Skip to main content

Strain Tensor Elastography: 2D and 3D Visualizations

  • Chapter
Tensors in Image Processing and Computer Vision

Abstract

Elastography measures the elastic properties of soft tissues using principally ultrasound (US) or magnetic resonance (MR) signals. The elastic behavior of tissues can be analyzed with tensor signal processing. Different approaches have been developed to estimate and image the elastic properties in the tissue. In ultrasound elastography, the estimation of the displacement and strain fields is mostly based on measures computed from the Radio Frequency signals, such as time-domain cross-correlation. We propose to estimate the displacement field from two consecutive B-mode images using a multiscale optical flow method. The tensor strain field can then be plotted as ellipsoids, visualizing in a single image the standard scalar parameters that are usually represented separately. This technique can offer physicians the possibility of extracting new discriminant and useful parameters related to the elastic behavior of tissues. Although clinical validation is still needed, our experiments from finite element and ultrasound simulations display consistent and reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.K. Alam, F.L. Lizzi, T. Varghese, E.J. Feleppa, and S. Ramachandran. Adaptive spectral strain estimators for elastography. Ultrasound Imaging, 26(3):131–149, July 2004.

    Google Scholar 

  2. S.K. Alam, J. Ophir, and E.E. Konofagou. An adaptive strain estimator for elastography. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 45:461–472, 1998.

    Article  Google Scholar 

  3. I. Céspedes, Y. Huang, J. Ophir, and S. Spratt. Methods for estimation of subsample time delays of digitized echo signals. Ultrason Imaging, 17(2):142–71, April 1995.

    Article  Google Scholar 

  4. I. Céspedes and J. Ophir. Reduction of image noise in elastography. Ultrasound Imaging, 15:89–102, 1993.

    Article  Google Scholar 

  5. E.J. Chen, J. Novakofski, W.K. Jenkins, and W.D. Jr. O’Brien. Young’s modulus measurements of soft tissues with application to elasticity imaging. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 43(1):191–194, Jan 1996.

    Article  Google Scholar 

  6. R.J. Dickinson and C.R. Hill. Measurement of soft tissue motion using correlation between a-scans. Ultrasound in Medicine and Biology, 8:263–271, 1982.

    Article  Google Scholar 

  7. M. Dighe, Unmin Bae, Michael L Richardson, Theodore J Dubinsky, Satoshi Minoshima, and Yongmin Kim. Differential diagnosis of thyroid nodules with us elastography using carotid artery pulsation. Radiology, 248(2):662–9, August 2008.

    Article  Google Scholar 

  8. B.S. Garra, I. Céspedes, J. Ophir, S. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen. Elastography of breast lesions: initial clinical results. Radiology, 202:79–86, 1997.

    Google Scholar 

  9. T.J. Hall, Y. Zhu, and C.S. Spalding. In vivo real-time freehand palpation imaging. Ultrasound in Medicine and Biology, 29(3):427–35, March 2003.

    Article  Google Scholar 

  10. M. Horsfield and D. Jones. Applications of diffusion-weighted and diffusion tensor mri to white matter diseases–a review. NMR Biomed., 15(7–8):570–577, 2002.

    Article  Google Scholar 

  11. K. Hoyt, F. Forsberg, and J Ophir. Analysis of hybrid spectral strain estimation technique in elastography. Physics in Medicine and Biology, Institute of Physics Publishing, 5:197–209, 2006.

    Article  Google Scholar 

  12. Jorgen Arendt Jensen. Field: A program for simulating ultrasound systems. In 10th Nordic-Baltic Conference on Biomedical Imaging, pages 351–353, 1996.

    Google Scholar 

  13. E.E. Konofagou, T. Harrigan, and J. Ophir. Shear strain estimation and lesion mobility assessment in elastography. Ultrasonics, 38:400–404, 2000.

    Article  Google Scholar 

  14. E.E. Konofagou and J. Ophir. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and poisson’s ratios in tissues. Ultrasound in Medicine and Biology, 24(8):1183–1199, 1998.

    Article  Google Scholar 

  15. Karl Krissian. Amilab interpreted language for image processing. http://serdis.dis.ulpgc.es/simkrissian/HomePage/Software/AMILab/.

  16. G. Lan, S.K. Alam, and K.J. Parker. A new vibration theory for sonoelasticity imaging. In Ultrasonics Symposium, 2:879–882, 1993.

    Google Scholar 

  17. A. Lorenz, A. Pesavento, M. Pesavento, and H. Ermert. Three-dimensional strain imaging and related strain artifacts using an ultrasonic 3d abdominal probe. Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE, 2:1657–1660, 1999.

    Google Scholar 

  18. L.E. Malvern. Introduction to the Mechanics of a Continuous Medium. Ed. Prentice Hall, 1969.

    Google Scholar 

  19. R.L. Maurice, M. Daronat, J. Ohayon, E. Stoyanova1, F.S. Foster, and G. Cloutier. Non-invasive high-frequency vascular ultrasound elastography. Phys. Med. Biol., 50:1611–1628, 2005.

    Google Scholar 

  20. K.R. Nightingale and M.L. Palmeri. Elasticity imaging: Dynamic approaches, 2007. tutorial in IEEE Ultrasonics Symposium, New York, NY, USA.

    Google Scholar 

  21. J. Ophir, S.K. Alam, B. Garra, F. Kallel, E.E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, and R. Souchon. Elastography: Imaging the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics, 29:155–171, 2002.

    Article  Google Scholar 

  22. J. Ophir, S.K. Alam, B.S. Garra, F. Kallel, E. E. Konofagou, T. A. Krouskop, and T. Varghese. Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues. Journal of Engineering in Medicine, 213:203–233, 1999.

    Article  Google Scholar 

  23. Federico París. Teoría de la Elasticidad. Escuela Técnica Superior de Ingenieros Industriales de Sevilla, 1996.

    Google Scholar 

  24. K.J. Parker, S.R. Huang, R.A. Musulin, and R.M. Lerner. Tissue response to mechanical vibrations for sonoelasticity imaging. Ultrasound in Medicine and Biology, 16:241–246, 1990.

    Article  Google Scholar 

  25. A. Pesavento and A. Lorenz. Real time strain imaging–a new ultrasonic method for cancer detection: First study results. In IEEE Ultrasonics Symposium, 2:1647–1652, 2001.

    Google Scholar 

  26. A. Pesavento, A. Lorenz, and H. Ermert. Phase root seeking and the Cramer-Rao-lower bound for strain estimation. Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE, 2:1669–1672, 1999.

    Google Scholar 

  27. A. Pesavento, C. Perrey, M. Krueger, and H. Ermert. A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 46(5):1057–1067, September 1999.

    Article  Google Scholar 

  28. M. A. Rodríguez-Florido. Procesado Anisótropo de Campos Tensoriales Multidimensionales y sus Aplicaciones al Filtrado y Segmentación de Imágenes Médicas. Phd dissertation, University of Las Palmas de GC, 2004.

    Google Scholar 

  29. M.A. Rodríguez-Florido, C.-F. Westin, and J. Ruiz-Alzola. DT-MRI regularization using anisotroipic tensor field filtering. IEEE International Symposium on Biomedical Imaging, pages 15–18, April 2004.

    Google Scholar 

  30. P. Selskog, E. Heiberg, T. Ebbers, L. Wigstrom, and M. Karlsson. Kinematics of the heart: strain-rate imaging from time-resolved three-dimensional phase contrast mri. IEEE Trans Med Imaging, 21(9):1105–1109, 2002.

    Article  Google Scholar 

  31. D. Sosa-Cabrera. Novel Processing Schemes and Visualization Methods for Elasticity Imaging. Phd dissertation, University of Las Palmas de GC, 2008.

    Google Scholar 

  32. D. Sosa-Cabrera, J. González-Fernández, C. Castaño-Moraga, L. Gómez-Déniz, L. Álvarez-León, and J. Ruiz-Alzola. A multiscale variational optical flow method to estimate discontinuous motion fields for ultrasound elastography. In Proceedings of Fifth the International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity, 5:31, 2006.

    Google Scholar 

  33. D. Sosa-Cabrera, J. González-Fernández, L. Gómez-Deniz, and J. Ruiz-Alzola. Characterization of a multiscale variational optical flow method for elastography. In Proceedings of the IEEE Ultrasonics International Symposium, 2007.

    Google Scholar 

  34. S. Srinivasan, F. Kallel, R. Souchon, and J. Ophir. Analysis of an adaptive strain estimation technique in elastography. Ultrasonic Imaging, 24:109–118, 2002.

    Google Scholar 

  35. Mickaël Tanter, Jeremy Bercoff, Laurent Sandrin, and Mathias Fink. Ultrafast compound imaging for 2-d motion vector estimation: application to transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control, 49(10):1363–74, October 2002.

    Article  Google Scholar 

  36. T. Varghese, E. E. Konofagou, J. Ophir, S.K. Alam, and M. Bilgen. Direct strain estimation in elastography using spectral cross-correlation. Ultrasound in Medicine and Biology, 26(9):1525–1537, 2000.

    Article  Google Scholar 

  37. F. Viola and W.F. Walker. A comparison of the performance of time-delay estimators in medical ultrasound. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 50(4):392–401, April 2003.

    Article  Google Scholar 

  38. C.F. Westin, S.E. Maier, H. Mamata, A. Nabavi, F.A. Jolesz, and R. Kikinis. Processing and visualization for diffusion tensor mri. Medical Image Analysis, 6:93–108, 2002.

    Article  Google Scholar 

  39. C.F. Westin, S. Peled, H. Gudbjartsson, R. Kikinis, and F. Jolesz. Geometrical diffusion measures for mri from tensor basis analysis. 1997.

    Google Scholar 

  40. Reza Zahiri-Azar and Septimiu E Salcudean. Motion estimation in ultrasound images using time domain cross correlation with prior estimates. IEEE Trans Biomed Eng, 53(10):1990–2000, October 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darío Sosa-Cabrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sosa-Cabrera, D. et al. (2009). Strain Tensor Elastography: 2D and 3D Visualizations. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-299-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-299-3_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-298-6

  • Online ISBN: 978-1-84882-299-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy