Abstract
Process mining aims to turn event data into insights and actions in order to improve processes. To improve process performance it is crucial to get insights into the way people work and collaborate. In this paper, we focus on discovering social networks from event data. To be able to deal with large data sets or with an environment which requires repetitive discoveries during the analysis, and still provide results instantly, we use an approach where most of the computation is moved to the database and things are precomputed at data entry time. Differently from traditional process mining where event data is stored in file-based system, we store event data in relational databases. Moreover, the database also has a role as an engine to compute the intermediate structure of social network during insertion data. By moving computation both in location (to database) and time (to recording time), the discovery of social networks in a process context becomes truly scalable. The approach has been implemented using the open source process mining toolkit ProM. The experiments reported in this paper demonstrate scalability while providing results instantly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Appice, A., Pietro, M., Greco, C., Malerba, D.: Discovering and tracking organizational structures in event logs. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. LNCS, vol. 9607, pp. 46–60. Springer, Cham (2016). doi:10.1007/978-3-319-39315-5_4
Butts, C.T.: Social network analysis: a methodological introduction. Asian J. Soc. Psychol. 11, 13 (2008)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. Semantic Technologies for Information Systems. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03754-2_7
Calvanese, D., Montali, M., Syamsiyah, A., Aalst, W.M.P.: Ontology-driven extraction of event logs from relational databases. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 140–153. Springer, Cham (2016). doi:10.1007/978-3-319-42887-1_12
Ferreira, D.R., Alves, C.: Discovering user communities in large event logs. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 123–134. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28108-2_11
Furht, B.: Handbook of Social Network Technologies and Applications, 1st edn. Springer, New York (2010)
Gansner, E.R.: Using Graphviz as a library (2014)
Günther, C.W.: XES standard definition (2014). http://www.xes-standard.org
Jalali, A.: Supporting social network analysis using chord diagram in process mining. In: Řepa, V., Bruckner, T. (eds.) BIR 2016. LNBIP, vol. 261, pp. 16–32. Springer, Cham (2016). doi:10.1007/978-3-319-45321-7_2
Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: IMC 2007, pp. 29–42, New York, USA (2007)
Poggi, A., Lembo, D., Calvanese, D., Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77688-8_5
Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5_18
Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P.: DB-XES: enabling process mining in the large. In: SIMPDA 2016, pp. 63–77 (2016)
Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD 2009, pp. 807–816, New York, USA (2009)
van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016)
van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. CSCW 14(6), 549–593 (2005)
Aalst, W.M.P., Song, M.: Mining social networks: uncovering interaction patterns in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25970-1_16
van Dongen, B.F., Shabani, S.: Relational XES: data management for process mining. In: CAiSE 2015, pp. 169–176 (2015)
van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Online discovery of cooperative structures in business processes. In: Christophe, D., Hervé, P., Robert, M., Tharam, D., Eva, K., Declan, O., Agostino, A.C. (eds.) OTM 2016. LNCS, vol. 10033. Springer, Heidelberg (2016). doi:10.1007/978-3-319-48472-3_12
Yu, L., Zheng, J., Shen, W.C., Wu, B., Wang, B., Qian, L., Zhang, B.R.: BC-PDM: data mining, social network analysis and text mining system based on cloud computing. In: KDD 2012, pp. 1496–1499. ACM (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P. (2017). Discovering Social Networks Instantly: Moving Process Mining Computations to the Database and Data Entry Time. In: Reinhartz-Berger, I., Gulden, J., Nurcan, S., Guédria, W., Bera, P. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS EMMSAD 2017 2017. Lecture Notes in Business Information Processing, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-319-59466-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-59466-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59465-1
Online ISBN: 978-3-319-59466-8
eBook Packages: Business and ManagementBusiness and Management (R0)