Abstract
We introduce the Quantitative Biochemical Space Language, a rule-based language for a compact modelling of probabilistic behaviour of complex parameter-dependent biological systems. Application of rules is governed by an associated parametrised rate function, expressing partially known information about the behaviour of the modelled system. The parameter values influence the behaviour of the model. We propose a formal verification-based method for the synthesis of parameter values (parameter synthesis) which ensure the behaviour of the modelled system satisfies a given PCTL property. In addition, we demonstrate how this method can be used for robustness analysis.
This work has been supported by the Czech Science Foundation grant 18-00178S.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
An additional case study targeting a tumour growth is available in Appendix A.
References
Backenköhler, M., Bortolussi, L., Wolf, V.: Moment-based parameter estimation for stochastic reaction networks in equilibrium. TCBB 15(4), 1180–1192 (2018)
Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)
Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P.: An intermediate language for the stochastic simulation of biological systems. TCS 410(33–34), 3085–3109 (2009)
Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Probabilistic model checking of biological systems with uncertain kinetic rates. TCS 419, 2–16 (2012)
Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. arXiv preprint arXiv:1309.0866 (2013)
Bock, C., Bortolussi, L., Krüger, T., Mikeev, L., Wolf, V.: Model-based whole-genome analysis of DNA methylation fidelity. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 141–155. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26916-0_8
Bonzanni, N., Feenstra, K.A., Fokkink, W., Krepska, E.: What can formal methods bring to systems biology? In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 16–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_2
Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inform. Comput. 247, 235–253 (2016)
Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear temporal properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_23
Brim, L., Češka, M., Šafránek, D.: Model checking of biological systems. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 63–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38874-3_3
Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)
Česka, M., Šafránek, D., Dražan, S., Brim, L.: Robustness analysis of stochastic biochemical systems. PLoS ONE 9(4), e94553 (2014)
Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. ENTCS 194(3), 103–117 (2008)
Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)
Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1), 69–110 (2004)
Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21
Dehnert, C., et al.: PROPhESY: A PRObabilistic ParamEter SYnthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13
Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31
Faeder, J.R., Blinov, M.L., Hlavacek, W.S., et al.: Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol. 500, 113–167 (2009)
Fisher, J., Henzinger, T.A.: Executable cell biology. Nat. Biotechnol. 25(11), 1239 (2007)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)
Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. STTT 13(1), 3–19 (2011)
Hasson, H., Jonsson, B.: A logic for reasoning about time and probability. FAOC 6, 512–535 (1994)
Honorato-Zimmer, R., Millar, A.J., Plotkin, G.D., Zardilis, A.: Chromar, a rule-based language of parameterised objects. TCS 335, 49–66 (2017)
Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation. Pearson Education India (2008)
Hutschenreiter, L., Baier, C., Klein, J.: Parametric Markov chains: PCTL complexity and fraction-free Gaussian elimination. arXiv preprint arXiv:1709.02093 (2017)
Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_31
Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-7_15
Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/
Khalid, A., Jha, S.K.: Calibration of rule-based stochastic biochemical models using statistical model checking. In: 2018 IEEE BIBM, pp. 179–184 (2018)
Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3(1), 137 (2007)
Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the probabilistic model checker PRISM. ENTCS 153(2), 5–31 (2006)
Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. FAOC 19(1), 93–109 (2007)
Liu, B., Faeder, J.R.: Parameter estimation of rule-based models using statistical model checking. In: 2016 IEEE BIBM, pp. 1453–1459. IEEE (2016)
Lück, A., Wolf, V.: Generalized method of moments for estimating parameters of stochastic reaction networks. BMC Syst. Biol. 10(1), 98 (2016)
Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103 (2017)
Miyoshi, F., Nakayama, Y., Kaizu, K., Iwasaki, H., Tomita, M.: A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. J. Biol. Rhythms 22(1), 69–80 (2007)
Nedbal, L., Červený, J., Schmidt, H.: Scaling and integration of kinetic models of photosynthesis: towards comprehensive e-photosynthesis. In: Laisk, A., Nedbal, L., Govindjee (eds.) Photosynthesis in Silico. AIPH, pp. 17–29. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9237-4_2
Pedersen, M., Phillips, A., Plotkin, G.D.: A high-level language for rule-based modelling. PLoS ONE 10, 1–26 (2015)
Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_4
Romers, J.C., Krantz, M.: rxncon 2.0: a language for executable molecular systems biology. bioRxiv (2017)
Troják, M., Šafránek, D., Brim, L.: Executable biochemical space for specification and analysis of biochemical systems. In: SASB (2018, to appear)
Troják, M., Šafránek, D., Hrabec, J., Šalagovič, J., Romanovská, F., Červený, J.: E-Cyanobacterium.org: a web-based platform for systems biology of cyanobacteria. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 316–322. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45177-0_20
Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Tumour Growth
A Tumour Growth
Tumour growth is based on mitosis (i.e. cell division). The cell cycle is the process between two mitoses and it consists of four phases: the resting phase \(G_1\), the DNA replication phase S, the resting phase \(G_2\), and the mitosis phase M in which the cells segregate the duplicated sets of chromosomes between daughter cells. The three phases \(G_1\), S, and \(G_2\) constitute the pre-mitotic phase, also called interphase.
We have adopted the model of tumour growth [44] to our language. It considers two populations of tumour cells: those in interphase and those in mitosis. We represent the tumour cell as an agent \(\mathsf {T}\). The current phase is expressed with an atom \(\mathsf {phase}\) in its composition, which can have two different states – \(\mathsf {i}\) for interphase and \(\mathsf {m}\) for mitosis. For simplicity, we omit the compartment from the rules since it does not change and plays no important role in this model.
Rules of the tumour growth model. The first rule describes the change of the phase of a cell from interphase to mitosis. The second rule describes the duplication of the cell to two daughter cells. Note that both start in interphase. The last two rules describe the death of cells in both possible states.
Visualisation of results of parameter synthesis (left) and quantitative model checking using sampling (right) for property \(\phi \) for tumour growth model. The horizontal axis represents values of the parameter \(a_1 \in [0, 3]\) and the vertical axis represents values of the parameter \(d_2 \in [0.001, 0.5]\). The probability threshold 0.5 from the property \(\phi \) is visible in both sampling (approximately the yellow line) and parameter synthesis (the grey line). It shows that the parameter synthesis method gives us a very precise result and is in agreement with quantitative model checking. (Color figure online)
The rules of the model are available in Fig. 5. Note that this model is a demonstration where all rules are reaction-based, i.e. they do not describe an abstract rule, only modification of concrete agents.
Given rate functions of rules are parametrised. Parameters \(\mathsf {a_1}\) and \(\mathsf {a_2}\) are present in rules responsible for change of phase and cell division, while parameters \(\mathsf {d_1}\) and \(\mathsf {d_2}\) are in the rules where the cell disappears or dies. The values \(\mathsf {a_2} = 0.5\) and \(\mathsf {d_1} = 0.3\) are constant the other two parameters are given by admissible ranges: \(\mathsf {a_1} \in [0 ; 3]\) and for \(\mathsf {d_2} \in [0.001; 0.5]\).
For the initial state, we assume a single agent \(\mathsf {T}^{1}(\mathsf {phase}\{\mathsf {i}\})\). Please note that the model gives rise to infinite pMC since the second rule can generate additional agents. To obtain a finite abstract probabilistic model, we have heuristically limited the number of states of the model. Particularly, we generate all the states having the number of individuals of both species less or equal to 5 and we introduce a special abstract state which represents all the other states, which limits the size of possible state space to \(6^2\). This approximation is incorrect only in cases when one wants to reach a state which is represented by the special state.
We are interested in property whether the population of tumour cells will reach almost its maximum with the probability higher than 0.5, meaning that the growth is not random but has rather tendency to grow without limitations. This property can be expressed as . In Fig. 6, there is a visualisation of parameter synthesis. The results show that the higher values of the parameter \(a_1\) (cell division) and the lower values of the parameter \(d_2\) increase the probability of property satisfaction. This result is quite expected, because both parameters directly influence cell division (\(a_1\)) and degradation (\(d_2\)) of cells. We have also computed the global robustness degree of the property, which is approximately 0.24. It can be interpreted as 24% of parameter space satisfies the property \(\mathsf {True}~\mathbf {U}~\mathsf {T}^{j}(\emptyset ) > 8\).
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Troják, M., Šafránek, D., Mertová, L., Brim, L. (2020). Parameter Synthesis and Robustness Analysis of Rule-Based Models. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds) NASA Formal Methods. NFM 2020. Lecture Notes in Computer Science(), vol 12229. Springer, Cham. https://doi.org/10.1007/978-3-030-55754-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-55754-6_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55753-9
Online ISBN: 978-3-030-55754-6
eBook Packages: Computer ScienceComputer Science (R0)