Skip to main content

The SWORD is Mightier Than the Interview: A Framework for Semi-automatic WORkaround Detection

  • Conference paper
  • First Online:
Business Process Management (BPM 2022)

Abstract

Workarounds can give valuable insights into the work processes that are carried out within organizations. To date, workarounds are usually identified using qualitative methods, such as interviews. We propose the semi-automated WORkaround Detection (SWORD) framework, which takes event logs as input. This extensible framework uses twenty-two patterns to semi-automatically detect workarounds. The value of the SWORD framework is that it can help to identify workarounds more efficiently and more thoroughly than is possible by the use of a more traditional, qualitative approach.

Through the use of real hospital data, we demonstrate the applicability and effectiveness of the SWORD framework in practice. We focused on the use of three patterns, which all turned out to be applicable to the characteristics of the data set. The use of two of these patterns also led to the identification of actual workarounds. Future work is geared to the extension of the patterns within the framework and the enhancement of techniques that can help to identify these in real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003). https://doi.org/10.1016/s0169-023x(03)00066-1

    Article  Google Scholar 

  2. Alter, S.: Theory of workarounds. Commun. Assoc. Inf. Syst. 34 (2014). https://doi.org/10.17705/1cais.03455

  3. Azad, B., King, N.: Enacting computer workaround practices within a medication dispensing system. Eur. J. Inf. Syst. 17(3), 264–278 (2008). https://doi.org/10.1057/ejis.2008.14

    Article  Google Scholar 

  4. Batista, E., Solanas, A.: Process mining in healthcare: a systematic review. In: 2018 9th International Conference on Information, Intelligence, Systems and Applications. IEEE, July 2018. https://doi.org/10.1109/iisa.2018.8633608

  5. Beerepoot, I., Lu, X., van de Weerd, I., Reijers, H.A.: Seeing the signs of workarounds: a mixed-methods approach to the detection of nurses’ process deviations. In: Proceedings of the Annual Hawaii International Conference on System Sciences. Hawaii International Conference on System Sciences (2021). https://doi.org/10.24251/hicss.2021.456

  6. Beerepoot, I., van de Weerd, I.: Prevent, redesign, adopt or ignore: improving healthcare using knowledge of workarounds. In: Twenty-Sixth European Conference on Information Systems (2018)

    Google Scholar 

  7. Bolt, A., de Leoni, M., van der Aalst, W.M.P.: Process variant comparison: using event logs to detect differences in behavior and business rules. Inf. Syst. 74, 53–66 (2018). https://doi.org/10.1016/j.is.2017.12.006

    Article  Google Scholar 

  8. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative business process models in data-aware scenarios. Expert Syst. Appl. 41(11), 5340–5352 (2014). https://doi.org/10.1016/j.eswa.2014.03.010

    Article  Google Scholar 

  9. Bose, R.P.J.C., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: 2013 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, April 2013. https://doi.org/10.1109/cidm.2013.6597225

  10. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016). https://doi.org/10.1016/j.eswa.2016.08.040

    Article  Google Scholar 

  11. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  12. Dunzer, S., Stierle, M., Matzner, M., Baier, S.: Conformance checking: a state-of-the-art literature review. In: Proceedings of the 11th International Conference on Subject-Oriented Business Process Management. ACM Press (2019). https://doi.org/10.1145/3329007.3329014

  13. Ejnefjäll, T., Ågerfalk, P.J.: Conceptualizing workarounds: meanings and manifestations in information systems research. Commun. Assoc. Inf. Syst. 45, 340–363 (2019). https://doi.org/10.17705/1cais.04520

    Article  Google Scholar 

  14. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (1996)

    Google Scholar 

  15. Ignatiadis, I., Nandhakumar, J.: The effect of ERP system workarounds on organizational control: an interpretivist case study. Scand. J. Inf. Syst. 21(2), 3 (2009)

    Google Scholar 

  16. Ilie, V.: Psychological reactance and user workarounds. a study in the context of electronic medical records implementations. In: ECIS (2013)

    Google Scholar 

  17. Lauer, T., Rajagopalan, B.: Examining the relationship between acceptance and resistance in system implementation. In: AMCIS 2002 Proceedings, p. 179 (2002)

    Google Scholar 

  18. Lazovik, A., Aiello, M., Papazoglou, M.: Associating assertions with business processes and monitoring their execution. In: Proceedings of the 2nd International Conference on Service Oriented Computing. ACM Press (2004). https://doi.org/10.1145/1035167.1035182

  19. de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models for multi-perspective conformance checking: an approach based on integer linear programming. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 113–129. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_10

    Chapter  Google Scholar 

  20. Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors for failure detection. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press (2009). https://doi.org/10.1145/1557019.1557083

  21. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Detecting deviating behaviors without models. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 126–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_11

    Chapter  Google Scholar 

  22. Mahbub, K., Spanoudakis, G.: A framework for requirents monitoring of service based systems. In: Proceedings of the 2nd International Conference on Service Oriented Computing, pp. 84–93. ACM Press (2004). https://doi.org/10.1145/1035167.1035181

  23. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2015). https://doi.org/10.1007/s00607-015-0441-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Business process deviance mining: review and evaluation. arXiv preprint arXiv:1608.08252, August 2016

  25. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support vector machines. In: Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, pp. 276–285. IEEE (1997). https://doi.org/10.1109/nnsp.1997.622408

  26. Ras, G., van Gerven, M., Haselager, P.: Explanation methods in deep learning: users, values, concerns and challenges. In: Escalante, H.J., et al. (eds.) Explainable and Interpretable Models in Computer Vision and Machine Learning. TSSCML, pp. 19–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4_2

    Chapter  Google Scholar 

  27. Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012). https://doi.org/10.1016/j.is.2011.01.003

    Article  Google Scholar 

  28. Röder, N., Wiesche, M., Schermann, M.: A situational perspective on workarounds in IT-enabled business processes: a multiple case study. In: ECIS (2014)

    Google Scholar 

  29. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008). https://doi.org/10.1016/j.is.2007.07.001

    Article  Google Scholar 

  30. Swennen, M., et al.: Capturing resource behaviour from event logs. In: SIMPDA, pp. 130–134 (2016)

    Google Scholar 

  31. Taymouri, F., La Rosa, M., Dumas, M., Maggi, F.M.: Business process variant analysis: survey and classification. Knowl. Based Syst. 211, 106557 (2021). https://doi.org/10.1016/j.knosys.2020.106557

    Article  Google Scholar 

  32. Tucker, A.L.: The impact of workaround difficulty on frontline employees’ response to operational failures: a laboratory experiment on medication administration. Manag. Sci. 62(4), 1124–1144 (2016). https://doi.org/10.1287/mnsc.2015.2170

    Article  Google Scholar 

  33. Weinzierl, S., Wolf, V., Pauli, T., Beverungen, D., Matzner, M.: Detecting workarounds in business processes-a deep learning method for analyzing event logs. In: Proceedings of the 28th European Conference on Information Systems, May 2020

    Google Scholar 

  34. Wynn, M.T., et al.: ProcessProfiler3D: a visualisation framework for log-based process performance comparison. Decis. Support Syst. 100, 93–108 (2017). https://doi.org/10.1016/j.dss.2017.04.004

    Article  Google Scholar 

Download references

Acknowledgments

This publication is part of the WorkAround Mining (WAM!) project (with project number 18490) which is (partly) financed by the Dutch Research Council (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter van der Waal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van der Waal, W., Beerepoot, I., van de Weerd, I., Reijers, H.A. (2022). The SWORD is Mightier Than the Interview: A Framework for Semi-automatic WORkaround Detection. In: Di Ciccio, C., Dijkman, R., del Río Ortega, A., Rinderle-Ma, S. (eds) Business Process Management. BPM 2022. Lecture Notes in Computer Science, vol 13420. Springer, Cham. https://doi.org/10.1007/978-3-031-16103-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16103-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16102-5

  • Online ISBN: 978-3-031-16103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy