Abstract
Supervised deep learning has been widely applied in medical imaging to detect multiple sclerosis. However, it is difficult to have perfectly annotated lesions in magnetic resonance images, due to the inherent difficulties with the annotation process performed by human experts. To provide a model that can completely ignore annotations, we propose an unsupervised anomaly detection approach. The method uses a convolutional autoencoder to learn a “normal brain” distribution and detects abnormalities as a deviation from the norm. Experiments conducted with the recently released OASIS-3 dataset and the challenging MSSEG dataset show the feasibility of the proposed method, as very encouraging sensitivity and specificity were achieved in the binary health/disease discrimination. Following the “normal brain” learning rule, the proposed approach can easily generalize to other types of brain diseases, due to its potential to detect arbitrary anomalies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Arazo, E., Ortego, D., Albert, P., O’Connor, N., McGuinness, K.: Unsupervised label noise modeling and loss correction. In: International Conference on Machine Learning, pp. 312–321. PMLR (2019)
Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021)
Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16
Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Fusing unsupervised and supervised deep learning for white matter lesion segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 63–72. PMLR (2019)
Bengs, M., Behrendt, F., Krüger, J., Opfer, R., Schlaefer, A.: Three-dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI. Int. J. Comput. Assist. Radiol. Surg. 16(9), 1413–1423 (2021). https://doi.org/10.1007/s11548-021-02451-9
Bercea, C.I., Wiestler, B., Rueckert, D., Albarqouni, S.: FedDis: disentangled federated learning for unsupervised brain pathology segmentation. arXiv preprint arXiv:2103.03705 (2021)
Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv preprint arXiv:1807.02011 (2018)
Carass, A.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. Neuroimage 148, 77–102 (2017)
Casalino, G., Castellano, G., Consiglio, A., Nuzziello, N., Vessio, G.: MicroRNA expression classification for pediatric multiple sclerosis identification. J. Ambient Intell. Humanized Comput. 1–10 (2021). https://doi.org/10.1007/s12652-021-03091-2
Chen, P., Liao, B.B., Chen, G., Zhang, S.: Understanding and utilizing deep neural networks trained with noisy labels. In: International Conference on Machine Learning, pp. 1062–1070. PMLR (2019)
Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv preprint arXiv:1806.04972 (2018)
Commowick, O., et al.: Multiple sclerosis lesions segmentation from multiple experts: The MICCAI 2016 challenge dataset. Neuroimage 244, 118589 (2021)
Dobson, R., Giovannoni, G.: Multiple sclerosis-a review. Eur. J. Neurol. 26(1), 27–40 (2019)
LaMontagne, P.J., et al.: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv (2019)
Lee, K.H., He, X., Zhang, L., Yang, L.: CleanNet: transfer learning for scalable image classifier training with label noise. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5447–5456 (2018)
Oh, J., Vidal-Jordana, A., Montalban, X.: Multiple sclerosis: clinical aspects. Curr. Opin. Neurol. 31(6), 752–759 (2018)
Placidi, G., Cinque, L., Mignosi, F., Polsinelli, M.: Multiple Sclerosis lesions identification/segmentation in Magnetic Resonance Imaging using ensemble CNN and uncertainty classification. arXiv preprint arXiv:2108.11791 (2021)
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12
Shoeibi, A., et al.: Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: a review. Comput. Biol. Med. 136, 104697 (2021)
Simarro Viana, J., de la Rosa, E., Vande Vyvere, T., Robben, D., Sima, D.M., Investigators, C.E.N.T.E.R.-T.B.I.P.: Unsupervised 3D brain anomaly detection. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 133–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_13
Vahdat, A.: Toward robustness against label noise in training deep discriminative neural networks. In: Advances in Neural Information Processing Systems 30 (2017)
Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58
Yan, K., Cai, J., Harrison, A.P., Jin, D., Xiao, J., Lu, L.: Universal lesion detection by learning from multiple heterogeneously labeled datasets. arXiv preprint arXiv:2005.13753 (2020)
Yi, K., Wu, J.: Probabilistic end-to-end noise correction for learning with noisy labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7017–7025 (2019)
Zhang, H., Oguz, I.: Multiple sclerosis lesion segmentation - a survey of supervised CNN-based methods. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 11–29. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_2
Zlocha, M., Dou, Q., Glocker, B.: Improving RetinaNet for CT Lesion detection with dense masks from weak RECIST labels. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 402–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_45
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Castellano, G., Placidi, G., Polsinelli, M., Tulipani, G., Vessio, G. (2023). Unsupervised Brain MRI Anomaly Detection for Multiple Sclerosis Classification. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_45
Download citation
DOI: https://doi.org/10.1007/978-3-031-37660-3_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37659-7
Online ISBN: 978-3-031-37660-3
eBook Packages: Computer ScienceComputer Science (R0)