Skip to main content

AdaAfford: Learning to Adapt Manipulation Affordance for 3D Articulated Objects via Few-Shot Interactions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Included in the following conference series:

  • 2769 Accesses

Abstract

Perceiving and interacting with 3D articulated objects, such as cabinets, doors, and faucets, pose particular challenges for future home-assistant robots performing daily tasks in human environments.

Besides parsing the articulated parts and joint parameters, researchers recently advocate learning manipulation affordance over the input shape geometry which is more task-aware and geometrically fine-grained.

However, taking only passive observations as inputs, these methods ignore many hidden but important kinematic constraints (e.g., joint location and limits) and dynamic factors (e.g., joint friction and restitution), therefore losing significant accuracy for test cases with such uncertainties. In this paper, we propose a novel framework, named AdaAfford, that learns to perform very few test-time interactions for quickly adapting the affordance priors to more accurate instance-specific posteriors. We conduct large-scale experiments using the PartNet-Mobility dataset and prove that our system performs better than baselines. We will release our code and data upon paper acceptance.

Y. Wang, R. Wu and K. Mo—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, P., Nair, A., Abbeel, P., Malik, J., Levine, S.: Learning to poke by poking: experiential learning of intuitive physics. arXiv preprint arXiv:1606.07419 (2016)

  2. Chitta, S., Cohen, B., Likhachev, M.: Planning for autonomous door opening with a mobile manipulator. In: 2010 IEEE International Conference on Robotics and Automation, pp. 1799–1806. IEEE (2010)

    Google Scholar 

  3. Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F., Rogez, G.: Ganhand: predicting human grasp affordances in multi-object scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5031–5041 (2020)

    Google Scholar 

  4. Fang, K., Wu, T.L., Yang, D., Savarese, S., Lim, J.J.: Demo2vec: reasoning object affordances from online videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2139–2147 (2018)

    Google Scholar 

  5. Farid, K., Sakr, N.: Few shot system identification for reinforcement learning. arXiv preprint arXiv:2103.08850 (2021)

  6. Ferreira, F., Shao, L., Asfour, T., Bohg, J.: Learning visual dynamics models of rigid objects using relational inductive biases. arXiv preprint arXiv:1909.03749 (2019)

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  8. Fouhey, D.F., Delaitre, V., Gupta, A., Efros, A.A., Laptev, I., Sivic, J.: People watching: human actions as a cue for single view geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 732–745. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_53

    Chapter  Google Scholar 

  9. Gibson, J.J.: The theory of affordances. Hilldale USA 1(2), 67–82 (1977)

    Google Scholar 

  10. Janner, M., Levine, S., Freeman, W.T., Tenenbaum, J.B., Finn, C., Wu, J.: Reasoning about physical interactions with object-oriented prediction and planning. arXiv preprint arXiv:1812.10972 (2018)

  11. Jiang, Z., Zhu, Y., Svetlik, M., Fang, K., Zhu, Y.: Synergies between affordance and geometry: 6-DoF grasp detection via implicit representations. In: Proceedings of Robotics: Science and Systems (RSS) (2021)

    Google Scholar 

  12. Kjellström, H., Romero, J., Kragić, D.: Visual object-action recognition: inferring object affordances from human demonstration. Comput. Vis. Image Underst. 115(1), 81–90 (2011)

    Article  Google Scholar 

  13. Kokic, M., Kragic, D., Bohg, J.: Learning task-oriented grasping from human activity datasets. IEEE Robot. Autom. Lett. 5(2), 3352–3359 (2020)

    Article  Google Scholar 

  14. Kumar, K.N., Essa, I., Ha, S., Liu, C.K.: Estimating mass distribution of articulated objects using non-prehensile manipulation. arXiv preprint arXiv:1907.03964 (2019)

  15. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34(4–5), 705–724 (2015)

    Article  Google Scholar 

  16. Li, X., Liu, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Putting humans in a scene: learning affordance in 3D indoor environments. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  17. Mandikal, P., Grauman, K.: Learning dexterous grasping with object-centric visual affordances. In: IEEE International Conference on Robotics and Automation (ICRA) (2021)

    Google Scholar 

  18. Mo, K., Guibas, L.J., Mukadam, M., Gupta, A., Tulsiani, S.: Where2act: from pixels to actions for articulated 3D objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6813–6823, October 2021

    Google Scholar 

  19. Mo, K., Qin, Y., Xiang, F., Su, H., Guibas, L.: O2O-afford: annotation-free large-scale object-object affordance learning. In: Conference on Robot Learning (CoRL) (2021)

    Google Scholar 

  20. Mo, K., et al.: PartNet: a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  21. Nagarajan, T., Grauman, K.: Learning affordance landscapes for interaction exploration in 3D environments. In: NeurIPS (2020)

    Google Scholar 

  22. NVIDIA. Nvidia.physx

    Google Scholar 

  23. Peterson, L., Austin, D., Kragic, D.: High-level control of a mobile manipulator for door opening. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113), vol. 3, pp. 2333–2338. IEEE (2000)

    Google Scholar 

  24. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  25. Qi, W., Mullapudi, R.T., Gupta, S., Ramanan, D.: Learning to move with affordance maps. arXiv preprint arXiv:2001.02364 (2020)

  26. Qin, Y., Chen, R., Zhu, H., Song, M., Xu, J., Su, H.: S4G: amodal single-view single-shot se (3) grasp detection in cluttered scenes. In: Conference on Robot Learning, pp. 53–65. PMLR (2020)

    Google Scholar 

  27. Qin, Z., Fang, K., Zhu, Y., Fei-Fei, L., Savarese, S.: Keto: learning keypoint representations for tool manipulation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7278–7285. IEEE (2020)

    Google Scholar 

  28. Rakelly, K., Zhou, A., Finn, C., Levine, S., Quillen, D.: Efficient off-policy meta-reinforcement learning via probabilistic context variables. In: International Conference on Machine Learning, pp. 5331–5340. PMLR (2019)

    Google Scholar 

  29. Redmon, J., Angelova, A.: Real-time grasp detection using convolutional neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1316–1322. IEEE (2015)

    Google Scholar 

  30. Schmidt, T., Newcombe, R.A., Fox, D.: Dart: dense articulated real-time tracking. In: Robotics: Science and Systems, Berkeley, CA, vol. 2 (2014)

    Google Scholar 

  31. Sun, Yu., Ren, S., Lin, Y.: Object-object interaction affordance learning. Robot. Auton. Syst. 62(4), 487–496 (2014)

    Article  Google Scholar 

  32. Tzionas, D., Gall, J.: Reconstructing articulated rigged models from RGB-D videos. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 620–633. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_53

    Chapter  Google Scholar 

  33. Urakami, Y., Hodgkinson, A., Carlin, C., Leu, R., Rigazio, L., Abbeel, P.: Doorgym: a scalable door opening environment and baseline agent. In: Deep RL workshop at NeurIPS 2019 (2019)

    Google Scholar 

  34. Wang, X., Zhou, B., Shi, Y., Chen, X., Zhao, Q., Xu, K.: Shape2motion: joint analysis of motion parts and attributes from 3D shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8876–8884 (2019)

    Google Scholar 

  35. Weng, Y., et al.: Captra: category-level pose tracking for rigid and articulated objects from point clouds. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 13209–13218, October 2021

    Google Scholar 

  36. Wu, R., et al.: VAT-mart: learning visual action trajectory proposals for manipulating 3D ARTiculated objects. In: International Conference on Learning Representations (2022)

    Google Scholar 

  37. Xiang, F., et al.: SAPIEN: a simulated part-based interactive environment. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  38. Xu, Z., Wu, J., Zeng, A., Tenenbaum, J.B., Song, S.: Densephysnet: learning dense physical object representations via multi-step dynamic interactions. arXiv preprint arXiv:1906.03853 (2019)

  39. Xu, Z., He, Z., Song, S.: UMPNet: universal manipulation policy network for articulated objects. IEEE Robot. Autom. Lett. (2022)

    Google Scholar 

  40. Yan, Z., et al.: RPM-NET: recurrent prediction of motion and parts from point cloud. ACM Trans. Graph. 38(6), Article 240 (2019)

    Google Scholar 

  41. Yang, L., Zhan, X., Li, K., Xu, W., Li, J., Lu, C.: CPF: learning a contact potential field to model the hand-object interaction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11097–11106 (2021)

    Google Scholar 

  42. Yi, L., Huang, H., Liu, D., Kalogerakis, E., Su, H., Guibas, L.: Deep part induction from articulated object pairs. ACM Trans. Graph. 37(6) (2018)

    Google Scholar 

  43. Yu, W., Tan, J., Liu, C.K., Turk, G.: Preparing for the unknown: learning a universal policy with online system identification. arXiv preprint arXiv:1702.02453 (2017)

  44. Zhao, T.Z., Nagabandi, A., Rakelly, K., Finn, C., Levine, S.: Meld: meta-reinforcement learning from images via latent state models. arXiv preprint arXiv:2010.13957 (2020)

  45. Zhou, W., Pinto, L., Gupta, A.: Environment probing interaction policies. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

    Google Scholar 

  46. Zhu, Y., Zhao, Y., Chun Zhu, S.: Understanding tools: task-oriented object modeling, learning and recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2855–2864 (2015)

    Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China -Youth Science Fund (No. 62006006). Leonidas and Kaichun were supported by the Toyota Research Institute (TRI) University 2.0 program, NSF grant IIS-1763268, a Vannevar Bush Faculty Fellowship, and a gift from the Amazon Research Awards program. The Toyota Research Institute University 2.0 program (Toyota Research Institute (“TRI”) provided funds to assist the authors with their research but this article solely reflects the opinions and conclusions of its authors and not TRI or any other Toyota entity).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Dong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1933 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2022). AdaAfford: Learning to Adapt Manipulation Affordance for 3D Articulated Objects via Few-Shot Interactions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy