Abstract
In this study, we analyze how the forward model dependence on the study population influences the reconstruction of brain activity based on electroencephalographic (EEG) recordings. To this, we compare the source localization accuracy using generic and atlas-based head models, constructed with the Finite Difference Reciprocity method (FDRM). Additionally, we analyze the influence of including several tissues, as skull, scalp, gray matter, white matter, and cerebrospinal fluid. Comparison is carried out under a parametric empirical Bayesian (PEB) framework, that allows contrasting different forward modeling approaches using real data. Obtained results, based on event-related potentials (ERPs) of 31 subjects, show that the more realistic and more dependent on the study population the used head model, the better the ESI estimation.
E. Cuartas-Morales—This work was supported by Prog. Nal. de Formación de Investigadores Generación del Bicentenario, 2012, Conv 528, program Jóvenes Investigadores e Innovadores, 2015, Conv 706, and by the research project 111956933522 founded by COLCIENCIAS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cuartas-Morales, E., Daniel-Acosta, C., Castellanos-Dominguez, G.: iLU preconditioning of the anisotropic-finite-difference based solution for the EEG forward problem. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9107, pp. 408–418. Springer, Cham (2015). doi:10.1007/978-3-319-18914-7_43
Friston, K., Harrison, L., et al.: Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39(3), 1104–1120 (2008)
Hallez, H., Vanrumste, B., et al.: Dipole estimation errors in EEG source localization due to not incorporating anisotropic conductivities of white matter in realistic head models, October 2007
Henson, R.N., Mattout, J., et al.: Selecting forward models for MEG source-reconstruction using model-evidence. NeuroImage 46(1), 168–176 (2009)
Martínez-Vargas, J.D., López, J.D., Baker, A., Castellanos-Dominguez, G., Woolrich, M.W., Barnes, G.: Non-linear parameter estimates from non-stationary MEG data. Front. Neurosci. 10, 366 (2016). PMC. Web. 11 May 2017
Montes, V., van Mierlo, P., et al.: Influence of skull modeling approaches on EEG source localization. Brain Topogr. 27(1), 95–111 (2013)
Penny, W.D., Stephan, K.E., et al.: Comparing dynamic causal models. NeuroImage 22(3), 1157–1172 (2004)
Saleheen, H.I., Ng, K.T.: New finite difference formulations for general inhomogeneous anisotropic bioelectric problems. IEEE Trans. Biomed. Eng. 44(9), 800–809 (1997)
Strobbe, G., van Mierlo, P., et al.: Bayesian model selection of template forward models for EEG source reconstruction. NeuroImage 93, 11–22 (2014)
Valdés-Hernández, P.A., Von Ellenrieder, N., et al.: Approximate average head models for EEG source imaging. J. Neurosci. Methods 185(1), 125–132 (2009)
Vorwerk, J., Cho, J.-H., et al.: A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100, 590–607 (2014)
Wipf, D.P., Owen, J.P., et al.: Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage 49(1), 641–655 (2010)
Wolters, C.H., Anwander, A., et al.: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. NeuroImage 30, 813–826 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Cuartas-Morales, E., Céspedes-Villar, Y.R., Martínez-Vargas, J.D., Arteaga-Daza, L.F., Castellanos-Dominguez, C. (2017). Influence of Population Dependent Forward Models on Distributed EEG Source Reconstruction. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Natural and Artificial Computation for Biomedicine and Neuroscience. IWINAC 2017. Lecture Notes in Computer Science(), vol 10337. Springer, Cham. https://doi.org/10.1007/978-3-319-59740-9_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-59740-9_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59739-3
Online ISBN: 978-3-319-59740-9
eBook Packages: Computer ScienceComputer Science (R0)