Skip to main content

Unsupervised Brain MRI Anomaly Detection for Multiple Sclerosis Classification

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Abstract

Supervised deep learning has been widely applied in medical imaging to detect multiple sclerosis. However, it is difficult to have perfectly annotated lesions in magnetic resonance images, due to the inherent difficulties with the annotation process performed by human experts. To provide a model that can completely ignore annotations, we propose an unsupervised anomaly detection approach. The method uses a convolutional autoencoder to learn a “normal brain” distribution and detects abnormalities as a deviation from the norm. Experiments conducted with the recently released OASIS-3 dataset and the challenging MSSEG dataset show the feasibility of the proposed method, as very encouraging sensitivity and specificity were achieved in the binary health/disease discrimination. Following the “normal brain” learning rule, the proposed approach can easily generalize to other types of brain diseases, due to its potential to detect arbitrary anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.slicer.org/wiki/Modules:BRAINSResample.

  2. 2.

    https://pypi.org/project/deepbrain/.

References

  1. Arazo, E., Ortego, D., Albert, P., O’Connor, N., McGuinness, K.: Unsupervised label noise modeling and loss correction. In: International Conference on Machine Learning, pp. 312–321. PMLR (2019)

    Google Scholar 

  2. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal. 69, 101952 (2021)

    Article  Google Scholar 

  3. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

    Chapter  Google Scholar 

  4. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Fusing unsupervised and supervised deep learning for white matter lesion segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 63–72. PMLR (2019)

    Google Scholar 

  5. Bengs, M., Behrendt, F., Krüger, J., Opfer, R., Schlaefer, A.: Three-dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI. Int. J. Comput. Assist. Radiol. Surg. 16(9), 1413–1423 (2021). https://doi.org/10.1007/s11548-021-02451-9

    Article  Google Scholar 

  6. Bercea, C.I., Wiestler, B., Rueckert, D., Albarqouni, S.: FedDis: disentangled federated learning for unsupervised brain pathology segmentation. arXiv preprint arXiv:2103.03705 (2021)

  7. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. arXiv preprint arXiv:1807.02011 (2018)

  8. Carass, A.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. Neuroimage 148, 77–102 (2017)

    Article  Google Scholar 

  9. Casalino, G., Castellano, G., Consiglio, A., Nuzziello, N., Vessio, G.: MicroRNA expression classification for pediatric multiple sclerosis identification. J. Ambient Intell. Humanized Comput. 1–10 (2021). https://doi.org/10.1007/s12652-021-03091-2

  10. Chen, P., Liao, B.B., Chen, G., Zhang, S.: Understanding and utilizing deep neural networks trained with noisy labels. In: International Conference on Machine Learning, pp. 1062–1070. PMLR (2019)

    Google Scholar 

  11. Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. arXiv preprint arXiv:1806.04972 (2018)

  12. Commowick, O., et al.: Multiple sclerosis lesions segmentation from multiple experts: The MICCAI 2016 challenge dataset. Neuroimage 244, 118589 (2021)

    Article  Google Scholar 

  13. Dobson, R., Giovannoni, G.: Multiple sclerosis-a review. Eur. J. Neurol. 26(1), 27–40 (2019)

    Article  Google Scholar 

  14. LaMontagne, P.J., et al.: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. MedRxiv (2019)

    Google Scholar 

  15. Lee, K.H., He, X., Zhang, L., Yang, L.: CleanNet: transfer learning for scalable image classifier training with label noise. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5447–5456 (2018)

    Google Scholar 

  16. Oh, J., Vidal-Jordana, A., Montalban, X.: Multiple sclerosis: clinical aspects. Curr. Opin. Neurol. 31(6), 752–759 (2018)

    Article  Google Scholar 

  17. Placidi, G., Cinque, L., Mignosi, F., Polsinelli, M.: Multiple Sclerosis lesions identification/segmentation in Magnetic Resonance Imaging using ensemble CNN and uncertainty classification. arXiv preprint arXiv:2108.11791 (2021)

  18. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  19. Shoeibi, A., et al.: Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: a review. Comput. Biol. Med. 136, 104697 (2021)

    Article  Google Scholar 

  20. Simarro Viana, J., de la Rosa, E., Vande Vyvere, T., Robben, D., Sima, D.M., Investigators, C.E.N.T.E.R.-T.B.I.P.: Unsupervised 3D brain anomaly detection. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 133–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_13

    Chapter  Google Scholar 

  21. Vahdat, A.: Toward robustness against label noise in training deep discriminative neural networks. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  22. Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58

    Chapter  Google Scholar 

  23. Yan, K., Cai, J., Harrison, A.P., Jin, D., Xiao, J., Lu, L.: Universal lesion detection by learning from multiple heterogeneously labeled datasets. arXiv preprint arXiv:2005.13753 (2020)

  24. Yi, K., Wu, J.: Probabilistic end-to-end noise correction for learning with noisy labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7017–7025 (2019)

    Google Scholar 

  25. Zhang, H., Oguz, I.: Multiple sclerosis lesion segmentation - a survey of supervised CNN-based methods. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 11–29. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_2

    Chapter  Google Scholar 

  26. Zlocha, M., Dou, Q., Glocker, B.: Improving RetinaNet for CT Lesion detection with dense masks from weak RECIST labels. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 402–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_45

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Vessio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castellano, G., Placidi, G., Polsinelli, M., Tulipani, G., Vessio, G. (2023). Unsupervised Brain MRI Anomaly Detection for Multiple Sclerosis Classification. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37660-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37659-7

  • Online ISBN: 978-3-031-37660-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy