FNℓ(D2,D1). It suffices to show

that, for any A ⊆ PMℓ

i , the following equivalence holds:

A ∈ FNℓ(D1,D2) ⇔ A ∈ FNℓ(D2,D1).

By Definition 2, we have

A ∈ FNℓ(D1,D2) ⇔ (∀D1x1)(∀
D2x2)F

Mℓ(x1, x2) ∈ A.

But D2 = jℓ(a) for an a ∈ PMℓ

i , i.e., D2 is a principal ultrafilter given

by a. Hence ∀D2x2 is reduced by replacing the bounded occurrence of the
variable x2 with a (as we have noted after Definition 1), whence we get

A ∈ FNℓ(D1,D2) ⇔ (∀D1x1)F
Mℓ(x1, a) ∈ A.

Similarly we get

A ∈ FNℓ(D2,D1) ⇔ (∀D1x1)F
Mℓ(a, x1) ∈ A.

Since a ∈ PMℓ

i , we have FMℓ(a, b) = FMℓ(b, a) for all b ∈ PMℓ

i by Defini-

tion 4(f)(α). And since PMℓ

i ∈ D1, the required equivalence follows. �



6 DENIS I. SAVELIEV, SAHARON SHELAH

Lemma 3. If D1 ∈ PN1

1 \ {j1(n) : n ∈ PM1

1 }, then there exists D2 ∈ PN1

1
such that

FN1(D1,D2) 6= FN1(D2,D1).

Proof. Actually we shall prove a bit stronger assertion: if D1,D2 ∈ PN1

1 \

{j1(n) : n ∈ PM1

1 } are such that D1 6= D2, then

FN1(D1,D2) 6= FN1(D2,D1).

So assume that D1,D2 are distinct non-principal ultrafilters on M1 such
that N ∈ D1 ∩D2. By D1 6= D2, there is A1 ∈ P(N) such that A1 ∈ D1 and
A2 = N \ A1 ∈ D2. Let

B1 =
{
FM1(n1, n2) : n1 ∈ A1 ∧ n2 ∈ A2 ∧ (n1, n2) ∈ RM1

2

}
,

B2 =
{
FM1(n1, n2) : n1 ∈ A1 ∧ n2 ∈ A2 ∧ (n2, n1) ∈ RM1

2

}
.

Recall that RM1

2 ∩ (N×N) is the usual order < on N, so the last conjuncts
in the definition of B1 and B2 mean just n1 < n2 and n2 < n1, respectively.

Now our stronger assertion clearly follows from claims (a)–(c) below:

(a) B1 ∩B2 = ∅,
(b) B1 ∈ FN1(D1,D2),
(c) B2 ∈ FN1(D2,D1).

It remains to verify these claims.
For (a), note that if there is some c ∈ B1 ∩B2, then:

(α) since c ∈ B1, we can find n1 < n2 such that FM1(n1, n2) = c,
n1 ∈ A1, n2 ∈ A2,

(β) since c ∈ B2, we can find m2 < m1 such that FM1(m1,m2) = c,
m1 ∈ A1, m2 ∈ A2.

So, since by Definition 4(f)(α), FM1 is an unordered pairing function, we
conclude {n1, n2} = {m1,m2}. However, then n1 < n2 and m2 < m1 imply
n1 = m2 and n2 = m1, which contradicts to n1 ∈ A1, m2 ∈ A2.

For (b), note that {n2 ∈ A2 : n2 > n1} ∈ D2 because of A2 ∈ D2 and
D2 is non-principal. It follows (∀D2n2)F (n1, n2) ∈ B1. But A1 ∈ D1, so we
get

(∀D1n1)(∀
D2n2)F (n1, n2) ∈ B1.

By Definition 2(d), this gives claim (b).
For (c), argue similarly. �

The fourth lemma (and its proof) generalizes the previous one.

Lemma 4. If i, ℓ ∈ {1, 2} and D1 ∈ PNℓ

i \ {jℓ(a) : a ∈ PMℓ

i }, then there

exists D2 ∈ PNℓ

i such that

FNℓ(D1,D2) 6= FNℓ(D2,D1).

Proof. Let D1 be a non-principal ultrafilter on PMℓ

i . It follows from Defi-

nition 4(e) and M1 ≺ M2 that RMℓ

2 is a linear order on PMℓ

i . One of the
two following possibilities occurs:
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(a) there is an initial segment I of the linearly ordered set (PMℓ

i , RMℓ

2 )
such that I ∈ D1 but if I1 ⊂ I is another initial segment of the set
then I1 /∈ D1 (this I necessarily has no last element);

(b) there is a final segment J of the linearly ordered set (PMℓ

i , RMℓ

2 )
such that J ∈ D1 but if J1 ⊂ J is another final segment of the set
then J1 /∈ D1 (this J necessarily has no first element).

To see, notice the following general facts. If (X,<) is a linearly ordered
set, for any ultrafilter D on X define the initial segment ID and the final
segment JD of (X,<) as follows:

ID =
⋂

{I ∈ D : I is an initial segment of (X,<)},

JD =
⋂

{J ∈ D : J is a final segment of (X,<)}.

As easy to see, if D is principal then ID ∩ JD = {x} for {x} ∈ D; and if
D is non-principal then (ID, JD) is a cut and either ID or JD, but not both,
is in D. Furthermore, if ID is in D, then so are all final segments of ID,
S∩ID is cofinal in ID for all S ∈ D, and ID does not have a greatest element
whenever D is non-principal; and symmetrically for JD in D. (More details
related to ultrafilter extensions of linearly ordered sets can be found in [6].)

In our situation, D1 is non-principal, so we have either ID1
∈ D1, in which

case we get possibility (a) with I = ID1
, or JD1

∈ D1, in which case we get
possibility (b) with J = JD1

.

For (a), choose an ultrafilter D2 on PMℓ

i such that

(α) I ∈ D2,

(β) if I1 ⊂ I is an initial segment of (PMℓ

i , RMℓ

2 ) then I1 /∈ D2,
(γ) D2 6= D1.

Now we can repeat the proof of Lemma 3 mutatis mutandis, i.e., we can
find A1 ∈ D1 \D2 such that A1 ⊆ I and A2 = I \ A1 ∈ D2, then define

B1 =
{
FMℓ(a1, a2) : a1 ∈ A1 ∧ a2 ∈ A2 ∧ (a1, a2) ∈ RMℓ

2

}
,

B2 =
{
FMℓ(a1, a2) : a1 ∈ A1 ∧ a2 ∈ A2 ∧ (a2, a1) ∈ RMℓ

2

}
,

etc.
For (b), the proof is symmetric: we only replace I with J , initial segments

with final ones, and xRMℓ

2 y with yRMℓ

2 x. �

These four lemmas complete the proof of Proposition 3. �

Now everything is ready in order to provide a sentence ψ having the
required property.

Definition 7. Let ψ be the following sentence in τ :

(∀x1)(∀x2)
(
P1(x1) ∧ P1(x2) ∧ x1 6= x2

→ (∃y)ϕ2(y) ∧R1(x1, y) ∧ ¬R1(x2, y)
)
.
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Proposition 4. Let ℓ ∈ {1, 2}. Then

Nℓ � ψ if and only if ℓ = 1.

Proof. 1. First we show that N1 � ψ.
Let D1,D2 satisfy the antecedent of ψ, i.e., D1,D2 ∈ PN1

1 and D1 6= D2.
We should find b ∈ N1 such that

N1 � ϕ2(b) ∧R1(D1, b) ∧ ¬R1(D2, b).

Since D1,D2 are distinct ultrafilters on M1 such that PM1

1 ∈ D1∩D2, we

can choose A1 ⊆ PM1

1 such that A1 ∈ D1 and A1 /∈ D2. Then A1 ∈ PM1

2

clearly follows from Definition 4(b),(c). So b = j1(A1) ∈ PN1

2 , and hence,
by the “if” part of Proposition 3, N1 � ϕ2(b).

It remains to show the conjunction

(D1, b) ∈ R
N1

1 and (D2, b) /∈ RN1

1 .

To this end, note that for any ultrafilter D concentrated on PM1

1 and any

A ∈ PM1

2 , by Definition 2(c), the formula (D, j1(A)) ∈ R
N1

1 means

(∀Dn)(∀j(A)B) (n,B) ∈ RM1

1 .

Recalling that RM1

1 is the membership relation (Definition 4(d)) and reduc-

ing (∀j(A)B), we see that the latter formula is equivalent to (∀Dn)n ∈ A,
and so, to A ∈ D. Since we have A1 ∈ D1 and A1 /∈ D2, this gives the
required conjunction.

2. Now we show that N2 � ¬ψ.
Define a function G from PN2

1 into P(PM2

2 ) as follows:

G(D) =
{
b ∈ PM2

2 :
{
a ∈ PM2

1 : (a, b) ∈ RM2

1

}
∈ D

}
.

Recall that |PM2

1 | = |PM2

1 | = λ (Proposition 2). Therefore,

|dom (G)| = |ββ(|PM2

1 |) = |ββ(λ)| = 22
λ

> 2λ,

while

|ran (G)| ≤ |P(PM2

2 )| = |P(λ)| = 2λ,

whence we conclude that G is not one-to-one.
Take S ∈ P(PM2

2 ) such that |G−1(S)| > 1, pick D1,D2 ∈ G−1(S) such
that D1 6= D2, and show that D1,D2 witness the failure of the sentence ψ.

Note that N2 satisfies the antecedent of ψ, i.e.,

N2 � P1(D1) ∧ P1(D2) ∧D1 6= D2,

by the condition D1,D2 ∈ G−1(S) ⊆ PN2

1 . So to finish, it suffices to show

N2 � ¬ (∃y)ϕ2(y) ∧R1(D1, y) ∧ ¬R1(D2, y).

Toward a contradiction, assume that there is b ∈ N2 such that

N2 � ϕ2(b) ∧R1(D1, b) ∧ ¬R1(D2, b).
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But since N2 � ϕ2(b), by the “only if” part of Proposition 3, we see that

b = j2(A) for some A ∈ PM2

2 . So we obtain

RN2

1 (D1, j2(A)) and ¬RN2

1 (D2, j2(A))

By Definition 2(c), RN2

1 (D1, j2(A)) means (∀D1a)(∀j2(A)b) (a, b) ∈ RM2

1 ,

whence reducing (∀j2(A)b) we get (∀D1a) (a,A) ∈ RM2

1 , i.e.,
{
a ∈ PM2

1 : (a,A) ∈ RM2

1

}
∈ D1.

Similarly, RN2

1 (D2, j2(A)) is equivalent to {a ∈ PM2

1 : (a,A) ∈ RM2

1 } ∈ D2,

and hence, ¬RN2

1 (D2, j2(A)) is equivalent to
{
a ∈ PM2

1 : (a,A) ∈ RM2

1

}
/∈ D2.

Therefore, A ∈ G(D1) and A /∈ G(D2), which, however, contradicts to the
choice of D1,D2.

This completes the proof. �

So we have constructed two models M1, M2 in τ with

M1 ≺ M2

and a τ -sentence ψ such that N1 = ββ(M1) � ψ and N2 = ββ(M2) � ¬ψ,
thus witnessing

ββ(M1) 6≡ ββ(M2).

This proves the Main Theorem (Theorem 2).
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