Skip to main content

Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15131))

Included in the following conference series:

  • 188 Accesses

Abstract

Cellular nuclei recognition serves as a fundamental and essential step in the workflow of digital pathology. However, with disparate source organs and staining procedures among histology image clusters, the scanned tiles inherently conform to a non-uniform data distribution, which induces deteriorated promises for general cross-cohort usages. Despite the latest efforts leveraging domain adaptation to mitigate distributional discrepancy, those methods are subjected to modeling the morphological characteristics of each cell individually, disregarding the hierarchical latent structure and intrinsic contextual correspondences across the tumor micro-environment. In this work, we identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition and thereby propose to exploit the dependence over various biological structures for domain adaptive cellular recognition. We discover those high-level correspondences via unsupervised contextual modeling and use them as bridges to facilitate adaptation over diverse organs and stains. In addition, to further exploit the rich spatial contexts embedded amongst nuclear communities, we propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents. The proposed method is extensively evaluated on a broad spectrum of cross-domain settings under miscellaneous data distribution shifts and outperforms the state-of-the-art methods by a substantial margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abousamra, S., et al.: Multi-class cell detection using spatial context representation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4005–4014 (2021)

    Google Scholar 

  2. Cao, S., Joshi, D., Gui, L.Y., Wang, Y.X.: Contrastive mean teacher for domain adaptive object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23839–23848 (2023)

    Google Scholar 

  3. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  4. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  5. Deng, J., Xu, D., Li, W., Duan, L.: Harmonious teacher for cross-domain object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23829–23838 (2023)

    Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (2021)

    Google Scholar 

  7. Fan, J., Liu, D., Chang, H., Cai, W.: Learning to generalize over subpartitions for heterogeneity-aware domain adaptive nuclei segmentation. Int. J. Comput. Vis. 1–24 (2024)

    Google Scholar 

  8. Fan, J., Liu, D., Chang, H., Huang, H., Chen, M., Cai, W.: Taxonomy adaptive cross-domain adaptation in medical imaging via optimization trajectory distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21174–21184 (2023)

    Google Scholar 

  9. Gamper, J., Alemi Koohbanani, N., Benet, K., Khuram, A., Rajpoot, N.: PanNuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification. In: Reyes-Aldasoro, C.C., Janowczyk, A., Veta, M., Bankhead, P., Sirinukunwattana, K. (eds.) ECDP 2019. LNCS, vol. 11435, pp. 11–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23937-4_2

    Chapter  Google Scholar 

  10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  11. Graham, S., et al.: Lizard: a large-scale dataset for colonic nuclear instance segmentation and classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 684–693 (2021)

    Google Scholar 

  12. Graham, S., et al.: Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Article  Google Scholar 

  13. Han, K., et al.: A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45(1), 87–110 (2022)

    Article  Google Scholar 

  14. Han, X., et al.: Deep symmetric adaptation network for cross-modality medical image segmentation. IEEE Trans. Med. Imaging 41(1), 121–132 (2021)

    Article  Google Scholar 

  15. He, H., et al.: TopoSeg: topology-aware nuclear instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21307–21316 (2023)

    Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  17. He, Z., Zhang, L., Gao, X., Zhang, D.: Multi-adversarial faster-RCNN with paradigm teacher for unrestricted object detection. Int. J. Comput. Vision 131(3), 680–700 (2023)

    Article  Google Scholar 

  18. Hinton, G.: How to represent part-whole hierarchies in a neural network. Neural Comput. 1–40 (2022)

    Google Scholar 

  19. Hsu, J., Chiu, W., Yeung, S.: DARCNN: domain adaptive region-based convolutional neural network for unsupervised instance segmentation in biomedical images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1003–1012 (2021)

    Google Scholar 

  20. Huang, J., Guan, D., Xiao, A., Lu, S.: RDA: robust domain adaptation via Fourier adversarial attacking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8988–8999 (2021)

    Google Scholar 

  21. Huang, J., Li, H., Wan, X., Li, G.: Affine-consistent transformer for multi-class cell nuclei detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21384–21393 (2023)

    Google Scholar 

  22. Kennerley, M., Wang, J.G., Veeravalli, B., Tan, R.T.: 2PCNet: two-phase consistency training for day-to-night unsupervised domain adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11484–11493 (2023)

    Google Scholar 

  23. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2019)

    Article  Google Scholar 

  24. Li, C., Liu, D., Li, H., Zhang, Z., Lu, G., Chang, X., Cai, W.: Domain adaptive nuclei instance segmentation and classification via category-aware feature alignment and pseudo-labelling. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI. LNCS, vol. 13437, pp. 715–724. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_68

    Chapter  Google Scholar 

  25. Li, W., Liu, X., Yuan, Y.: Sigma: semantic-complete graph matching for domain adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5291–5300 (2022)

    Google Scholar 

  26. Liu, D., et al.: Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4243–4252 (2020)

    Google Scholar 

  27. Liu, P., Bilgic, M.: Relational classification of biological cells in microscopy images. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 344–352 (2021)

    Google Scholar 

  28. Lu, C., et al.: Nuclear shape and orientation features from H &E images predict survival in early-stage estrogen receptor-positive breast cancers. Lab. Invest. 98(11), 1438–1448 (2018)

    Article  Google Scholar 

  29. Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4500–4509 (2018)

    Google Scholar 

  30. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. Med. Image Anal. 59, 101557 (2020)

    Article  Google Scholar 

  31. Peters, J., Janzing, D., Schölkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, Cambridge (2017)

    Google Scholar 

  32. Rendeiro, A.F., et al.: The spatial landscape of lung pathology during COVID-19 progression. Nature 593(7860), 564–569 (2021)

    Article  Google Scholar 

  33. Ryu, J., et al.: OCELOT: overlapped cell on tissue dataset for histopathology. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23902–23912 (2023)

    Google Scholar 

  34. Saranrittichai, P., Mummadi, C.K., Blaiotta, C., Munoz, M., Fischer, V.: Overcoming shortcut learning in a target domain by generalizing basic visual factors from a source domain. In: ECCV 2022. LNCS, vol. 13685, pp. 294–309. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19806-9_17

    Chapter  Google Scholar 

  35. Shin, H., Kim, H., Kim, S., Jun, Y., Eo, T., Hwang, D.: SDC-UDA: volumetric unsupervised domain adaptation framework for slice-direction continuous cross-modality medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7412–7421 (2023)

    Google Scholar 

  36. Tyagi, A.K., et al.: DeGPR: deep guided posterior regularization for multi-class cell detection and counting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23913–23923 (2023)

    Google Scholar 

  37. Verma, R., et al.: MoNuSAC 2020: a multi-organ nuclei segmentation and classification challenge. IEEE Trans. Med. Imaging 40(12), 3413–3423 (2021)

    Article  Google Scholar 

  38. Wu, F., Zhuang, X.: Unsupervised domain adaptation with variational approximation for cardiac segmentation. IEEE Trans. Med. Imaging 40(12), 3555–3567 (2021)

    Article  Google Scholar 

  39. Wu, H., Wang, Z., Song, Y., Yang, L., Qin, J.: Cross-patch dense contrastive learning for semi-supervised segmentation of cellular nuclei in histopathologic images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11666–11675 (2022)

    Google Scholar 

  40. Xing, F., Cornish, T.C., Bennett, T.D., Ghosh, D.: Bidirectional mapping-based domain adaptation for nucleus detection in cross-modality microscopy images. IEEE Trans. Med. Imaging 40(10), 2880–2896 (2020)

    Article  Google Scholar 

  41. Yang, S., Zhang, J., Huang, J., Lovell, B.C., Han, X.: Minimizing labeling cost for nuclei instance segmentation and classification with cross-domain images and weak labels. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 697–705 (2021)

    Google Scholar 

  42. Zhang, H., Zhang, Y.F., Liu, W., Weller, A., Schölkopf, B., Xing, E.P.: Towards principled disentanglement for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8024–8034 (2022)

    Google Scholar 

  43. Zhang, Y., Li, M., Li, R., Jia, K., Zhang, L.: Exact feature distribution matching for arbitrary style transfer and domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8035–8045 (2022)

    Google Scholar 

  44. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

  45. Zheng, Y., Huang, D., Liu, S., Wang, Y.: Cross-domain object detection through coarse-to-fine feature adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13766–13775 (2020)

    Google Scholar 

  46. Zhou, W., Du, D., Zhang, L., Luo, T., Wu, Y.: Multi-granularity alignment domain adaptation for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9581–9590 (2022)

    Google Scholar 

  47. Zhou, Z., Qi, L., Yang, X., Ni, D., Shi, Y.: Generalizable cross-modality medical image segmentation via style augmentation and dual normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20856–20865 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianan Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, J. et al. (2025). Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15131. Springer, Cham. https://doi.org/10.1007/978-3-031-73464-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73464-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73463-2

  • Online ISBN: 978-3-031-73464-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy