Skip to main content

Combining External Sentiment Knowledge for Emotion Cause Detection

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11838))

  • 2578 Accesses

Abstract

Emotion cause detection (ECD) that aims to extract the trigger event of a certain emotion explicitly expressed in text has become a hot topic in natural language processing. However, the performance of existing models all suffers from inadequate sentiment information fusion and the limited size of corpora. In this paper, we propose a novel model to combine external sentiment knowledge for ECD task, namely ExSenti-ECD, to try to solve these problems. First, in order to fully fuse sentiment information, we utilize a sentiment-specific embedding method to encode external sentiment knowledge contained in emotional text into word vectors. Meanwhile a new sentiment polarity corpus is merged from multiple corpora. Then, a pre-training method is adopted to mitigate the impact of the limitation of annotated data for ECD task instead of simply expanding samples. Furthermore, we apply attention mechanism to take emotional context into consideration based on the observation that the context around emotion keywords can provide emotion cause clues. Experimental results show that our model greatly outperforms the state-of-the-art baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, S.Y.M., Chen, Y., Li, S., Huang, C.-R.: Emotion cause events: corpus construction and analysis. In: LREC. ELRA, Valletta (2010)

    Google Scholar 

  2. Chen, Y., Lee, S.Y.M., Li, S., Zhou, G., Huang, C.-R.: Emotion cause detection with linguistic constructions. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 179–187. Coling 2010 Organizing Committee, Beijing (2010)

    Google Scholar 

  3. Lee, S.Y.M., Chen, Y., Huang, C.-R.: A text-driven rule-based system for emotion cause detection. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 45–53. Association for Computational Linguistics, Los Angeles (2010)

    Google Scholar 

  4. Gui, L., Yuan, L., Xu, R., Liu, B., Lu, Q., Zhou, Y.: Emotion cause detection with linguistic construction in Chinese Weibo text. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Natural Language Processing and Chinese Computing. Communications in Computer and Information Science, vol. 496, pp. 457–464. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45924-9_42

    Chapter  Google Scholar 

  5. Gui, L., Wu, D., Xu, R., Lu, Q., Zhou, Y.: Event-driven emotion cause extraction with corpus construction. In: EMNLP, pp. 1639–1649. ACL, Austin (2016)

    Google Scholar 

  6. Gui, L., et al.: A question answering approach for emotion cause extraction. In: EMNLP, pp. 1593–1602. ACL, Copenhagen (2017)

    Google Scholar 

  7. Li, X., Song, K., Feng, S., Wang, D., Zhang, Y.: A co-attention neural network model for emotion cause analysis with emotional context awareness. In: Conference on EMNLP, pp. 4752–4757. ACL, Brussels (2018)

    Google Scholar 

  8. Chen, Y., Hou, W., Cheng, X., Li, S.: Joint learning for emotion classification and emotion cause detection. In: EMNLP, pp. 646–651. ACl, Brussels (2018)

    Google Scholar 

  9. Neviarouskaya, A., Aono, M.: Extracting causes of emotions from text. In: IJCNLP, pp. 932–936. AFNLP, Nagoya (2013)

    Google Scholar 

  10. Russo, I., Caselli, T., Rubino, F., Boldrini, E.: EMOCause: an easy-adaptable approach to extract emotion cause contexts. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, pp. 153–160. Association for Computational Linguistics, Portland (2011)

    Google Scholar 

  11. Ghazi, D., Inkpen, D., Szpakowicz, S.: Detecting emotion stimuli in emotion-bearing sentences. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 152–165. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18117-2_12

    Chapter  Google Scholar 

  12. Cheng, X., Chen, Y., Cheng, B., Li, S., Zhou, G.: An emotion cause corpus for Chinese microblogs with multiple-user structures. ACM Trans. Asian Low-Resour. Lang. Inf. Process., 1–19 (2017)

    Google Scholar 

  13. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for Twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 1555–1565. ACL, Baltimore (2014)

    Google Scholar 

  14. Bespalov, D., Bing, B., Qi, Y., Shokoufandeh, A.: Sentiment classification based on supervised latent n-gram analysis. In: ACM International Conference on Information (2011)

    Google Scholar 

  15. Labutov, I., Lipson, H.: Re-embedding words. In: Proceedings of the 51st Annual Meeting of ACL, pp. 489–493. ACL, Sofia (2013)

    Google Scholar 

  16. Maas, A., Daly, R., Pham, P., Huang, D., Ng, A., Potts, C.: Learning word vectors for sentiment analysis. In: 49th Annual Meeting of ACL, pp. 142–150. ACL, Portland (2011)

    Google Scholar 

  17. Luo, K., Deng, Z.-H., Yu, H., Wei, L.: JEAM: a novel model for cross-domain sentiment classification based on emotion analysis. In: Proceedings of the 2015 Conference on EMNLP, pp. 2503–2508. ACL, Lisbon (2015)

    Google Scholar 

  18. Zhu, S., Li, S., Chen, Y., Zhou, G.: Corpus fusion for emotion classification. In: The 26th COLING, pp. 3287–3297. The COLING 2016 Organizing Committee, Osaka (2016)

    Google Scholar 

  19. Zhang, L., Wu, L., Li, S., Wang, Z., Zhou, G.: Cross-lingual emotion classification with auxiliary and attention neural networks. In: Zhang, M., Ng, V., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2018. LNCS (LNAI), vol. 11108, pp. 429–441. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99495-6_36

    Chapter  Google Scholar 

  20. Mohtarami, M., Lan, M., Tan, C.: Probabilistic sense sentiment similarity through hidden emotions. In: The 51st ACL, pp. 983–992. ACL, Sofia (2013)

    Google Scholar 

  21. Gao, W., Li, S., Lee, S.Y.M., Zhou, G., Huang, C.R.: Joint learning on sentiment and emotion classification. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 1505–1508. ACM (2013)

    Google Scholar 

  22. Ou, G., et al.: Exploiting community emotion for microblog event detection. In: EMNLP, pp. 1159–1168. ACL, Doha (2014)

    Google Scholar 

  23. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2018)

    Google Scholar 

  24. Ashish, V., et al.: Attention is all you need. In: Advances in Neural Information Processing, pp. 6000–6010 (2017)

    Google Scholar 

  25. Mikolov, T., Sutskever, I., Chen, K.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  26. Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space, pp. 1–12 (2013)

    Google Scholar 

  27. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 61671064) and National Key Research & Development Program (Grant No. 2018YFC0831700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumin Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, J., Shi, S., Huang, H. (2019). Combining External Sentiment Knowledge for Emotion Cause Detection. In: Tang, J., Kan, MY., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2019. Lecture Notes in Computer Science(), vol 11838. Springer, Cham. https://doi.org/10.1007/978-3-030-32233-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32233-5_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32232-8

  • Online ISBN: 978-3-030-32233-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy